
Supplementary Material:
Hierarchical Reinforcement Learning for Zero-shot

Generalization with Subtask Dependencies

1 Details of the Task

We define each task as an MDP tupleMG = (S,A,PG,RG, ρG, γ) where S is a set of states,A is a
set of actions, PG : S ×A× S → [0, 1] is a task-specific state transition function,RG : S ×A → R
is a task-specific reward function and ρG : S → [0, 1] is a task-specific initial distribution over states.
We describe the subtask graph G and each component of MDP in the following paragraphs.

Subtask and Subtask Graph The subtask graph consists of N subtasks that is a subset of O, the
subtask reward r ∈ RN , and the precondition of each subtask. The set of subtasks is O = Aint ×X ,
whereAint is a set of primitive actions to interact with objects, andX is a set of all types of interactive
objects in the domain. To execute a subtask (aint, obj) ∈ Aint ×X , the agent should move on to the
target object obj and take the primitive action aint.

State The state st consists of the observation obst ∈ {0, 1}W×H×C , the completion vector
xt ∈ {0, 1}N , the time budget stept and the eligibility vector et ∈ {0, 1}N . An observation obst is
represented as H ×W × C tensor, where H and W are the height and width of map respectively,
and C is the number of object types in the domain. The (h,w, c)-th element of observation tensor is
1 if there is an object c in (h,w) on the map, and 0 otherwise. The time budget indicates the number
of remaining time-steps until the episode termination. The completion vector and eligibility vector
provides additional information about N subtasks. The details of completion vector and eligibility
vector will be explained in the following paragraph.

State Distribution and Transition Function Given the current state (obst,xt, et), the next step
state (obst+1,xt+1, et+1) is computed from the subtask graph G. In the beginning of episode, the
initial time budget stept is sampled from a pre-specified range Nstep for each subtask graph (See
section 10 for detail), the completion vector xt is initialized to a zero vector in the beginning of
the episode x0 = [0, . . . , 0] and the observation obs0 is sampled from the task-specific initial state
distribution ρG. Specifically, the observation is generated by randomly placing the agent and the N
objects corresponding to the N subtasks defined in the subtask graph G. When the agent executes
subtask i, the i-th element of completion vector is updated by the following update rule:

xit+1 =

{
1 if eit = 1
xit otherwise . (1)

The observation is updated such that agent moves on to the target object, and perform corresnponding
primitive action (See Section 9 for the full list of subtasks and corresponding primitive actions on
Mining and Playground domain). The eligibility vector et+1 is computed from the completion vector
xt+1 and subtask graph G as follows:

eit+1 = OR
j∈Childi

(
yjAND

)
, (2)

yiAND = AND
j∈Childi

(
x̂i,jt+1

)
, (3)

x̂i,jt+1 = xjt+1w
i,j + (1− xjt+1)(1− wi,j), (4)

where wi,j = 0 if there is a NOT connection between i-th node and j-th node, otherwise wi,j = 1.
Intuitively, x̂i,jt = 1 when j-th node does not violate the precondition of i-th node. Executing each
subtask costs different amount of time depending on the map configuration. Specifically, the time cost
is given as the Manhattan distance between agent location and target object location in the grid-world
plus one more step for performing a primitive action.
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Task-specific Reward Function The reward function is defined in terms of the subtask reward
vector r and the eligibility vector et, where the subtask reward vector r is the component of subtask
graph G the and eligibility vector is computed from the completion vector xt and subtask graph G as
Eq. 4. Specifically, when agent executes subtask i, the reward given to agent at time step t is given as
follows:

rt =

{
ri if eit = 1
0 otherwise . (5)

2 Experiment on Hierarchical Task Network

We compared with our methods with the recent graph-based multitask RL works [1–3]. However,
these methods cannot be applied to our problem for two main reasons: 1) they aim to solve a
single-goal task, which means they can only solve a subset of our problem, and 2) they require
search or learning during test time, which means they cannot be applied in zero-shot generalization
setting. Specifically, each trajectory in single-goal task is assumed to be labeled as success or failure
depending on whether the goal was achieved or not, which is necessary for these methods [1–3] to
infer the task structure (e.g., hierarchical task network (HTN) [4]). Since our task setting is more
general and not limited to a single goal task, the task structure with multiple goals cannot be inferred
with these methods.

