Supplementary Material

Our analysis uses the following standard inequalities. For any 2,22, ..., 2™ € RN and e > 0, it
holds that
1
(@, 2%) <ell2"|l3 + Zll"]13 31
(@!,2®) <z [l2 - |l°||2 (32)
M - M )
1>l < M3 1'113) (33)
i=1 =1
k—1 )
d¥[l2 =lla® —&[la < > 1A (34)
i—k—j (k)

The last inequality is derived from (@), where d* is defined, using a telescoping sum and the triangle
inequality.

Proof of Lemmalll
Note that AF = 6(i, i) - AF , where 6(i, j) denotes the Kronecker delta: 6(i, j) = { (1)’ Zel:e]
Recalling the algorithm (Z)), we have:
—(AR, Vf(@")) = —(A%, Vi f(@")) = Z[IA"]3. (35)
Since V f is L-Lipschitz,
. L
P < f@) +(VF(Y), A%) + ZIARS. (36)
Hence
G369 .
F@*h) = f@®) TS V(") = V(ER), AR + (5 = E) AR
a)
< L|d* |2 - A"l + (5 — L1473
Bi<r
< LY A 1AMl + (5 = E)l1Ak(3
d=k—71
I 2 o [(re+DL k2
SE Y IATE+ [t - L] Ak, 37)

i=k—T1
where a) follows from (32) and the Lipschitzness of V f, and b) is obtained by applying a - b <
o|al? + 5 |b[* (where € > 0 is arbitrary) to each term in the sum.

we can choose € > 0 such that € + é =1+ %(% — %) Then, it can be verified by

Iy < 55

direct calculation and substitutions that we have:
k—1
G — e D F() — FE) Y (- (k- )+ DAY

i=k—T

—5 > (= (k=)IAY3 - g7]A"]3
1=k+1—71
= f@h) = fEE 4 D IAE - 2TIANE S 5 -5 DL AME 68)
i=k—T1
where c) follows from (i — (k — 7) + 1)||AY|2 — (i — (k — 7))||AY|% = ||A?||2. Therefore we have
|A¥||3 € ¢! by using a telescoping su This immediately implies (12), and follows from
[Lemma 3, [5]].

$We write a” € £1if 3277 | |a¥| < occ.
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Proof of Theorem/1]
Lett = t(k) = |k/N’]|. Recall K (i,t) is defined at Sec. 1.1. Notice we have:

a) . .
IVif (@)l < (IVa f@EON) |l + [ Vif (aF) = Vif (@) ]l2 + Vi f (2F) = Vif(@500)]

b) . k-t . .
<|Vif @SN+ L d la+ L > (@7 =27, (39)
j:K(ivt)

where a) is by the triangle inequality and b) by Lipschitzness of V f and then applying the triangle
inequality to the expansion of ||Z* — #%(%)||. We now bound each of the right-hand terms.

From Lemma([T]and by (34), we have
k—1 ‘
lim a2 <lim ) [|A%)2 =0, (40)

i=k—T1

since A¥ — 0. By the triangle inequality, we can derive

5 — &My < |d*[l2 + (¥ |2 + [|AF]]2- 41)
Taking the limit,
lim | 2%+ — 2* ] = 0. (42)
Now notice:
~K(i ~K (7 L 7
Vi f@E N g = Vi, FEED)o = ;IIAK( . (43)

Since, as k — oo, K (i,t) — oo and || A¥||y — 0, this last term converges to 0 and the limit result is
proven. The running best rate is obtained through the following argument: since || A¥||5 is square
summable (by Lemmall), so are [|d* |2 by (34), |2+ — 2¥||5 by @), and ||V, f (25 (D)]|5 (since
t = O(k)) by @3). Hence, |V, f(z"*)]|2 is square summable. This implies |V f(x*)]|2 is square
summable, hence limy, ||V f(2*)||2 = 0, and we obtain the running best rate again from [Lemma 3,

(511

Proof of Theorem

Taking the expectation on both sides of (T3) and multiplying N yields

N
NE|Vi, f@ D2 = Y EIVif (7). (44)

=1

By || |l2 < || - ||z, we obtain:

N
E|VF(z* )z < Y E[Vif ")l D NE||V;, £ )2 (45)

i=1

In the next part, we prove E[|V;, f(2*~7)|2 — 0. From (L1), we can see that (|| A]|2)4>0 is
bounded. The dominated convergence theorem implies:

111?01E||A’f||2 =0. (46)
By (34), we have:
lim E(|d*[|2) = 0. (47)
Hence,
B ¥, £ ]2 @ ZmEAY = o @8)
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The triangle inequality and L-Lipschitz continuity yield

E[[Vi, f(@* )2 S E[Vi, f(@")]l2 + E[ Vi, f(z") = Vi, f(@")]2
+E| Vi, f(2") = Vi (T

k—1
<E|Vi f@)lo+ L-Elld*lo + L Y E[A".

i=k—T

Applying @6), @7), and @8) to (9) yields

i || Vi, f (2712 = 0.
Using (@3), (50) yields

lin B[/ (+*~7)l> = 0,
which is equivalent to

lim BV £ ()2 = 0.

