
Bridging the Gap Between Value and Policy Based
Reinforcement Learning
(Supplementary Material)

A Pseudocode

Pseudocode for PCL is presented in Algorithm 1.

B Experimental Details

We describe the tasks we experimented on as well as details of the experimental setup.

B.1 Synthetic Tree

As an initial testbed, we developed a simple synthetic environment. The environment is defined
by a binary decision tree of depth 20. For each training run, the reward on each edge is sampled
uniformly from [−1, 1] and subsequently normalized so that the maximal reward trajectory has total
reward 20. We trained using a fully-parameterized model: for each node s in the decision tree there
are two parameters to determine the logits of πθ(−|s) and one parameter to determine Vφ(s). In
the Q-learning and Unified PCL implementations only two parameters per node s are needed to
determine the Q-values.

Algorithm 1 Path Consistency Learning
Input: Environment ENV , learning rates ηπ, ηv , discount factor γ, rollout d, number of steps N ,
replay buffer capacity B, prioritized replay hyperparameter α.
function Gradients(s0:T)

// We use G(st:t+d, πθ) to denote a discounted sum of log-probabilities from st to st+d.
Compute ∆θ =

∑T−d
t=0 Cθ,φ(st:t+d)∇θG(st:t+d, πθ).

Compute ∆φ =
∑T−d
t=0 Cθ,φ(st:t+d)

(
∇φVφ(st)− γd∇φVφ(st+d)

)
.

Return ∆θ,∆φ
end function
Initialize θ, φ.
Initialize empty replay buffer RB(α).
for i = 0 to N − 1 do

Sample s0:T ∼ πθ(s0:) on ENV .
∆θ,∆φ = Gradients(s0:T).
Update θ ← θ + ηπ∆θ.
Update φ← φ+ ηV ∆φ.
Input s0:T into RB with priority R1(s0:T).
If |RB| > B, remove episodes uniformly at random.
Sample s0:T from RB.
∆θ,∆φ = Gradients(s0:T).
Update θ ← θ + ηπ∆θ.
Update φ← φ+ ηv∆φ.

end for

B.2 Algorithmic Tasks

For more complex environments, we evaluated PCL, Unified PCL, and the two baselines on the
algorithmic tasks from the OpenAI Gym library [4]. This library provides six tasks, in rough order of
difficulty: Copy, DuplicatedInput, RepeatCopy, Reverse, ReversedAddition, and ReversedAddition3.
In each of these tasks, an agent operates on a grid of characters or digits, observing one character or
digit at a time. At each time step, the agent may move one step in any direction and optionally write
a character or digit to output. A reward is received on each correct emission. The agent’s goal for
each task is:

• Copy: Copy a 1× n sequence of characters to output.
• DuplicatedInput: Deduplicate a 1× n sequence of characters.
• RepeatCopy: Copy a 1× n sequence of characters first in forward order, then reverse, and

finally forward again.
• Reverse: Copy a 1× n sequence of characters in reverse order.
• ReversedAddition: Observe two ternary numbers in little-endian order via a 2 × n grid

and output their sum.
• ReversedAddition3: Observe three ternary numbers in little-endian order via a 3× n grid

and output their sum.

These environments have an implicit curriculum associated with them. To observe the performance
of our algorithm without curriculum, we also include a task “Hard ReversedAddition” which has the
same goal as ReversedAddition but does not utilize curriculum.

For these environments, we parameterized the agent by a recurrent neural network with LSTM [5]
cells of hidden dimension 128.

B.3 Implementation Details

For our hyperparameter search, we found it simple to parameterize the critic learning rate in terms of
the actor learning rate as ηv = Cηπ , where C is the critic weight.

For the Synthetic Tree environment we used a batch size of 10, rollout of d = 3, discount of
γ = 1.0, and a replay buffer capacity of 10,000. We fixed the α parameter for PCL’s replay
buffer to 1 and used ε = 0.05 for DQN. To find the optimal hyperparameters, we performed an
extensive grid search over actor learning rate ηπ ∈ {0.01, 0.05, 0.1}; critic weight C ∈ {0.1, 0.5, 1};
entropy regularizer τ ∈ {0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1.0} for A3C, PCL, Unified PCL;
and α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, β ∈ {0.2, 0.4, 0.6, 0.8, 1.0} for DQN replay buffer parameters. We
used standard gradient descent for optimization.