For a direct comparison, we simplified our problem into single-goal task as follows. 1) We set a
single goal; set all the subtask reward to 0, except the top-level subtask, and set it as terminal state.
2) We removed the cost, time budget, and observation, and set γ = 1. After constructing the task
network such as HTN, these methods [1–3] execute task by planning [1] or learning a policy [2, 3]
during test stage. Accordingly, we evaluated HTN-plan method [1] in planning setting, and allowed
learning in test time for [2, 3]. Note that these methods cannot execute a task in zero-shot setting,
while our NSGS can do it by learning an embedding of subtask graph; it is the main reason why our
method performs much better than these methods in the following two experiments.
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Figure 1: Planning performance of
MCTS+NSGS, MCTS+GRProp and
HTN-Plan on HTN subtask graph in
Playground domain.

Adaptation (HTN)
Method R̄

NSGS (Ours) .90
HTN-Independent .31

Table 1: Adaptation performance (nor-
malized reward) of NSGS and HTN-
Independent on HTN subtask graph in
Playground domain.

2.1 Comparison with HTN-Planning

Hayes and Scassellati [1] performed planning on the inferred task network to find the optimal solution.
Thus, we implemented HTN-Plan with MCTS as in section 5.5, and compared with ours in planning
setting. We evaluated our MCTS+NSGS and MCTS+GRProp for comparison. The figure shows
that our MCTS+NSGS and MCTS+GRProp agents outperform HTN-Plan by a large margin.

2.2 Comparison with HTN-based Agent

Instead of planning, Ghazanfari and Taylor [2] learned an hierarchical RL (HRL) agent on the
constructed HTN during testing. Thus, we evaluated it in adaptation setting (i.e., learning during test
time). To this end, we implemented an HRL agent, HTN-Independent, which is a policy over option
trained on each subtask graph independently, similar to Independent agent (see section 5.2). The
result shows that our NSGS agent can find the solution much faster than HTN-Independent agent due
to zero-shot generalization ability.
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Huang et al. [3] inferred the subtask graph from the visual demonstration in testing. Since the
environment state is available in our setting, providing demonstration amounts to providing the
solution. Thus we couldn’t compare with it.

3 Details of NSGS Architecture
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Figure 2: An example of R3NN construction for a given subtask graph input. The four encoders (bθa , bθo , tθa ,
and tθo ) are cloned and connected according to the input subtask graph where the cloned models share the
weight. For simplicity, only the output embeddings of bottom-up and top-down OR encoder were specified in the
figure.

Task module Figure 2 illustrates the structure of the task module of NSGS architecture for a given
input subtask graph. Specifically, the task module was implemented with four encoders: bθa , bθo , tθa ,
and tθo . The input and output of each encoder is defined in the main text section 4.1 as:

φibot,o = bθo

xit, eit, step, ∑
j∈Childi

φjbot,a

 , φjbot,a = bθa

 ∑
k∈Childj

[
φkbot,o, w

j,k
+

] ,

(6)

φitop,o = tθo

φibot,o, ri, ∑
j∈Parenti

[
φjtop,a, w

i,j
+

] , φjtop,a = tθa

φjbot,a, ∑
k∈Parentj

φktop,o

 ,

(7)
For bottom-up process, the encoder takes the output embeddings of its children encoders as input.
Similarly, for top-down process, the encoder takes the output embeddings of its parent encoders as
input. The input embeddings are aggregated by taking element-wise summation. For φibot,a and
φitop,o, the embeddings are concatenated with wi,j+ to deal with NOT connection before taking the
element-wise summation. Then, the summed embedding is concatenated with all additional input as
defined in Eq. 6 and 7, which is further transformed with three fully-connected layers with 128 units.
The last fully-connected layer outputs 128-dimensional output embedding. The embeddings are
transformed to reward scores as via: prewardt = Φ>topv, where Φtop = [φ1top,o, . . . , φ

N
top,o] ∈ RE×N ,

E is the dimension of the top-down embedding of OR node, and v ∈ RE is a weight vector for reward
scoring. Similarly, the reward baseline is computed by brewardt = sum(Φ>topṽ), where sum(·) is the
reduced-sum operation and ṽ is the weight vector for reward baseline. We used parametric ReLU
(PReLU) function as activation function.