Following a proof similar to that of Theorem |1|(except with added expectations), E||V f (=

summable and thus has the running best rate O(1/k).

Proof of Lemma

The proof consists of two steps: in the first one, we prove
L. 1 1
— >—(——=—71)-(ES(k+1 1
Tk 7T]€+1747_(7 9 ) ( S( + 1,7+ ))7

while in the second one, we prove

12 < B-(ES(k+1,7+1)) - (67ES(k,7) + E[z* — zF|]2).
Combining (53) and (54) gives us the claim in the lemma.
Proving : Since v < 572, we can choose & > 0 such that

cri=142(c-7)
€ Ty 2
Direct subtraction of F}, and Fj 1 yields:
a) k-1 4
Fy = Fin = f(@®) = f@) 46 Y7 (= (k—7) + 1)]A")3
i=k—T
-0 Z (i — (k= 7)IA"]3 — 67| A%|I3

i=k+1—71

2 f(ak) — f(aFH) + 68 (k, 7) — o7 Al

O

) TE
> (5 £)S(k,7) + | £ - C=ERE o) a3

&
|e
—
-
-
\]
-
»n
—
-
\]
S~—
+
s
—
-
-

Lol AN

()
~

> AL -7)-Sthr) 4 L - L) AN

Lol Sk, +1),

=
~
—~
=
=

(49)

(50)

619

(52)

“II3 s

(53)

(54)

(55)

(56)

where a) follows from the definition F};, b) from the definition of S(k, ), ¢) from , d) is a direct

computation using , e) is due to 7 > 1, and f) is also a result of the definition of S(k, 7).
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Proving (54): The convexity of f yields

Fa®) = fak) <(Vf(*),zF —2*), (57)
Let
zk — gk V()
VoAt VorAk-t
a = . , b= . (58)
VorAk=T VorAk=T
Using this and the definition of F}, (I8), we have:
Fy —min f < (a®,b%) < [|a"||2]|b" 2. (59)

We bound E||V;, f(z*~7)]||2 as follows:

2 Y . 2
E||Vi f(@* )3 < E(IVi f(2")ll2 + [IVin f(2"77) = Vi f(@*)]12)
% kyp 2 2 = a2
< 2E|Vi, f(@)3 +2L% ) ElAY3
i=k—T1
°) Ak (|2 21 7k |12 2 = 112
< 4E||Vy, f(2%)]13 + 4L7E||d* |5 +2L%7 Y E[AY3
i=k—T1
, k—1 ‘
=L E||A*3 + 6L > E[AY3, (60)
i=k—T1
where a) follows from the triangle inequality, b) from the Lipschitznes of V f and (33), and ¢) from
Vi f(2)|13 < 2|V, £(25)]13 + 2||d*||3 and (34). We also have the bound

k-1
IVFEME < 2AVFEETIE+ 2057 Y IAE, (61)
i=k—r
Hence, applying @4) to (60) yields
E|Vf(a*7)|3 < BEE|AMS + 6N LT kz B[ A3,
i=k—r

and further with (61,

E|[Vf (@)l < SNER|AME + (12N +2) L7 kil E[|A"3. (62)

i=k—t

Finally we obtain (54) from

x} =[E(F, ~ min )] B(la*a]12)? < E(la3) - E(6*[3)
2 (6TES (k,7) + EIIVf(2")[13) x (STES(k,7) + E||a* — 2*|[3)
bg)ﬂ]ES(k+ 1,7 +1)- (67ES(k,7) + E||lz* — 2¥|3), (63)
where a) follows from the definitions of a*, b* and b) from (62) and the definition of S(k, 7).
Proof of Theorem 3]

With (56), we can see that f(x*) < F;, < Fy. Since f is coercive, the sequence (2¥)z> is bounded.
Hence, we have sup, {||#* — 2||2} < 4oc0. Hence, there exists R > 0 such that
k—1
a Y TORAYS +Ella* -k |3) < 4. (64)

i=k—T1
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for all k. Using Lemmal[2] we have

T — Tht1 > Rﬂ']%. (65)

Using @, we can see that m > 741 for all k. Thus, we have
T — Tht1 > Rpp1my (66)
7'"k1+1 o i = R. (67)

Therefore, using a telescoping sum, we can deduce that'

Tht1 < (68)

kR+*

Noting E(f(z*) — min f) < 7, we have proven the result.

