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A Node Conditional Maximum Likelihood Estimation

In this section we derive the relation between optimization problems (5) and (7) defined in Section
4 of the main paper. We start with the optimization problem (5), which is defined in terms of the
original parameters of non-parametric graphical model (3):

min
Θs,B

Ls(Θs, B;Xn) + λn‖Θs‖1

s.t. θs ≥ 0,

∫
Xt

Bt(X)dX = 0,

∫
Xt

Bt(X)2dX = 1 ∀t ∈ V,

where Ls(Θs, B;Xn) is the node conditional negative log likelihood at node s:

Ls(Θs, B;Xn) =
1

n

n∑
i=1

−Bs(X(i)
s )

θs +
∑
t∈V \s

θstBt(X
(i)
t )

+A(X
(i)
−s; θs, B)

 .

Let B̃t(Xt) = θstBt(Xt),∀t ∈ V \ {s}. Using this parametrization Ls(·) can be written as:

Ls(θs, Bs, B̃−s;Xn) =
1

n

n∑
i=1

−Bs(X(i)
s )

θs +
∑
t∈V \s

B̃t(X
(i)
t )

+A(X
(i)
−s; Θs, Bs, B̃−s)

 .

Note that, given B̃t, one can recover θst (and thus Bt) by computing the L2(Xt) norm of B̃t. Using
this re-parametrization the original optimization in Equation (5) can be written as the following
equivalent problem:

min
θs,Bs,B̃−s

Ls(θs, Bs, B̃−s;Xn) + λn
∑
t∈V \s

√∫
Xt

B̃t(X)2dX + λn|θs|

s.t. θs ≥ 0,

∫
Xs

Bs(X)2dX = 1,

∫
Xt

B̃t(X)dX = 0 ∀t ∈ V.

The above problem still has the equality constraint on the norm of functions Bs(·). As pointed out
in the main paper, this makes the above optimization problem a difficult one to solve. To make

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



the optimization more amenable for numerical optimization techniques, we solve a closely related
optimization problem. At each node s ∈ V , we consider the following re-parametrization of B:
Bs(Xs)← θsBs(Xs), Bt(Xt)← (θst/θs)Bt(Xt)∀t ∈ V \ {s}. With a slight abuse of notation we
redefine Ls using this re-parametrization as:

Ls(B;Xn) =
1

n

n∑
i=1

−Bs(X(i)
s )

1 +
∑
t∈V \s

Bt(X
(i)
t )

+A(X
(i)
−s;B)

 ,

where A(X−s;B) is the log partition function. We solve the following optimization problem, which
is closely related to the original optimization in Equation (5):

min
B
Ls(B;Xn) + λn

∑
t∈V

√∫
Xt

Bt(X)2dX

s.t.
∫
Xt

Bt(X)dX = 0 ∀t ∈ V.

Note that θ∗s need to be bounded away from 0, for this re-parametrized optimization problem to give
consistent estimates of the true parameters.

B Statistical Properties

B.1 Proof of Theorem 2

Proof. Define C = {α∗m + ∆ : R(∆N c
s
) ≤ 3R(∆Ns

)}, where ∆Ns
is the sub-vector of ∆ restricted

to the coordinates specified by variables {αt,m : t ∈ Ns ∪ {s}}. Let Fs,m denote the optimization
objective in Equation (8):

Fs,m(αm;Xn) = Ls,m(αm;Xn) + λnR(αm).

We prove the theorem in two parts. In the first part we show that Fs,m doesn’t have any stationary
points in B2(α∗m, rm) ∩Cc. In the second part we show that Fs,m doesn’t have any stationary points
in B2(α∗m, rm) ∩ C \ B2(α∗m, rs), where rs = (6

√
2/κ)
√
dλn. The proof of the Theorem then

follows by combining the results from these two parts.

(a) No stationary points in B2(α∗m, rm) ∩ Cc: Let αm ∈ B2(α∗m, rm) ∩ Cc and let ∆ = αm −
α∗m . Let ∂f(x) denote the set of sub-gradients of a function f(.) at x. For any z(αm) ∈ ∂Fs,m(αm),
where z(αm) = ∇Ls,m(αm) + λnv(αm), v(αm) ∈ ∂R(αm), we have:

〈z(αm), αm − α∗m〉 = 〈z(αm),∆〉

= 〈∇Ls,m(αm),∆〉+ λn 〈v(αm),∆〉

= 〈∇Ls,m(αm)−∇Ls,m(α∗m),∆〉+ 〈∇Ls,m(α∗m),∆〉+ λn 〈v(αm),∆〉 ,
(1)

We now bound each of the terms in the RHS of above equation. From Assumption 1 on RSC property
of the sample loss, we have

〈∇Ls,m(αm)−∇Ls,m(α∗m),∆〉 ≥ κ‖∆‖22 − c
√
m log(p)

n
R(∆).