Observation module The network consists of BN1-Conv1(16x1x1-1/0)-BN2-Conv2(32x3x3-
1/1)-BN3-Conv3(64x3x3-1/1)-BN4-Conv4(96x3x3-1/1)-BN5-Conv5(128x3x3-1/1)-BN6-
Conv6(64x1x1-1/0)-FC(256). The output embedding of FC(256) was then concatenated
with the number of remaining time step stept. Finally, the network has two fully-connected output
layers for the cost score pcostt ∈ RN and the cost baseline bcostt ∈ R. Then, the policy of NSGS is
calculated by adding reward score and cost score, and taking softmax:

π(ot|st, G) = Softmax(prewardt + pcostt ). (8)
The baseline output is obtained by adding reward baseline and cost baseline:

Vθ′(st, G) = brewardt + bcostt . (9)
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4 Details of Learning NSGS Agent

Learning objectives The NSGS architecture is first trained through policy distillation and finetuned
using actor-critic method with generalized advantage estimator. During policy distillation, the KL
divergence between NSGS and teacher policy (GRProp) is minimized as follows:

∇θL1 = EG∼Gtrain
[
Es∼πGθ

[
∇θDKL

(
πGT ||πGθ

)]]
, (10)

where θ is the parameter of NSGS architecture, πGθ is the simplified notation of NSGS policy with
subtask graph input G, πGT is the simplified notation of teacher (GRProp) policy with subtask graph

input G, DKL

(
πGT ||πGθ

)
=
∑
a π

G
T log

πGT
πGθ

and Gtrain ⊂ G is the training set of subtask graphs.

For both policy distillation and fine-tuning, we sampled one subtask graph for each 16 parallel
workers, and each worker in turn sample a mini-batch of 16 world configurations (maps). Then,
NSGS generates total 256 episodes in parallel. After generating episode, the gradient from 256
episodes are collected and averaged, and then back-propagated to update the parameter. For policy
distillation, we trained NSGS for 40 epochs where each epoch involves 100 times of update. Since
our GRProp policy observes only the subtask graph, we only trained task module during policy
distillation. The observation module was trained for auxiliary prediction task; observation module
predicts the number of step taken by agent to execute each subtask.

After policy distillation, we finetune NSGS agent in an end-to-end manner using actor-critic method
with generalized advantage estimation (GAE) [5] as follows:

∇θL2 = EG∼Gtrain

[
Es∼πGθ

[
−∇θ log πGθ

∞∑
l=0

(
l−1∏
n=0

(γλ)kn

)
δt+l

]]
, (11)

δt = rt + γktV πθ′ (st+1, G)− V πθ′ (st, G), (12)
where kt is the duration of option ot, γ is a discount factor, λ ∈ [0, 1] is a weight for balancing
between bias and variance of the advantage estimation, and V πθ′ is the critic network parameterized

by θ′. During training, we update the critic network to minimize E
[
(Rt − V πθ′ (st, G))

2
]
, where Rt

is the discounted cumulative reward at time t.

Hyperparameters For both finetuning and policy distillation, we used RMSProp optimizer with
the smoothing parameter of 0.97 and epsilon of 1e-6. When distilling agent with teacher policy, we
used learning rate=1e-4 and multiplied it by 0.97 on every epoch for both Mining and Playground
domain. For finetuning, we used learning rate=2.5e-6 for Playground domain, and 2e-7 for Mining
domain. For actor-critic training for NSGS, we used α = 0.03, λ = 0.96, γ = 0.99.

5 Details of AND/OR Operation and Approximated AND/OR Operation

In section 4.2, the output of i-th AND and OR node in subtask graph were defined using AND and
OR operation with multiple input. They can be represented in logical expression as below:

OR
j∈Childi

(
yj
)

= yj1 ∨ yj2 ∨ . . . ∨ yj|Childi| , (13)

AND
j∈Childi

(
yj
)

= yj1 ∧ yj2 ∧ . . . ∧ yj|Childi| , (14)

where j1, . . . , j|Childi| are the elements of a set Childi and Childi is the set of inputs coming from
the children nodes of i-th node. Then, these AND and OR operations are smoothed as below:

ÕR
j∈Childi

(
ỹjAND

)
= hor

 ∑
j∈Childi

ỹjAND

 , (15)

