Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks

Part of Advances in Neural Information Processing Systems 30 (NIPS 2017)

Bibtex Metadata Paper Reviews


Federico Monti, Michael Bronstein, Xavier Bresson


Matrix completion models are among the most common formulations of recommender systems. Recent works have showed a boost of performance of these techniques when introducing the pairwise relationships between users/items in the form of graphs, and imposing smoothness priors on these graphs. However, such techniques do not fully exploit the local stationary structures on user/item graphs, and the number of parameters to learn is linear w.r.t. the number of users and items. We propose a novel approach to overcome these limitations by using geometric deep learning on graphs. Our matrix completion architecture combines a novel multi-graph convolutional neural network that can learn meaningful statistical graph-structured patterns from users and items, and a recurrent neural network that applies a learnable diffusion on the score matrix. Our neural network system is computationally attractive as it requires a constant number of parameters independent of the matrix size. We apply our method on several standard datasets, showing that it outperforms state-of-the-art matrix completion techniques.