From the definition of Ns we have (α∗m)N c
s

= 0. So we have

〈v(αm),∆〉 =
〈
v(αm)N c

s
, (αm)N c

s

〉
+ 〈v(αm)Ns

,∆Ns
〉 ≥ R(∆N c

s
)−R(∆Ns

),

where the last inequality follows from the properties of sub-gradient of the normR(.). Finally, from
the definition of dual normR∗, we have:

〈∇Ls,m(α∗m),∆〉 ≥ −R∗(∇Ls,m(α∗m))R(∆).
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Substituting these results in Equation (1) we get:

〈z(αm), αm − α∗m〉 ≥ κ‖∆‖22 −R∗(∇Ls,m(α∗m))R(∆)

−
(
c
√

m log(p)
n

)
R(∆) + λn

(
R(∆N c

s
)−R(∆Ns

)
)
.

(2)

Note that since αm ∈ Cc we haveR(∆N c
s
) ≥ 3R(∆Ns

). Moreover, from our choice of λn we know

that λn ≥ 2R∗(∇Ls,m(α∗m)) + 2c
√

m log(p)
n . Substituting this in the above equation we get:

〈z(αm), αm − α∗m〉 ≥ κ‖∆‖22 +
(
R(∆N c

s
)− 3R(∆Ns)

)(
R∗(∇Ls,m(α∗m)) + c

√
m log(p)

n

)
.

(3)
The above inequality shows that 〈z(αm), αm − α∗m〉 > 0,∀αm ∈ B2(α∗m, rm) ∩ Cc.
Now suppose αm ∈ B2(α∗m, rm) ∩ Cc is a stationary point. Then from first-order necessary
conditions we know that 〈z(αm), α∗m − αm〉 ≥ 0. However, this contradicts the result we obtained
in Equation (3). This shows that there are no stationary points in B2(α∗m, rm) ∩ Cc.

(b) No stationary points in B2(α∗m, rm) ∩ C \ B2(α∗m, rs): The proof of this part follows along
the lines of the previous part. Let αm ∈ B2(α∗m, rm) ∩ C \ B2(α∗m, rs). From Equations (1), (2) we
know that:

〈z(αm), αm − α∗m〉 ≥ κ‖∆‖22 −R∗(∇Ls,m(α∗m))R(∆)

−
(
c
√

m log(p)
n

)
R(∆) + λn 〈v(αm),∆〉 .

(4)

Since αm ∈ C we have R(∆) ≤ 4
√
d+ 1‖∆‖2 ≤ 4

√
2d‖∆‖2. Substituting this in the above

equation we get:

〈z(αm), αm − α∗m〉 ≥ κ‖∆‖22 −R∗(∇Ls,m(α∗m))R(∆)−
(
c
√

m log(p)
n

)
R(∆)− λnR(∆)

≥ κ‖∆‖22 −R(∆)

(
R∗(∇Ls,m(α∗m)) + c

√
m log(p)

n + λn

)
≥ κ‖∆‖22 − 4

√
2d‖∆‖2

(
R∗(Ls,m(α∗m)) + c

√
m log(p)

n + λn

)
≥

(
κ‖∆‖2 − 4

√
2d

(
R∗(∇Ls,m(α∗m)) + c

√
m log(p)

n + λn

))
‖∆‖2

≥
(
κ‖∆‖2 − 4

√
2d
(

3
2λn

))
‖∆‖2.

(5)
The above inequality shows that 〈z(αm), αm − α∗m〉 > 0,∀αm ∈ B2(α∗m, rm) ∩ C \ B2(α∗m, rs).
This shows that there are no stationary points in B2(α∗m, rm) ∩ C \ B2(α∗m, rs).

Following results from parts (a) and (b) we conclude that any stationary point in B2(α∗m, rm) satisfies
‖αm − α∗m‖2 ≤ 6

√
2

κ

√
dλn.

B.2 Proof of Corollary 3

Before we proceed to the proof of Corollary 3, we introduce some notation we use in its proof. We
say Z is a σ−sub-Gaussian random variable, if it satisfies the following tail property:

P (|Z − E[Z]| ≥ ε) ≤ 2 exp{− ε2

2σ2
}.