ÃND
j∈Childi

(
x̂i,jt

)
= hand

 ∑
j∈Childi

x̂i,jt − |Childi|+ 0.5

 , (16)

where hor(x) = αotanh(x/βo), hand(x) = αaσ(x/βa), σ(·) is sigmoid function, and
αo, βo, αa, βa ∈ R are hyperparameters to be set. We used βa = 0.6, βo = 2, αa = 1/σ(0.25), αo =
1 for Mining domain, and βa = 0.5, βo = 1.5, αa = 1/σ(0.25), αo = 1 for Playground domain.
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6 Details of Subtask Executor

Architecture The subtask executor has the same architecture of the parameterized skill archi-
tecture of [6] with slightly different hyperparameters. The network consists of Conv1(32x3x3-
1/1)-Conv2(32x3x3-1/1)-Conv3(32x1x1-1/0)-Conv4(32x3x3-1/1)-LSTM(256)-FC(256). The sub-
task executor takes two task parameters (q = [q(1), q(2)]) as additional input and computes
χ(q) = ReLU(W (1)q(1) � W (2)q(2)) to compute the subtask embedding, and further linearly
transformed into the weights of Conv3 and the (factorized) weight of LSTM through multiplicative
interaction as described above. Finally, the network has three fully-connected output layers for
actions, termination probability, and baseline, respectively.

Learning objective The subtask executor is trained through policy distillation and then finetuned.
Similar to [6], we first trained 16 teacher policy network for each subtask. The teacher policy
network consists of Conv1(16x3x3-1/1)-BN1(16)-Conv2(16x3x3-1/1)-BN2(16)-Conv3(16x3x3-1/1)-
BN3(16)-LSTM(128)-FC(128). Similar to subtask executor network, the teacher policy network has
three fully-connected output layers for actions, termination probability, and baseline, respectively.
Then, the learned teacher policy networks are used as teacher policy for policy distillation to train
subtask executor. During policy distillation, we train agent to minimize the following objective
function:

∇ξL1,sub = Eo∼O

[
Es∼πo

ξ

[
∇ξ
{
DKL

(
πo
T ||πo

ξ

)]
+ αLterm

}]
, (17)

where ξ is the parameter of subtask executor network, πo
ξ is the simplified notation of subtask

executor given input subtask o, πo
T is the simplified notation of teacher policy for subtask o, Lterm =

−Est∈τo [log βξ(st,o)] is the cross entropy loss of predicting termination, τo is a set of state in which

the subtask o is terminated, βξ(st,o) is the termination probability output, and DKL

(
πo
T ||πo

ξ

)
=∑

a π
o
T (a|s) log

πo
T (a|s)
πo
ξ (a|s)

. After policy distillation, we finetuned subtask executor using actor-critic
method with generalized advantage estimation (GAE):

∇ξL2,sub = Eo∼O

[
Es∼πo

ξ

[
−∇ξ log πξ (at|obst,o)

∞∑
k=0

(γλ)kδt+k + α∇ξLterm

]]
, (18)

where γ ∈ [0, 1] is a discount factor, λ ∈ [0, 1] is a weight for balancing between bias and variance of
the advantage estimation, and δt = rt + γV π(obst+1; ξ′)− V π(obst; ξ

′). We used λ = 0.96, γ =
0.99 for fine-tuning, and α = 0.1 for both policy distillation and fine-tuning.

7 Details of LSTM Baseline

Architecture The LSTM baseline consists of LSTM on top of CNN. The architecture of CNN is
the same as the CNN architecture of observation module of NSGS described in the section 3, and the
architecture of LSTM is the same as the LSTM architecture used in subtask executor described in
the section 6. Specifically, it consists of BN1-Conv1(16x1x1-1/0)-BN2-Conv2(32x3x3-1/1)-BN3-
Conv3(64x3x3-1/1)-BN4-Conv4(96x3x3-1/1)-BN5-Conv5(128x3x3-1/1)-BN6-Conv6(64x1x1-
1/0)-LSTM(256)-FC(256). The CNN takes the observation tensor as an input and outputs an
embedding. The embedding is then concatenated with other input vectors including subtask
completion indicator xt, eligibility vector et, and the remaining step stept. Finally, LSTM
takes the concatenated vector as an input and output the softmax policy with the parameter θ

′
:

πθ′ (ot|obst,xt, et, stept).

