
A Proof of theorem 1

Following the EBGAN [4], we give the proof as follows:

It is obvious that the sufficient conditions hold. So, we prove the necessary conditions. For the
necessary condition (a) pG∗ = pdata:

(E∗, G∗) forms a saddle point that satisfies:

V (G∗, E∗) ≤ V (G∗, E) ∀E (1)
U(G∗, E∗) ≤ U(G,E∗) ∀G (2)

Firstly, V (G∗, E) can be transformed as follows:

V (G∗, E) =

∫
x

pdata(x)E(x) dx+

∫
z

pz(z) [m− E(G∗(z))]
+
dz (3)

=

∫
x

(
pdata(x)E(x) + pG∗(x) [m− E(x)]

+
)
dx (4)

=

∫
x

(
ay + b [m− y]+

)
dx (5)

where a = pdata(x) ≥ 0, y = E(x) ≥ 0, b = pG∗(x) ≥ 0. According to the analysis of
ϕ(y) = ay + b(m− y)+ in lemma A.1, which has been proved in [4],

Lemma A.1 Let a, b ≥ 0, ϕ(y) = ay + b [m− y]+. The minimum of ϕ on [0,+∞) exists and is
reached in m if a < b, and it is reached in 0 otherwise (the minimum may not be unique).

V (G∗, E) reaches its minimum when we replace E∗(x) by these values.

V (G∗, E∗) =

∫
x

1pdata(x)<pG∗ (x)

(
pdata(x)× 0 + pG∗(x) [m− 0]

+
)
dx (6)

+

∫
x

1pdata(x)≥pG∗ (x)

(
pdata(x)×m+ pG∗(x) [m−m]

+
)
dx (7)

= m

∫
x

1pdata(x)<pG∗ (x)pdata(x) dx+m

∫
x

1pdata(x)≥pG∗ (x)pG∗(x) dx (8)

= m

∫
x

(
1pdata(x)<pG∗ (x)pdata(x) +

(
1− 1pdata(x)<pG∗ (x)

)
pG∗(x)

)
dx (9)

= m

∫
x

pG∗(x) dx+m

∫
x

1pdata(x)<pG∗ (x)(pdata(x)− pG∗(x)) dx (10)

= m+m

∫
x

1pdata(x)<pG∗ (x)(pdata(x)− pG∗(x)) dx. (11)

Since the second term in 11 m
∫
x
1pdata(x)<pG∗ (x)(pdata(x)− pG∗(x)) dx ≤ 0, so V (G∗, E∗) ≤ m.

By putting pdata into the right side of equation 2, we get∫
x

pG∗(x)E∗(x) dx ≤
∫
x

pdata(x)E
∗(x) dx. (12)

∫
x
pG∗(x)E∗(x) dx+

∫
x
pG∗(x)[m− E∗(x)]+ dx

≤
∫
x
pdata(x)E

∗(x) dx+
∫
x
pG∗(x)[m− E∗(x)]+ dx (13)∫

x

pG∗(x)E∗(x) dx+

∫
x

pG∗(x)[m− E∗(x)]+ dx ≤ V (G∗, E∗) (14)

According to lemma A.1, E∗(x) ≤ m almost everywhere. So we get m ≤ V (G∗, E∗).

Thus, m ≤ V (G∗, E∗) ≤ m i.e. V (G∗, E∗) = m. Putting it into equation 11, m +
m
∫
x
1pdata(x)<pG∗ (x)(pdata(x) − pG∗(x)) dx = m, so we obtain

∫
x
1pdata(x)<pG∗ (x)(pdata(x) −

pG∗(x)) dx = 0. We can see that only if pG = pdata almost everywhere, the above equation is true.