We use the notation Z ∈ SG(σ2) to say that a random variable Z is σ−sub-Gaussian . We use
the following standard result from concentration theory: if Z1 . . . Zn are n i.i.d SG(σ2) random
variables then 1

n

∑n
i=1 Zi ∈ SG(σ

2

n ).

The following Lemma provides an upper bound forR∗(∇Ls,m(α∗m)) that holds with high probability.
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Lemma 1. Let Ns be the true neighborhood of node s, with |Ns| = d. Moreover, let

γ = sup
i∈N,X∈X

|φi(X)|

and

τm = sup
t∈V,X∈X

|
m∑
i=1

α∗t,iφi(X)|.

Suppose Ls,m satisfies Assumption 2. Then with probability at least 1− 2m/p2 we have:

R∗(∇Ls,m(α∗m)) ≤ LR∗(α∗ − α∗m) + c1γτm

√
md2 log(p)

n
,

where c1 > 0 is a constant.

Proof. From triangle inequality, we have:

R∗(∇Ls,m(α∗m)) ≤ R∗(∇Ls,m(α∗m)−∇L̄s,m(α∗m)) +R∗(∇L̄s,m(α∗m)).

We now upper bound each of the terms in the RHS of the above equation.

(a) Upper bound forR∗(∇Ls,m(α∗m)−∇L̄s,m(α∗m)): The gradient of Ls,m(αm) at α∗m is
given by:

(∇Ls,m(α∗m))s,k =
1

n

n∑
i=1

−
(
φk(X(i)

s )E−s(X
(i)
−s;α

∗
m)
)

+ Eα∗
m

[
φk(Xs)E−s(X

(i)
−s;α

∗
m)
∣∣∣X(i)
−s

]
and for t ∈ V \ {s}:

(∇Ls,m(α∗m))t,k =
1

n

n∑
i=1

−
(
φk(X

(i)
t )Bs(X

(i)
s ;α∗m)

)
+ Eα∗

m

[
φk(X

(i)
t )Bs(Xs;α

∗
m)
∣∣∣X(i)
−s

]
,

where E−s(X−s;αm) = 1 +
∑

t∈V \{s}

∑m
j=1 αt,jφj(Xt) and Bs(Xs;αm) =

∑m
j=1 αs,jφj(Xs) and

Eα[.] denotes expectation with respect to the density parametrized by α and (∇Ls,m(α∗m))t,k is the
gradient of Ls,m(αm) evaluated at α∗m with respect to variable αt,k.

We now show that (∇Ls,m(α∗m))t,k concentrates well around its expectation. Note that

E
[
(∇Ls,m(α∗m))t,k

]
=
(
∇L̄s,m(α∗m)

)
t,k
.

Lets first define random variables {Ys,k}mk=1 and {Yt,k}mk=1,∀t ∈ V \ {s} as:

Ys,k(X(i)) = −
(
φk(X(i)

s )E−s(X
(i)
−s;α

∗
m)
)

+ Eα∗
m

[
φk(Xs)E−s(X

(i)
−s;α

∗
m)
∣∣∣X(i)
−s

]
,

and

Yt,k(X(i)) = −
(
φk(X

(i)
t )Bs(X

(i)
s ;α∗m)

)
+ Eα∗

m

[
φk(X

(i)
t )Bs(Xs;α

∗
m)
∣∣∣X(i)
−s

]
.

To ease the notation, we denote Ys,k(X(i)) by Y (i)
s,k . We now rewrite∇Ls,m(α∗m) in terms of random

variables {Ys,k}mk=1 and {Yt,k}mk=1 as follows:

(∇Ls,m(α∗m))s,k =
1

n

n∑
i=1

Y
(i)
s,k , (∇Ls,m(α∗m))t,k =

1

n

n∑
i=1

Y
(i)
t,k .

For any k ∈ [1,m], i ∈ [1, n] we have:

|Y (i)
s,k | ≤

∣∣∣(φk(X(i)
s )E−s(X

(i)
−s;α

∗
m)
)∣∣∣+

∣∣∣Eα∗
m

[
φk(Xs)E−s(X

(i)
−s;α

∗
m)
∣∣∣X(i)
−s

]∣∣∣
≤ γ

∣∣∣(E−s(X(i)
−s;α

∗
m)
)∣∣∣+ γEα∗

m

[∣∣∣E−s(X(i)
−s;α

∗
m)
∣∣∣ ∣∣∣X(i)

−s

]
,
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where the last inequality follows from Jensen’s inequality and the fact that γ = sup
j∈N,X∈X

|φj(X)|.