Learning objective The LSTM baseline was trained using actor-critic method. For the baseline,
we found that the moving average of return works much better than learning a critic network, and
used it for experiment. This is due to the characteristic of adaptation setting; in adaptation setting, the
subtask graph is fixed and the agent is trained for only a small number of episodes such that the critic
network is usually under-fitted. Similar to NSGS, the learning objective is given as

∇θ′LLSTM = Es∼πG
θ
′

[
−∇θ′ log πθ′ (ot|st)

∞∑
l=0

(
l−1∏
n=0

(γλ)kn

)
δt+l

]
, (19)
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where γ ∈ [0, 1] is a discount factor, λ ∈ [0, 1] is a weight for balancing between bias and variance of
the advantage estimation, δt = rt + γktV (t+ 1)− V (t), and V (t) is the moving average of return
at time step t. We used λ = 0.96 and γ = 0.99.

8 Details of Search Algorithms

Each iteration of Monte-Carlo tree search method consists of four stages: selection, expansion,
rollout, and back-propagation.

• Selection: We used UCB criterion [7]. Specifically, the option for which the score below
has the highest value is chosen for selection:

score =
Ri
ni

+ CUCB

√
lnN
ni

, (20)

whereRi is the accumulated return at i-th node, ni is the number of visit of i-th node, CUCB
is the exploration-exploitation balancing weight, andN is the number of total iterations so far.
We found that CUCB = 2

√
2 gives the best result and used it for MCTS, MCTS+GRProp

and MCTS+NSGS methods.
• Expansion: MCTS randomly chooses the remaining eligible subtask, while the subtask is

chosen by NSGS policy for MCTS+NSGS method and GRProp policy for MTS+GRProp
method. More specifically, MCTS+NSGS and MCTS+GRProp greedily chooses among the
remaining subtasks based on NSGS and GRProp policy, respectively. Due to the memory
limit, the expansion of search tree was truncated at the depth of 7 for Playground and 10 for
Mining domains, and performed rollout after the maximum depth.

• Rollout: MCTS randomly executes an eligible subtask, while MCTS+NSGS and
MCTS+GRProp execute the subtask with the highest probability given by NSGS and
GRProp policies, respectively.

• Back-propagation: Once the episode is terminated, the result is back-propagated; the
accumulated return Ri and the visit count ni are updated for the nodes in the tree that agent
visited within the episode, and the number of total iteration is updated as N ← N + 1.

9 Details of Environment

9.1 Mining

There are 15 types of objects: Mountain, Water, Work space, Furnace, Tree, Stone, Grass, Pig, Coal,
Iron, Silver, Gold, Diamond, Jeweler’s shop, and Lumber shop. The agent can take 10 primitive
actions: up, down, left, right, pickup, use1, use2, use3, use4, use5 and agent cannot moves on to the
Mountain and Water cell. Pickup removes the object under the agent, and use’s do not change the
observation. There are 26 subtasks in the Mining domain:

• Get wood/stone/string/pork/coal/iron/silver/gold/diamond: The agent should go to
Tree/Stone/Grass/Pig/Coal/Iron/Silver/Gold/Diamond respectively, and take pickup action.
• Make firewood/stick/arrow/bow: The agent should go to Lumber shop and take

use1/use2/use3/use4 action respectively.
• Light furnace: The agent should go to Furnace and take use1 action.
• Smelt iron/silver/gold: The agent should go to Furnace and take use2/use3/use4 action

respectively.
• Make stone-pickaxe/iron-pickaxe/silverware/goldware/bracelet: The agent should go to

Work space and take use1/use2/use3/use4/use5 action respectively.
• Make earrings/ring/necklace: The agent should go to Jeweler’s shop and take use1/use2/use3

action respectively.

The icons used in Mining domain were downloaded from www.icons8.com and
www.flaticon.com. The Diamond and Furnace icons were made by Freepik from
www.flaticon.com.
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9.2 Playground

There are 10 types of objects: Cow, Milk, Duck, Egg, Diamond, Heart, Box, Meat, Block, and Ice. The
Cow and Duck move by 1 pixel in random direction with the probability of 0.1 and 0.2, respectively.
The agent can take 6 primitive actions: up, down, left, right, pickup, transform and agent cannot
moves on to the block cell. Pickup removes the object under the agent, and transform changes the
object under the agent to Ice. The subtask graph was randomly generated without any hand-coded
template (see Section 10 for details).

