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1 Technical Details

1.1 NDB Evaluation Method

This section provides additional technical details about the NDB evaluation method.

To define the bin centers, we first perform K-means clustering on the training data. To reduce
clustering time, a random subset of the data is used (for example, we used 80,000 samples for
CelebA). In addition, we sample the data dimension (for CelebA, we used 2000 elements out of
12, 288 = 64 × 64 × 3). A standard K-means algorithm is then executed, with multiple (10)
initializations. Each bin center is the mean of all samples assigned to the cluster (in the full data
dimension).

NDB can be performed on the original images or on images divided by the per-pixel data standard
deviation (semi-whitened images). In CelebA, due to the large variance in background color, we
performed NDB on the images divided by the standard deviation.

In addition to the number of statistically-different bins (NDB), our implementation calculates the
Jensen-Shannon (JS) divergence between the reference bins distribution and the tested model bins
distribution. If the number of samples is sufficiently high, this soft metric (which doesn’t require
defining a significance level) can be used as an alternative.

1.2 MFA Training

This section provides additional technical details about the training procedure of the MFA model.

Initialization: By default (all reported results), the MFA is initialized using K-means. After per-
forming K-means, a FactorAnalysis is performed on each cluster separately to estimate the initial
component parameters. Alternative initialization methods are: random selection of l + 1 images for
each component. The set of images define the component subspace, and a default constant noise
variance is added. Another possible initialization method is K-subspaces, in which each component
is defined by a random seed of l + 1 images, but is then refined by adding all images that are closest
to this subspace.

Optimization method: As described, we used Stochastic Gradient Descent (SGD) for training the
MFA model. We used the Adam optimizer with a learning rate of 0.0001. All training is implemented
using TensorFlow. The training loss is the negative log likelihood. The likelihood of a mini-batch of
256 samples is computed at each training iteration. The gradients (derivatives of the likelihood with
respect to the model parameters) are computed automatically by TensorFlow. The model parameters
are the mixing coefficients πi, the scale matrices Ai, the mean values µi and the diagonal noise
standard-variation Di. Note that the entire mixture model is trained together.

Hierarchichal training: To reduce training time and memory requirements, when the number of
components is large, we used hierarchichal training in which we first trained a model with Kroot

components. We then split each component to additional sub-components using only the relevant

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



subset of the training data. The number of sub-components depends on the number of samples
assigned to the component (larger components were divided to more sub-components). After training
all sub-components, we define a flat model from all sub-components by simply multiplying their
mixing-coefficients by the root components mixing-coefficients.

1.3 MFA Inference – Image Reconstruction

We demonstrate the inference task with image reconstruction – in-painting. Part of an (previously
unseen) image is observed and we complete the missing part using the trained MFA model by
computing argmaxx1

P (X1 |X2 = x2), where X1 is the hidden part and X2 is the observed part
(pixels).

The approach we used to calculate the mode of the conditional distribution is to first find the most
probable posterior values for latent variables given the observed variables and then apply these values
to the full model to generate the missing variable values. Specifically, we first reduce all component
mean and scale matrices to the scope of the observed variables. Using these reduced model, we
find the component ĉ with the highest responsibility with respect to the observed value (the most
probable component). In this component, we calculate the posterior probability P (z|x). The posterior
probability is by itself a Gaussian. We use the mean of this Gaussian as a MAP estimate for the
posterior ẑ. Finally, using the original full model, we calculate x = Aĉẑ + µĉ. Note that it is also
possible to sample from the posterior, generating different possible reconstructions.

1.4 Measuring Sharpness

Our simple sharpness score measures the relative energy of high-pass filtered versions of a set of
images compared to the original images. We first convert each image to a single channel (illumination
level) and subtract the mean. To obtain the high-pass filtered image, we convolve the image with a
Gaussian kernel and subtract the resulting low-pass filtered version from the original image. We then
measure the energy of the original image and of the high-pass version by summing the squared pixel
values and then taking the logarithm. We define the image sharpness as the high-pass filtered version
energy minus the original image energy. We take the mean sharpness over 2000 images. The method
is invariant to scale and translation in the pixel values (i.e. multiplying all pixel values by a constant
or adding a constant).
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2 Additional Figures

This section provides additional examples to the different sections in the main paper.