Proof of Theorem [

‘We have
E(f(z"*) — min f) > vE|jz* — 2F|3, (69)
Hence recalling the definition from (I8]), we have
k—1
Eme > vE[a* — 25|13+ > SEAY3 > min{y, 1}(E[|z* — 2*||3 + S(k, 7).

i=k—T1
Using this, the monotonicity of 7%, and Lemma yields
Temp1 < (mp)2 < mwk—ﬂkﬂ)'ﬂk. (70)

Rearranging this yields the result.

Proof of Lemma

The Lipschitz continuity of V f yields
F@h) = f(2%) < (Vf(ab), AF) + S A3
a) N
= (Vf(a*) = Vf(@"), A%) + (5 = L) A%|3
< L|ld*|lz - 1AM + (5 — £)[[ A", (71

where a) is from —L[|A¥||3 = (V f(2¥), A¥). We bound the expectation of [|d*||3 over the delay
and using (33), we have.

J(k)
Eio (14713 1 X*) < Bz Z] AR | 1)
b) +oo +oo
<ZJPJZHM N3 =0 dppllare l||2<ZCk il A3, (72)
j=1 =1 j=lI

where in b), we switched the order of summation in the double sum, and c) uses Z =i Jip; < q.
Taking total expectation E(-) on both sides of (72)), we obtain

k—1 k: 1
E|ld*)3 <Y exiEIIAY3 < D k1B A3 = R(k 1), (73)
=0 =0

where d) is by the fact (¢;);>¢ is descending. Hence:
E[f(z"*) = f(*)] < LE[|d"|l2 - [AF]|l2 + (5 = 2)E[A*|3
< LE|a¥3 + | SE — L] Bjlak)3

+oo +oo
< £ Y ip EIAT 3+ [HE - L] Ejak3. 4)
ll]l
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Since v <

2
PNGESE we can choose ¢ > 0 such that

e+ 2=

N

1

! (75)
With such € and lb direct calculation using the definition of G* yields lb When v <

%(% — % — /o) > 0. From

2
. 2y/co+1”
|| we can see (R(k))y>0 is summable (telescoping sum). Thus, we
have limy, R(k) = 0. Then note (73) and

k

B[ AF|3 <) eriB(|AY3) = R(k).
i=0

Hence then have

(76)

lmE(|d[3) = 0, EmE(|A%3) = 0. )
Proof of Theorem 3

Lett = t(k) = |k/N’]. Recalling K (i, t) is defined at Sec. 1.1, we have:

a) , . . ,
IV @)ll2 < [V6f @O+ [Vef (25 00) = Tif@ GO+ [Vaf (@) = Vif @60
b) . . S _
S Vi @) o+ LYo+ LY (A2, (78)
J=K(i,t)

where a) is by the triangle inequality and b) by the Lipschitzness of V f and then applying the triangle
inequality to the expansion of ||z* — z%(%!)||. We now bound each of the right-hand terms.
Since, as k — oo, K(i,t) — oo. With the Cauchy-Schwarz inequality and , we have

liinE||dK(i,t)”2 < hlgn(]E”dK(z‘,t)H%)% _0
By lim; E[|A7 ||y < lim;(E||A7||3)2 =0,

(79)
k-1
li o = 0.
im L Z E|A7 =0 (80)
J=K (1)
Now notice:
~K (i ~K (1 L 9
IV f @D o = Vi f@EED) |2 = Z(jaX 0] (81)

Since E||d¥Y ||, — 0 as K (i,t) — oo, we have

lim B[V, f (&)l = 0. (82)
Taking expectations on both sides of (78), and using (79), (80) and (82)), we then prove the result.
Proof of Theorem 6]

Recall j(k) defined near (3). Similar to the bound of ||d*||% in (34), we have

k—1

Ez gy (12 —a*TW 3 | xF) <3 simai A7,
i=0

Taking total expectations of both sides yields

(83)
k-1
Elz* — 2572 < Zsk—l—iEHAi”g' (84)
i=0
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We have