10 Details of Subtask Graph Generation

10.1 Mining Domain
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Figure 3: The entire graph of Mining domain. Based on this graph, we generated 640 subtask graphs by removing
the subtask node that has no parent node.

The precondition of each subtask in Mining domain was defined as Figure 3. Based on this graph,
we generated all possible sub-graphs of it by removing the subtask node that has no parent node,
while always keeping subtasks A, B, D, E, F, G, H, I, K, L. The reward of each subtask was randomly
scaled by a factor of 0.8 ∼ 1.2.

10.2 Playground Domain

NT number of tasks in each layer
Nodes ND number of distractors in each layer

NA number of AND node in each layer
r reward of subtasks in each layer
N+
ac number of children of AND node in each layer

N−ac number of children of AND node with NOT connection in each layer
Edges Ndp number of parents with NOT connection of distractors in each layer

Noc number of children of OR node in each layer
Episode Nstep number of step given for each episode

Table 2: Parameters for generating task including subtask graph parameter and episode length.

For training and test sample generation, the subtask graph structure was defined in terms of the
parameters in table 2. To cover wide range of subtask graphs, we randomly sampled the parameters
NA, NO, N

+
ac, N

−
ac, Ndc, and Noc from the range specified in the table 3 and 5, while NT and ND

was manually set. We prevented the graph from including the duplicated AND nodes with the same
children node(s). We carefully set the range of each parameter such that at least 500 different subtask
graphs can be generated with the given parameter ranges. The table 3 summarizes parameters used to
generate training and evaluation subtask graphs for the Playground domain.
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NT {6,4,2,1}
ND {2,1,0,0}
NA {3,3,2}-{5,4,2}

Train N+
ac {1,1,1}-{3,3,3}

(=D1) N−ac {0,0,0}-{2,2,1}
Ndp {0,0,0}-{3,3,0}
Noc {1,1,1}-{2,2,2}
r {0.1,0.3,0.7,1.8}-{0.2,0.4,0.9,2.0}

Nstep 48-72
NT {7,5,2,1}
ND {2,2,0,0}
NA {4,3,2}-{5,4,2}

D2 N+
ac {1,1,1}-{3,3,3}

N−ac {0,0,0}-{2,2,1}
Ndp {0,0,0,0}-{3,3,0,0}
Noc {1,1,1}-{2,2,2}
r {0.1,0.3,0.7,1.8}-{0.2,0.4,0.9,2.0}

Nstep 52-78
NT {5,4,4,2,1}
ND {1,1,1,0,0}
NA {3,3,3,2}-{5,4,4,2}

D3 N+
ac {1,1,1,1}-{3,3,3,3}

N−ac {0,0,0,0}-{2,2,1,1}
Ndp {0,0,0,0,0}-{3,3,3,0,0}
Noc {1,1,1,1}-{2,2,2,2}
r {0.1,0.3,0.6,1.0,2.0}-{0.2,0.4,0.7,1.2,2.2}

Nstep 56-84
NT {4,3,3,3,2,1}
ND {0,0,0,0,0,0}
NA {3,3,3,3,2}-{5,4,4,4,2}

D4 N+
ac {1,1,1,1,1}-{3,3,3,3,3}

N−ac {0,0,0,0,0}-{2,2,1,1,0}
Ndp {0,0,0,0,0,0}-{0,0,0,0,0,0}
Noc {1,1,1,1,1}-{2,2,2,2,2}
r {0.1,0.3,0.6,1.0,1.4,2.4}-{0.2,0.4,0.7,1.2,1.6,2.6}

Nstep 56-84

Table 3: Subtask graph parameters for training set and tasks D1∼D4.

Zero-Shot Performance
Playground(R̄) Mining(R)

Task D1 D2 D3 D4 Eval
NSGS (Ours) .820 .785 .715 .527 8.19

NSGS-task (Ours) .773 .730 .645 .387 6.51
GRProp (Ours) .721 .682 .623 .424 6.16

NSGS-scratch (Ours) .046 .056 .062 .106 3.68
Random 0 0 0 0 2.79

Table 4: Zero-shot generalization performance on Playground and Mining domain. NSGS-scratch agent performs
much worse than NSGS and GRProp agent on Playground and Mining domain.