For the algorithmic tasks we used a batch size of 400, rollout of d = 10, a replay buffer of capacity
100,000, ran using distributed training with 4 workers, and fixed the actor learning rate ηπ to
0.005, which we found to work well across all variants. To find the optimal hyperparameters, we
performed an extensive grid search over discount γ ∈ {0.9, 1.0}, α ∈ {0.1, 0.5} for PCL’s replay
buffer; critic weight C ∈ {0.1, 1}; entropy regularizer τ ∈ {0.005, 0.01, 0.025, 0.05, 0.1, 0.15};
α ∈ {0.2, 0.4, 0.6, 0.8}, β ∈ {0.06, 0.2, 0.4, 0.5, 0.8} for the prioritized DQN replay buffer; and
also experimented with exploration rates ε ∈ {0.05, 0.1} and copy frequencies for the target DQN,
{100, 200, 400, 600}. In these experiments, we used the Adam optimizer [6].

All experiments were implemented using Tensorflow [1].

C Proofs

In this section, we provide a general theoretical foundation for this work, including proofs of the main
path consistency results. We first establish the basic results for a simple one-shot decision making
setting. These initial results will be useful in the proof of the general infinite horizon setting.

Although the main paper expresses the main claims under an assumption of deterministic dynamics,
this assumption is not necessary: we restricted attention to the deterministic case in the main body
merely for clarity and ease of explanation. Given that in this appendix we provide the general

2

foundations for this work, we consider the more general stochastic setting throughout the later
sections.

In particular, for the general stochastic, infinite horizon setting, we introduce and discuss the entropy
regularized expected return OENT and define a “softmax” operator B∗ (analogous to the Bellman
operator for hard-max Q-values). We then show the existence of a unique fixed point V ∗ of B∗, by
establishing that the softmax Bellman operator (B∗) is a contraction under the infinity norm. We
then relate V ∗ to the optimal value of the entropy regularized expected reward objective OENT, which
we term V †. We are able to show that V ∗ = V †, as expected. Subsequently, we present a policy
determined by V ∗ that satisfies V ∗(s) = OENT(s, π∗). Then given the characterization of π∗ in terms
of V ∗, we establish the consistency property stated in Theorem 1 of the main text. Finally, we show
that a consistent solution is optimal by satisfying the KKT conditions of the constrained optimization
problem (establishing Theorem 4 of the main text).

C.1 Basic results for one-shot entropy regularized optimization

For τ > 0 and any vector q ∈ Rn, n <∞, define the scalar valued function Fτ (the “softmax”) by

Fτ (q) = τ log

(
n∑
a=1

eqa/τ

)
(1)

and define the vector valued function fτ (the “soft indmax”) by

fτ (q) =
eq/τ∑n
a=1 e

qa/τ
= e(q−Fτ (q))/τ , (2)

where the exponentiation is component-wise. It is easy to verify that fτ = ∇Fτ . Note that
fτ maps any real valued vector to a probability vector. We denote the probability simplex by
∆ = {π : π ≥ 0,1 · π = 1}, and denote the entropy function by H(π) = −π · logπ.

Lemma 1.

Fτ (q) = max
π∈∆

{
π · q + τH(π)

}
(3)

= fτ (q) · q + τH(fτ (q)) (4)

Proof. First consider the constrained optimization problem on the right hand side of (3). The
Lagrangian is given by L = π · (q − τ logπ) + λ(1 − 1 · π), hence ∇L = q − τ logπ − τ − λ.
The KKT conditions for this optimization problems are the following system of n+ 1 equations

1 · π = 1 (5)
τ logπ = q− v (6)

for the n+ 1 unknowns, π and v, where v = λ+ τ . Note that for any v, satisfying (6) requires the
unique assignment π = exp((q − v)/τ), which also ensures π > 0. To subsequently satisfy (5),
the equation 1 =

∑
a exp((qa − v)/τ) = e−v/τ

∑
a exp(qa/τ) must be solved for v; since the right

hand side is strictly decreasing in v, the solution is also unique and in this case given by v = Fτ (q).
Therefore π = fτ (q) and v = Fτ (q) provide the unique solution to the KKT conditions (5)-(6).
Since the objective is strictly concave, π must be the unique global maximizer, establishing (4). It is
then easy to show Fτ (q) = fτ (q) · q + τH(fτ (q)) by algebraic manipulation, which establishes
(3).

Corollary 2 (Optimality Implies Consistency). If v∗ = max
π∈∆

{
π · q + τH(π)

}
then

v∗ = qa − τ log π∗a for all a, (7)

where π∗ = fτ (q).