. a) .
E(Vi, f(@* "N 13 S E(Vi, f@P) |2 + |V, f(*TP)) = V5, £(29)]]2)?

b) .
< 2E(| Vi, £(«¥) |13 + 2L7E||2* — 27913

c) .
< 4E[|V;, f(2")]13 + 4L%E||d* (|3 + 2L%El|z" — 2" W3

Q) k-1 ‘
< ALE|AM3 4612 Y s El|AY3,
=0

(85)

where a) follows from the triangle inequality, b) from the Lipschitzness of V f and (33), and ¢) from
Vi f(2®)|13 < 2|V, £(2)]13 + 2L2]|d* |3 and (34), and d) from (84). Taking total expectation of

both sides of assumption (25) yields

) E k—j(k)y||2
BV, (=03 = V220

By the triangle inequality, N

k-1
IV S ()3 < 20V f ()3 + 222 Z sk—1-iE[|A"]3.
Hence, combining (86) and (87) produces -
E||IVf(z*7®)|3 < EE|A*3 + 6N L? ki:l sk—1-iE[|A%]13;
which is substituted into (87) to yield -
E||IVf ("5 < SEE|AM)3 + (12N + 2)L? kilsk—l—iEHAiH%'
=0

By S0 sk-1-i < 200 ck-1-iEl| A3 = R(k — 1) and (2),
lim E[|V f (") ][5 = 0.
The proof is completed by applying the Cauchy-Schwarz inequality
E|IV£(")]2 < (EIVF()]3)*.

Proof of Lemma 4]

This proof is very similar to Lemma2]except that (k) plays the role of S(k, 7). Let
—— Vf(zh)

L Voo AF—1 Vepd AR
Ve 0A° VerdA°

Thus, we have
Gy —min f < (a*,6°) < [[a”[[2]["|2.
By taking expectations, we get
E(Gj, — min f) < E([la"||2[|6"[|2) < [E]la"[3 - EI[b"|3]'/>.

By and the definitions of a*, b*, R(k), we get
[E(Gy —min f)]* <E([|la"[3) - E((I6"]13)
< (OR(k) +E[Vf(2")|3) x (SR(K) +E[* — 2*|3)
< BR(k) x (R(k) + El|z* — 2¥[|3).

Finally, from the definition of @ and Lemma 3] the theorem follows.
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(89)

(90)
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92)

93)
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Proof of Theorem[7]

We have
E(f(«*) — min f) > vE[|z"* — z¥||3,

which also means that
- — 1
E(OR(k) + ||z* — 2*2) < max{1, =} .
v

Lemma []yields

(¢x)? < amax{l, *}(¢k—-¢k+1) (ér)

Note that ¢, is decreasing, we obtain

i1 < amax{l, *}(¢k"¢k+l)

Then, we have the result by rearrangement.

Proof of Lemma

a)
F@™) < fa) + LldM 2 - 1A%z + (5 = ) IAM3

. i(k)
< M)+ LY A o - [|AF] + (5 = Z)1AR3
=1

3 (k)

J(k)
RS e PR %Zélwnz + (& - LAk
=1

J(k)

+oo
5 alatlE + 1+Z*—f AR]3.
=1

) + LY (FUAMS + 5 1AMI) + (5 — Sl A%]3

95)

(96)

o7

(98)

99)

where a) follows from Lipschitzness of V f and definitions of d*, A¥, b) from the triangle inequality,
¢) from @), and d) from j(k) < oc. Then, a direct calculation yields the first result in . Hence

the second follows by summability: ||A |2 € /1.

hm ¥l < Z hm||Al||2:O

I=k—T
1 c(l—c¢)
L(— — Dju)|1A%]3 = Vi f(@))3.
(5 = a1 = S, )l
Therefore,
||Vz f ||
- Z IV, £(E")]13 <Z E 2 < +oo0.
kEQT
Proof of Theorem

Forany T and k € Qr, lett = t(k) = |k/N'], and by the triangle inequality:
IVif ()| < IViaf (25E0) = Vif (2%)]o

+HVaf @ O0) = Vif @O o + | Vif (@)
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From Lemma[5} we have

k—1
lim || V; f(2C0) = Vif (@) <limL Y0 A% =0. (104)
i=k—N’'+1

Noting K (i,t) € Qr by the ECSD assumption, we can derive
lim Ve (#900) = T (@00 | < lim £]a¥ 00, = . (105)

Now notice by Lemma 3}

lim ||V f (2|2 = am IViseoo FEEED)2 = 0.

Since K (i,t) — oo, this right term converges to 0 and the result is proven.
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