We now bound
∣∣∣(E−s(X(i)

−s;α
∗
m)
)∣∣∣:

∣∣∣(E−s(X(i)
−s;α

∗
m)
)∣∣∣ =

∣∣∣∣∣∣1 +
∑

t∈V \{s}

m∑
j=1

α∗t,jφj(X
(i)
t )

∣∣∣∣∣∣
≤ 1 +

∑
t∈V \{s}

∣∣∣∣∣∣
m∑
j=1

α∗t,jφj(X
(i)
t )

∣∣∣∣∣∣
≤ 1 + dτm ≤ d(1 + τm).

Substituting this in the above equation we get:

|Y (i)
s,k | ≤ 2γd(1 + τm).

Using similar arguments we can show that |Y (i)
t,k | ≤ 2γτm,∀t ∈ V \ {s}. This shows that Y (i)

s,k ∈
SG(4γ2d2(1 + τm)2) and Y (i)

t,k ∈ SG(4γ2τ2
m),∀t ∈ V \ {s}. Since (∇Ls,m(α∗m))t,k is a sum of n

i.i.d random variables {Y (i)
t,k }ni=1 we have:

(∇Ls,m(α∗m))s,k ∈ SG
(

4γ2d2(1 + τm)2

n

)
, (∇Ls,m(α∗m))t,k ∈ SG

(
4γ2τ2

m

n

)
.

From the concentration properties of a sub-Gaussian random variable we have:

P
(∣∣∣(∇Ls,m(α∗m))s,k −

(
∇L̄s,m(α∗m)

)
s,k

∣∣∣ ≤ ε) ≥ 1− 2 exp

{
− nε2

8γ2(1 + τm)2d2

}
.

and

P
(∣∣∣(∇Ls,m(α∗m))t,k −

(
∇L̄s,m(α∗m)

)
t,k

∣∣∣ ≤ ε) ≥ 1− 2 exp

{
− nε2

8γ2τ2
m

}
, ∀t ∈ V \ {s}.

Now let (∇Ls,m(α∗m))t = {(∇Ls,m(α∗m))t,k}
m
k=1. By union bound we get:

P
(∣∣∣∣(∇Ls,m(α∗m))s −

(
∇L̄s,m(α∗m)

)
s

∣∣∣∣
2
≥ ε
)

≤
m∑
k=1

P
(∣∣∣(∇Ls,m(α∗m))s,k −

(
∇L̄s,m(α∗m)

)
s,k

∣∣∣ ≥ ε√
m

)
≤ 2m exp

{
− nε2

8γ2(1+τm)2md2

}
and

P
(∣∣∣∣(∇Ls,m(α∗m))t −

(
∇L̄s,m(α∗m)

)
t

∣∣∣∣
2
≥ ε
)
≤ 2m exp

{
− nε2

8γ2τ2
mm

}
.

By using union bound again we get:

P
(
R∗
(
∇Ls,m(α∗m)−∇L̄s,m(α∗m)

)
≥ ε
)

= P
(

sup
t∈V

∣∣∣∣(∇Ls,m(α∗m))t −
(
∇L̄s,m(α∗m)

)
t

∣∣∣∣ ≥ ε)
≤ 2m exp

{
− nε2

8γ2(1+τm)2md2

}
+2m(p− 1) exp

{
− nε2

8γ2τ2
mm

}
≤ 2mp exp

{
− nε2

8γ2(1+τm)2md2

}
.

Choosing ε =
√

24γ2(1 + τm)2md2 log(p)/n, we get the following: with probability at least
1− 2m/p2

R∗
(
∇Ls,m(α∗m)−∇L̄s,m(α∗m)

)
≤
√

24γ2(1 + τm)2md2 log(p)/n.
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(b) Upper bound forR∗(∇L̄s,m(α∗m)): From Assumption 2 we have the following upper bound
forR∗(∇L̄s,m(α∗m)):

R∗(∇L̄s,m(α∗m)) ≤ LR∗(α∗m − α∗).

Combining the results from parts (a) and (b) we get the following: with probability at least 1−2m/p2

R∗(∇Ls,m(α∗m)) ≤ LR∗(α∗m − α∗) + c1γτm
√
md2 log(p)/n,

where c1 > 0 is a constant.

Following results from Theorem 2, Lemma 1, we conclude that if the regularization parameter λn is
chosen such that

λn ≥ 2LR∗(α∗m − α∗) + c1γτm
√
md2 log(p)/n,

then with probability at least 1− 2m/p2, any stationary point αm in B2(α∗m, rm) satisfies

‖αm − α∗m‖2 ≤
6
√

2

κ

√
dλn.

