7 Appendix

7.1 Proof for Theorem!|l]
Let g(M) be a smooth function such that Vg(M) is Lipschitz-continuous with parameter p, that is,
p
g(M') = g(M) = (Vg(M), M’ = M) < T || M’ = M|

Then V; f(c) = 2] Vg(M)z; is Lipschitz-continuous with parameter +, a number of order O(1)

when ¢(.) is an empirical risk normalized by N. Let .4 be the active set before adding a component 7.
Consider the descent amount produced by minimizing F(c) w.r.t. the ¢; given that 0 € 9;F'(c) for

all j € A due to the subproblem in the previous iteration. Let j = j, for any 71; we have
i
F(c+njej) — F(c) < Vjf(e)n; + Ayl + 577]2-

Y
< uVjf(e)n; + Ayl + 5772

gl
< uVj fle)ng + Aln;l + 577?
Minimize w.r.t n; gives

min F(c+n;e;) — F(c)
n;
. y
< n;;m wV i+ f(e)n; + An;| + 577.72'
J

. v
< min 1V f(e)nj + Alng| + 57732‘
J

2
R Y
= min (quf(C)nk + /\|77k|) +3 ( > ml)

k¢ A k¢ A
2
. Y
< min p > (ka(C)nk + AImCI) +5 (Z mcI)
mekEA A ke A
+ (1= A Z |7k
kg A

where the last equality is justified by Lemma 2] provided later. For k € A, we have

0= mi Vv +A Y
ﬂlfri}flgfl M'I;( kf(C)’ﬂk |Ck+?’]k| ‘Ck‘)

Combining cases for k ¢ A and k € A, we can obtain a global estimate of descent amount compared
to some optimal solution z* as follows

min F(c+n;e;) — F(c)
;

< min u<<Vf(C),77> Mo+l - A|c||1)

2
+2 (Z |nk|> (=AY el

k¢ A k¢ A
2
< (Fletn) - FO) + (2 |nk|) (=AY e
k¢ A k¢ A

. * «@ * *
< min (Pt ate =)= FO) ) + FII + a1 = Al

. * asz * *
< min o (F(O) = F(e)) + eI} +alt = WAl
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It means we can always choose an « small enough to guarantee descent if

Fo) - F(e) > L 20)

Then for
2(1 — p)

F(c)—F(c*) > .

Alle I, 21
we have

min F(c+n;e;) — F(c)

J

2
. ap . [ AT
< — F(c)—F )
< oo ( (c) = F(c )) + 5 lle Ik

Minimizing w.r.t. to « gives the convergence guarantee

2y|c*[3 1
() - F(er) < 2L
7! t
for any iterate with F/(c!) — F(c*) > @)\Hc* Il1-
Lemma 2.
. v
min V- f(e)n; + Anj| + 5717 (22)
2
= min (uka(c)nkmlnko + 20 il (23)
nk:kgA . 2
¢A k¢ A
Proof. The minimization (28) is equivalent to
min Y <Mka(C)77k>
nk:kgA kg A
2
st (Z |7]k> <Ci, Y lml <0
kA kA
and therefore is equivalent to
min Vif(c
min M’; k()
s.t. Z [7| < min{+/Cq,Cs}
kg A

which is a linear objective subject to a convex set and thus always has solution that lies on the corner
point with only one non-zero coordinate 7;+, which then gives the same minimum as (27). O

7.2 Proof for Lemmal/I]

Since supp(c*) = A*, and ¢* is optimal when restricted on the support, we have (n, ¢*) = 0 for
some 1) € JF(c*). And since F(¢) is strongly convex on the support A* with parameter /3, we have

F(0) = F(c") = F(0) = F(c") = (n,0 - ¢%)
B\
which gives us
2(F(0) - F(c))
3 .