1



Now for the necessary condition (b) E∗(x) = γ where γ ∈ [0,m] is a constant. Following the proof
by contradiction in [4]. Let us now assume that E∗(x) is not constant almost everywhere and find a
contradiction. If it is not, then there exists a constant C and a set S of non-zero measure such that
∀x ∈ S, E∗(x) ≤ C and ∀x 6∈ S, E∗(X) > C. In addition we can choose S such that there exists a
subset S ′ ⊂ S of non-zero measure such that pdata(x) > 0 on S ′ (because of the assumption in the
footnote). We can build a generator G0 such that pG0

(x) ≤ pdata(x) over S and pG0
(x) < pdata(x)

over S ′. We compute

U(G∗, E∗)− U(G0, E
∗) =

∫
x

(pdata − pG0
)E∗(x) dx (15)

=

∫
x

(pdata − pG0
)(E∗(x)− C) dx (16)

=

∫
S
(pdata − pG0)(E

∗(x)− C) dx

+

∫
RN\S

(pdata − pG0
)(E∗(x)− C) dx (17)

> 0 (18)

which violates equation 2.

B Network Architecture

Tab. 1 is the network architecture for generating images of 1024 × 1024 resolution. We reduce
the number of [Res-block + AvgPool] in the inference model and [Upsample + Res-block] in the
generator for other smaller resolutions. In the experimental process we find that the residual block
can accelerate the convergence for image synthesis, especially for resolutions larger than 256× 256.

Inference model Act. Output shape
Input image – 3 ×1024×1024
Conv 5× 5, 16 16 ×1024×1024
AvgPool – 16 × 512× 512

Res-block

 1× 1, 32
3× 3, 32
3× 3, 32

 32 × 512× 512

AvgPool – 32 × 256× 256

Res-block

 1× 1, 64
3× 3, 64
3× 3, 64

 64 × 256× 256

AvgPool – 64 × 128× 128

Res-block

 1× 1, 128
3× 3, 128
3× 3, 128

 128× 128× 128

AvgPool – 128× 64 × 64

Res-block

 1× 1, 256
3× 3, 256
3× 3, 256

 256× 64 × 64

AvgPool – 256× 32 × 32

Res-block

 1× 1, 512
3× 3, 512
3× 3, 512

 512× 32 × 32

AvgPool – 512× 16 × 16

Res-block

 1× 1, 512
3× 3, 512
3× 3, 512

 512× 16 × 16

AvgPool – 512× 8 × 8

Res-block
[

3× 3, 512
3× 3, 512

]
512× 8 × 8

AvgPool – 512× 4 × 4

Res-block
[

3× 3, 512
3× 3, 512

]
512× 4 × 4

Reshape – 8192× 1 × 1
FC-1024 – 1024× 1 × 1
Split – 512, 512

Generator Act. Output shape
Latent vector – 512× 1 × 1
FC-8192 ReLU 8192× 1 × 1
Reshape – 512× 4 × 4

Res-block
[

3× 3, 512
3× 3, 512

]
512× 4 × 4

Upsample – 512× 8 × 8

Res-block
[

3× 3, 512
3× 3, 512

]
512× 8 × 8

Upsample – 512× 16 × 16

Res-block
[

3× 3, 512
3× 3, 512

]
512× 16 × 16

Upsample – 512× 32 × 32

Res-block

 1× 1, 256
3× 3, 256
3× 3, 256

 256× 32 × 32

Upsample – 256× 64 × 64

Res-block

 1× 1, 128
3× 3, 128
3× 3, 128

 128× 64 × 64

Upsample – 128× 128× 128

Res-block

 1× 1, 64
3× 3, 64
3× 3, 64

 64 × 128× 128

Upsample – 64 × 256× 256

Res-block

 1× 1, 32
3× 3, 32
3× 3, 32

 32 × 256× 256

Upsample – 32 × 512× 512

Res-block

 1× 1, 16
3× 3, 16
3× 3, 16

 16 × 512× 512

Upsample – 16 ×1024×1024

Res-block
[

3× 3, 16
3× 3, 16

]
16 ×1024×1024

Conv 5× 5, 3 3 × 1024× 1024

Table 1: Network architecture for generating 1024× 1024 images.