Proof. From Lemma 1 we know v∗ = Fτ (q) = π∗ · (q − τ logπ∗) where π∗ = fτ (q). From
the definition of fτ it also follows that log π∗a = (qa − Fτ (q))/τ for all a, hence v∗ = Fτ (q) =
qa − τ log π∗a for all a.

3

Corollary 3 (Consistency Implies Optimality). If v ∈ R and π ∈ ∆ jointly satisfy

v = qa − τ log πa for all a, (8)

then v = Fτ (q) and π = fτ (q); that is, π must be an optimizer for (3) and v is its corresponding
optimal value.

Proof. Any v and π ∈ ∆ that jointly satisfy (8) must also satisfy the KKT conditions (5)-(6); hence
π must be the unique maximizer for (3) and v its corresponding objective value.

Although these results are elementary, they reveal a strong connection between optimal state values
(v), optimal action values (q) and optimal policies (π) under the softmax operators. In particular,
Lemma 1 states that, if q is an optimal action value at some current state, the optimal state value must
be v = Fτ (q), which is simply the entropy regularized value of the optimal policy, π = fτ (q), at the
current state.

Corollaries 2 and 3 then make the stronger observation that this mutual consistency between the
optimal state value, optimal action values and optimal policy probabilities must hold for every
action, not just in expectation over actions sampled from π; and furthermore that achieving mutual
consistency in this form is equivalent to achieving optimality.

Below we will also need to make use of the following properties of Fτ .
Lemma 4. For any vector q,

Fτ (q) = sup
p∈∆

{
p · q− τp · logp

}
. (9)

Proof. Let F ∗τ denote the conjugate of Fτ , which is given by

F ∗τ (p) = sup
q

{
q · p− Fτ (q)

}
= τp · logp (10)

for p ∈ dom(F ∗τ) = ∆. Since Fτ is closed and convex, we also have that Fτ = F ∗∗τ [3, Section 4.2];
hence

Fτ (q) = sup
p∈∆

{
q · p− F ∗τ (p)

}
. (11)

Lemma 5. For any two vectors q(1) and q(2),

Fτ (q(1))− Fτ (q(2)) ≤ max
a

{
q(1)
a − q(2)

a

}
. (12)

Proof. Observe that by Lemma 4

Fτ (q(1))− Fτ (q(2)) = sup
p(1)∈∆

{
q(1) · p(1) − F ∗τ (p(1))

}
− sup

p(2)∈∆

{
q(2) · p(2) − F ∗τ (p(2))

}
(13)

= sup
p(1)∈∆

{
inf

p(2)∈∆

{
q(1) · p(1) − q(2) · p(2) − (F ∗τ (p(1))− F ∗τ (p(2)))

}}
(14)

≤ sup
p(1)∈∆

{
p(1) · (q(1) − q(2))

}
by choosing p(2) = p(1) (15)

≤ max
a

{
q(1)
a − q(2)

a

}
. (16)

Corollary 6. Fτ is an∞-norm contraction; that is, for any two vectors q(1) and q(2),∣∣∣Fτ (q(1))− Fτ (q(2))
∣∣∣ ≤ ‖q(1) − q(2)‖∞ (17)

Proof. Immediate from Lemma 5.

4

C.2 Background results for on-policy entropy regularized updates

Although the results in the main body of the paper are expressed in terms of deterministic problems,
we will prove that all the desired properties hold for the more general stochastic case, where there is
a stochastic transition s, a 7→ s′ determined by the environment. Given the characterization for this
general case, the application to the deterministic case is immediate. We continue to assume that the
action space is finite, and that the state space is discrete.

For any policy π, define the entropy regularized expected return by

Ṽ π(s`) = OENT(s`, π) = Ea`s`+1...|s`

[∞∑
i=0

γi
(
r(s`+i, a`+i)− τ log π(a`+i|s`+i)

)]
, (18)

where the expectation is taken with respect to the policy π and with respect to the stochastic state
transitions determined by the environment. We will find it convenient to also work with the on-policy
Bellman operator defined by

(BπV)(s) = Ea,s′|s
[
r(s, a)− τ log π(a|s) + γV (s′)

]
(19)

= Ea|s
[
r(s, a)− τ log π(a|s) + γEs′|s,a

[
V (s′)

]]
(20)

= π(: |s) · (Q(s, :)− τ log π(: |s)), where (21)