B.3 Proof of Corollary 4

Let αm be any stationary point in B2(α∗m, rm). And suppose λn is chosen such that:

λn = 2LR∗(α∗m − α∗) + c1γτm
√
md2 log(p)/n.

In this section we derive bounds for the overall estimation error ‖αm−α∗‖2. From triangle inequality,
we have:

‖αm − α∗‖2 ≤ ‖αm − α∗m‖2 + ‖α∗m − α∗‖2.
From Theorem 2, we have a bound for ‖αm − α∗m‖2. So, here we focus on bounding ‖α∗m − α∗‖2.

Since the true parameters B∗t (.) lie in a Sobolev space of order two, we know that there exists a
constant c2 > 0 such that [1]:

sup
t∈V
‖α∗t,m − α∗t‖2 ≤

c2
m2

.

Combining this result with the result from Theorem 2, we get, with probability at least 1− 2m/p2:

‖αm − α∗‖2 ≤ ‖αm − α∗m‖2 + ‖α∗m − α∗‖2

≤ 6
√

2
κ

√
dλn + c2

√
d

m2

= 6
√

2
κ

√
d
(

2LR∗(α∗m − α∗) + c1γτm
√
md2 log(p)/n

)
+ c2

√
d

m2

≤ 6
√

2
κ

√
d
(

2c2L
m2 + c1γτm

√
md2 log(p)/n

)
+ c2

√
d

m2

≤ c3
√
d
[
L
κ

1
m2 + γτm

√
md2 log(p)/n

]
,

where c3 > 0 is a constant. Choosing m =
(

L
κγτm

)2/5 (
n

d2 log(p)

)1/5

gives us the following error
bound:

‖αm − α∗‖2 ≤ c4
(
Lγ4τ4

m

κ

)1/5(
d13/4 log(p)

n

)2/5

,

and the corresponding λn for this choice of m is given by:

λn = c5

(
Lγ4τ4

m

κ

)1/5(
d2 log(p)

n

)2/5

,

where c4, c5 > 0 are constants.
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Figure 1: ROC plots for data generated from non-parametric graphical model with Bs(X) =
sin(4πX). Top row shows results for chain graph with Cs(X) = 0. Bottom row shows results for
grid graph with Cs(X) = 0.

C Experiments

C.1 Synthetic Data

In this section we present additional results from our synthetic experiments. Specifically, we present
ROC plots for n ∈ {100, 200, 500}. We use the same parameter settings as described in Section
7 of the main paper, to generate synthetic data. Figure 1 shows ROC plots for data generated
from non-parametric graphical model with Bs(X) = sin(4πX). Figure 2 shows ROC plots for
Bs(X) =

[
exp

(
−20(X − 0.5)2

)
+ exp

(
−20(X + 0.5)2

)
− 1
]

and Figure 3 shows ROC plots for
Gaussian data.

C.2 Futures Intraday Data

In this section we present the graph learned by GGM for Futures Intraday data and also present more
detailed graphs learned by all the three estimators. As pointed out in Section 7, selecting tuning
parameter based on held out log likelihood resulted in very dense graphs for Nonparanormal and
GGM. So we use a different technique to compare all the models. We fix a tuning parameter for
Expxorcist and select tuning parameters for the baselines that resulted in graphs with same number of
edges. Figure 4 shows the graph structures learned for one such choice of tuning parameters. Figures
5, 7, 6 present more detailed graphs for the corresponding graphs in Figure 4.
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Figure 2: ROC plots for data generated from non-parametric graphical model with Bs(X) =[
exp

(
−20(X − 0.5)2

)
+ exp

(
−20(X + 0.5)2

)
− 1
]
. Top row shows results for chain graph with

Cs(X) = 0. Bottom row shows results for grid graph with Cs(X) = 0.
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Figure 3: ROC plots for data generated from Gaussian distributions. Top row shows plots for chain
graph and bottom row shows plots for grid graph.
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(a) Nonparanormal (b) GGM

(c) Expxorcist

Figure 4: Graph Structures learned for the Futures Intraday Data. The Expxorcist graph shown here
was obtained by selecting λ = 0.1. Nodes are colored based on their categories. Edge thickness is
proportional to the magnitude of the interaction.
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Figure 5: Nonparanormal.
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Figure 6: Expxorcist.
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Figure 7: GGM.
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