2.1 NDB Evaluation Method

Figure 1: The largest 30 out of 200 bins in the NDB K-means clustering for CelebA. The first image
in each row is the bin centroid and the other images are random training samples from this bin.
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Figure 2: Similar to Figure 1, but showing the smallest (least allocated) 30 out of 200 bins.
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(a)

(b)

Figure 3: The largest (a) and smallest (b) 25 out of 200 bins in the NDB K-means clustering for
MNIST (Similar to Figures 1 and 2)
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(a)

(b)

Figure 4: The largest (a) and smallest (b) 25 out of 200 bins in the NDB K-means clustering for
SVHN (Similar to Figures 1 and 2)
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Figure 5: Binning proportion histograms for K=200 on CelebA. Each plot shows the distribution of
bin-assignment for 20,000 random samples from the test set and from different evaluated models. For
clarity, shown in pairs.
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Figure 6: The binning proportions (and therefore the NDB scores) are consistent for different number
of bins (100, 200, 300). Note that the same trained MFA and WGAN model is evaluated in all
three cases. In all three cases, the distribution of the MFA samples is similar to the reference
train distribution (and also has similar NDB as the test samples) while WGAN exhibits significant
distortions.
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(a)

(b)

(c)

Figure 7: The NDB method detecting mode-collapse in a deep model (VAE-DFC). Note that this
bin represents a semantic property (sun-glasses). Note that the first image in each group is the bin
centroid. (a) Images from the CelebA training set belonging to one clustering bin (out of 200). (b)
From random 20,000 CelebA test images, the ones that are assigned to this bin – 61/20,000=0.03
(similar proportion to the reference binning on the training data). (c) From 20,000 images generated
by the VAE-DFC model, the ones that are assigned to this bin – 9/20,000=0.0045.

(a)

(b)

(c)

Figure 8: Another semantic mode-collapse: A mode in the data distribution (both in the training and
in the test set) that is significantly under-represented in the generated sample of VAE-DFC. Similar
setting as in Figure 7.
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(a)

(b)

(c)

Figure 9: In this example, the bin represents a mix of semantic (people with dark skin) and photometric
(dark images) latent properties, which have a similar affect on the observed pixels. We argue that the
generative model should represent both (i.e. not just the semantic properties).
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(a)

(b)

(c)

Figure 10: An example for an over-represented bin in VAE-DFC (0.016 vs 0.007 in the train and test
sets)
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2.2 MFA – Full Image Gaussian Mixture Model

Figure 11: The effect of the number of MFA components on the log-likelihood and quality of
represented images. As can be seen, the log-likelihood and reconstruction quality improve quickly
with the number of components.

(a) (b)
Figure 12: Internal representations of generative models (a) GAN learns an elaborate non-linear
transformation from latent to data space. z points are on a grid (with larger steps in one dimension)
(b) the MFA component centers, direction and added noise

12



Figure 13: Additional random samples drawn from the MFA model trained on CelebA
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(a)

(b)

Figure 14: Additional random samples drawn from the MFA model trained on (a) MNIST and (b)
SVHN
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Figure 15: Additional examples of learned MFA components trained on CelebA: Mean image (µ)
and noise variance (D) are shown on top. Each row represents a column-vector of the rectangular
scale matrix A – the learned changes from the mean. The three images shown in row i are: µ+A(i),
0.5 +A(i), µ−A(i).
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Figure 16: Combinations of two column-vectors (A(i), A(j)): zi changes with the horizontal axis and
zj with the vertical axis, controlling the combination. Both variables are zero in the central image,
showing the component mean
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2.3 Generating Sharp Images with a GMM

Figure 17: An illustration of the MFA+pix2pix model. The gray curve represents the data manifold
and the colored regions, MFA components. Each component resides on a subspace, with added noise.
pix2pix learns to transform images generated by the MFA model (XA → XB) to bring them closer
to the data manifold.

Figure 18: Animated interpolation of the latent vector z plus application of the pix2pix model to
provide details. Please see attached animated GIFs.. Each sample was generated from a single MFA
component by traveling along different dimensions of z, applying the Factor Analyzer transformation,
resizing to 128× 128 and then applying the pix2pix model to add details.
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Figure 19: Top: Random samples generated from a single component out of 1000 in the MFA model.
Middle: Learned pix2pix transformation applied to these samples. Bottom: CelebA training images
belonging to the selected component (i.e. the component has maximal responsibility value). One can
the that the MFA generates diverse images that don’t memorize training images and that pix2pix adds
details while maintaining the original structure.
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