2



C Illustration of training flow

As illustrated in Fig. 1, we train the inference model and generator iteratively that an extra pass
through the inference model is necessary after images are generated or reconstructed. As in the
algorithm 1, we use ng(·) to stop the gradients of LE

adv (Line (8) and (9) in the Algorithm 1)
propagating back to the generator in the first pass. For other choices, such as no ng(·) or updating the
generator first, it also works with one forward pass through the inference model. The current choice
is for realization convenience.

X

Z

Xr

Zr

Zp

Xp

Zpp

LREG

LAE

[m-LREG]
+

[m-LREG]
+

Inf
ere

nce

Generator Inf
ere

nce

Inf
ere

nce
Generator

P(z)

(a) Updating the inference model.

X

Z

Xr

Zr

Zp

Xp

Zpp

LAE

LREG

LREG
Inf
ere

nce

Generator Inf
ere

nce

Inf
ere

nce
Generator

P(z)

(b) Updating the generator.

Figure 1: The training flow of Algorithm 1. The solid and dash lines illustrate the forward and
backward passes of the proposed model, respectively. The inference model and generator are updated
iteratively.

D Discussion of hyper-parameters

We conduct experiments on the images of 256× 256 in CELEBA-HQ and find the training stability
is not very sensitive to the hyper-parameters in some degree though they indeed have influences
on the sample and reconstruction quality. α is better to be 0.1 ∼ 0.5 and larger or smaller may
decelerate the convergence speed. As illustrated in Fig. 2, when α is fixed, larger β always improves
the reconstruction quality but may influence the sample diversity. The margin m should be selected
according to the value of β because larger β needs larger m to balance the adversarial training.
Pre-training the model following the original VAEs (i.e., α = 0) is suggested to find the most
appropriate value of m responding to a specific β. m can be selected to be a little larger than the
training kl-divergence value of VAEs.

3



Figure 2: Results of different hyper-parameters where α is fixed to be 0.25. For each setting, the first
column of images are the reconstructions and the second are the samples. We use RMSE (smaller
is better) to describe the reconstruction quality and MS-SSIM (smaller is better) to demonstrate the
sample diversity.

4



E Nearest neighbors for the generated images

Fig. 3 shows the nearest neighbors from the training data for the generated images (the first row in
Fig. 3). We find the nearest neighbors using two distance measures: the second row of images in
Fig. 3 are the results based on L1 distance in pixel space; the bottom row of images are the results
based on cosine distance in feature space. The high-level features are extracted using a pretrained
face recognition network, i.e. LightCNN [2].

Figure 3: Nearest neighbors for the generated images.

F Qualitative comparison on LSUN CHURCHOUTDOOR

(a) PGGAN

(b) Ours

Figure 4: Qualitative comparison on LSUN CHURCHOUTDOOR [3]. The images in (a) are copied
from the cited papers [1]

5



G Qualitative comparison on DOG images

(a) PGGAN

(b) Ours

Figure 5: Qualitative comparison on DOG images. Our model is trained with 256× 256 dog images
from the ImageNet database. The images in (a) are copied from the cited papers [1].

6



H Additional 1024× 1024 images

Figure 6: Additional results of 1024× 1024 images.

7



Figure 7: Additional results of 1024× 1024 images.

References
[1] Karras, Tero, Aila, Timo, Laine, Samuli, and Lehtinen, Jaakko. Progressive growing of GANs for improved

quality, stability, and variation. In ICLR, 2018.

8



[2] Wu, Xiang, He, Ran, Sun, Zhenan, and Tan, Tieniu. A light cnn for deep face representation with noisy
labels.

[3] Yu, Fisher, Seff, Ari, Zhang, Yinda, Song, Shuran, Funkhouser, Thomas, and Xiao, Jianxiong. Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint
arXiv:1506.03365, 2015.

[4] Zhao, Junbo, Mathieu, Michael, and LeCun, Yann. Energy-based generative adversarial network. In ICLR,
2017.

9


	Proof of theorem 1
	Network Architecture
	Illustration of training flow
	Discussion of hyper-parameters
	Nearest neighbors for the generated images
	Qualitative comparison on LSUN CHURCHOUTDOOR
	Qualitative comparison on DOG images
	Additional 10241024 images