11 Ablation Study on Neural Subtask Graph Solver Agent

11.1 Learning without Pre-training

We implemented NSGS-scratch agent that is trained with actor-critic method from scratch without
pre-training from GRProp policy to show that pre-training plays a crucial role for training our
NSGS agent. Table 4 summarizes the result. NSGS-scratch performs much worse than NSGS,
suggesting that pre-training is important in training NSGS. This is not surprising as our problem
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is combinatorially intractable (e.g. searching over optimal sequence of subtasks given an unseen
subtask graph).

11.2 Ablation Study on the Balance between Task and Observation Module

We implemented NSGS-task agent that uses only the task module without observation module to
compare the contribution of task module and observation module of NSGS agent. Overall, our
NSGS agent outperforms the NSGS-task agent, showing that the observation module improves the
performance by a large margin.

12 Experiment Result on Subtask Graph Features

To investigate how agents deal with different types of subtask graph components, we evaluated all

Figure 4: Normalized performance on subtask graphs with different types of dependencies.

agents on the following types of subtask graphs:

• ‘Base’ set consists of subtask graphs with AND and OR operations, but without NOT operation.
• ‘Base-OR’ set removes all the OR operations from the base set.
• ‘Base+Distractor’ set adds several distractor subtasks to the base set.
• ‘Base+NOT’ set adds several NOT operations to the base set.
• ‘Base+NegDistractor’ set adds several negative distractor subtasks to the base set.
• ‘Base+Delayed’ set assigns zero reward to all subtasks but the top-layer subtask.

Note that we further divided the set of Distractor into Distractor and NegDistractor. The distractor
subtask is a subtask without any parent node in the subtask graph. Executing this kind of subtask
may give an immediate reward but is sub-optimal in the long run. The negative-distractor subtask is a
subtask with only and at least one NOT connection to parent nodes in the subtask graph. Executing this
subtask may give an immediate reward, but this would make other subtasks not executable. Table 5
summarizes the detailed parameters used for generating subtask graphs. The results are shown in
Figure 4. Since ‘Base’ and ‘Base-OR’ sets do not contain NOT operation and every subtask gives
a positive reward, the greedy baseline performs reasonably well compared to other sets of subtask
graphs. It is also shown that the gap between NSGS and GRProp is relatively large in these two sets.
This is because computing the optimal ordering between subtasks is more important in these kinds of
subtask graphs. Since only NSGS can take into account the cost of each subtask from the observation,
it can find a better sequence of subtasks more often.

In ‘Base+Distractor’, ‘Base+NOT’, and ‘Base+NegDistractor’ cases, it is more important for the
agent to carefully find and execute subtasks that have a positive effect in the long run while avoiding
distractors that are not helpful for executing future subtasks. In these tasks, the greedy baseline
tends to execute distractors very often because it cannot consider the long-term effect of each
subtask in principle. On the other hand, our GRProp can naturally screen out distractors by getting
zero or negative gradient during reward back-propagation. Similarly, GRProp performs well on
‘Base+Delayed’ set because it gets non-zero gradients for all subtasks that are connected to the final
rewarding subtask. Since our NSGS was distilled from GRProp, it can handle delayed reward or
distractors as well as (or better than) GRProp.
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NT {4,3,2,1}
ND {0,0,0,0}
NA {3,3,2}-{4,3,3}

Base N+
ac {1,1,2}-{3,2,2}

N−ac {0,0,0}-{0,0,0}
Ndp {0,0,0,0}-{0,0,0,0}
Noc {1,1,1}-{2,2,2}
Nstep 40-60

-OR Noc {1,1,1}-{1,1,1}
+Distractor ND {2,1,0,0}

+NOT N+
ac {0,0,0}-{3,2,2}

+NegDistractor ND {2,1,0,0}
Ndp {0,0,0,0}-{3,3,0,0}

+Delayed r {0,0,0,1.6}-{0,0,0,1.8}

Table 5: Subtask graph parameters for analysis of subtask graph components.
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