Combining above with the fact for any ¢, ||c||? < ||c||o||c||3, we obtain the result.

le 13 <
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7.3 Proof for Theorem

Lemma 3. Let r(W) and r (W) be the risk ) and the empirical risk respectively, we have

sup [r(W) —rn (W)
WERK X D:[|W | p<R

2DK log(4RKN) 1
\/ N TN log(;)

<

with probability 1 — p.

Proof. Since min,¢ o1y~ 5(y — 2" Wa)? < |y[* < 1 for a given W, by Hoeffding inequality,
P(lry(W) =r(W)| = €)
< exp(—2Né?).

Let NV(8) be a d-covering of the set W := {W € REXD | |W||r < R} with |V (§)| < (%)DK.
Then for any W € W, we have W € N (8) with || — W|| < 4. Applying a union bound, we have

P( sup |7"N(W) - T(W)| > e)
WEN(8)

DK
< (4;%> exp(—2Ne?).

Then for AW := W — W satisfying || AW|| < &, we can bound the difference of square loss of TV
and W by

(24)

. T 2 . T )2
—(y—z Wax)* - “(y—2z'W
zer{r(l)l,rll}K Q(y z We) zer{r(l)l,{l}K Q(y = Wa)

JAW [ 12] + 2R 2|2 AW | < 3RKe

IN

where Z = argmin o 13x 5(y — z' Wa)? and we used the fact that [|z|| < 1 and |y| < 1. By
symmetry, we have

1 ~ 1
min  —(y—z'Wa)?— min —(y— 2" Wz)? < 3RKe
z€{0,1}K 2 z€{0,1}K 2
. Combining (24) with (23], we have

sup [ry (W) —rn (W)
wew

(26)
DK 4R 1 1
< K —— log(— — log(—).
< 6R 6+\/2N og( 5 )+2N og(p)

with probability 1 — p. Setting § = 1/(6RK+/N) and apply Jennen’s inequality gives the result. [
Then the following gives the proof for Theorem 2]

Proof. Let z; = argmin,,c(o13x (ys — 2, Wa;)? fori € [N]. Denote Z as the N x K matrix
stacked from (2] )Y ;. Let {z¥} 5| be the columns of Z and A be the indexes of atoms in the atomic
set () that have the same 0-1 patterns to those columns. Denote ¢ as the coefficient vector with

¢, = 1fork € Aand ¢, = 0 for k ¢ A. By the definition of F(c), we have

F(&) < (W) + 2| W+ Allel . @7)
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where 7y (W) := 55 SN mingcqo1yx (y; — 2T We;)? is the empirical risk of . Let ¢* :=

argming g,,nc)=4 F(c). We have F(c*) < F(€). Then from (T8),

L=mA 2K

) _ . o o K (1> 2(
F(¢c)—F(e) < F(ec)— F(c + . (28)
(¢)—F(e) < F(e) — F(c") < e . 5
In addition, the risk of W satisfies
~ T ~ " R
rn (W) + 5 WIE +Alelh < F(e) (29)

by the definition of the empirical risk 7 (.) (since it is minimized w.r.t. the hidden assignments).
Combining (27), (28) and (29), we obtain a bound on the difference of empirical risk

TN(W) — TN(W)

*HWIIQ

4vK 1) 21 — A 2K (30)
Bu? (T " Iz B

optimization error

bias of regularization

The remaining task is to bound the estimation error |r(W) — rn (W)|. Since Algorithm|l|is a descent
algorithm w.r.t. F(c) and in the beginning F'(0) < 1/2, we have |[c[; < 1/Xand [W]? < 1/7
at any iterate. Then we can bound the estimation error by Lemma |3| for 144 belonging to the set
W(T) := {W e RT*P | |W|r < \/1/A7}, giving

A A 2DT log(4T N/ At 1
() — e (1) s\/ BRI 4 Lo, 61)
Combining @) and (B1)), and choosing A = 1/(NK), 7 = 1/(N R?), we obtain (W) — (W) < e
with T > B( ).and N > 2L (2]og(4EET) +10g( )) forany 0 < e < 1. O
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