Q(s, a) = r(s, a) + γEs′|s,a[V (s′)] (22)

for each state s and action a. Note that in (21) we are using Q(s, :) to denote a vector values over
choices of a for a given s, and π(: |s) to denote the vector of conditional action probabilities specified
by π at state s.
Lemma 7. For any policy π and state s, Ṽ π(s) satisfies the recurrence

Ṽ π(s) = Ea|s
[
r(s, a) + γEs′|s,a[Ṽ π(s′)]− τ log π(a|s)

]
(23)

= π(: |s) ·
(
Q̃π(s, :)− τ log π(: |s)

)
where Q̃π(s, a) = r(s, a) + γEs′|s,a[Ṽ π(s′)] (24)

= (BπṼ π)(s). (25)
Moreover, Bπ is a contraction mapping.

Proof. Consider an arbitrary state s`. By the definition of Ṽ π(s`) in (18) we have

Ṽ π(s`) = Ea`s`+1...|s`

[∞∑
i=0

γi
(
r(s`+i, a`+i)− τ log π(a`+i|s`+i)

)]
(26)

= Ea`s`+1...|s`

[
r(s`, a`)− τ log π(a`|s`) (27)

+ γ

∞∑
j=0

γj
(
r(s`+1+j , a`+1+j)− τ log π(a`+1+j |s`+1+j)

)]

= Ea`|s`

[
r(s`, a`)− τ log π(a`|s`) (28)

+ γEs`+1a`+1...|s`,a`

[∞∑
j=0

γj
(
r(s`+1+j , a`+1+j)− τ log π(a`+1+j |s`+1+j)

)]]

= Ea`|s`
[
r(s`, a`)− τ log π(a`|s`) + γEs`+1|s`,a` [Ṽ

π(s`+1)]
]

(29)

= π(: |s`) ·
(
Q̃π(s`, :)− τ log π(: |s`)

)
(30)

= (BπṼ π)(s`). (31)
The fact that Bπ is a contraction mapping follows directly from standard arguments about the
on-policy Bellman operator [7].

5

Note that this lemma shows Ṽ π is a fixed point of the corresponding on-policy Bellman operator Bπ .
Next, we characterize how quickly convergence to a fixed point is achieved by repeated application
of ther Bπ operator.

Lemma 8. For any π and any V , for all states s`, and for all k ≥ 0 it holds that:(
(Bπ)kV

)
(s`)− Ṽ π(s`) = γkEa`s`+1...s`+k|s`

[
V (s`+k)− Ṽ π(s`+k)

]
.

Proof. Consider an arbitrary state s`. We use an induction on k. For the base case, consider k = 0 and
observe that the claim follows trivially, since

(
(Bπ)0V

)
(s`)−

(
(Bπ)0Ṽ π

)
(s`) = V (s`)− Ṽ π(s`).

For the induction hypothesis, assume the result holds for k. Then consider:(
(Bπ)k+1V

)
(s`)−

(
Ṽ π
)
(s`)

=
(
(Bπ)k+1V

)
(s`)−

(
(Bπ)k+1Ṽ π

)
(s`) (by Lemma 7) (32)

=
(
Bπ(Bπ)kV

)
(s`)−

(
Bπ(Bπ)kṼ π

)
(s`) (33)

= Ea`s`+1|s`

[
r(s`, a`)− τ log π(a`|s`) + γ(Bπ)kV (s`+1)

]
− Ea`s`+1|s`

[
r(s`, a`)− τ log π(a`|s`) + γ(Bπ)kṼ π(s`+1)

]
(34)

= γEa`s`+1|s`

[
(Bπ)kV (s`+1)− (Bπ)kṼ π(s`+1)

]
(35)

= γEa`s`+1|s`

[
(Bπ)kV (s`+1)− Ṽ π(s`+1)

]
(by Lemma 7) (36)

= γEa`s`+1|s`

[
γkEa`+1s`+2...s`+k+1|s`+1

[
V (s`+k+1)− Ṽ π(s`+k+1)

]]
(by IH) (37)

= γk+1Ea`s`+1...s`+k+1|s`

[
V (s`+k+1)− Ṽ π(s`+k+1)

]
, (38)

establishing the claim.

Lemma 9. For any π and any V , we have
∥∥(Bπ)kV − Ṽ π

∥∥
∞ ≤ γ

k
∥∥V − Ṽ π∥∥∞.

Proof. Let p(k)(s`+k|s`) denote the conditional distribution over the kth state, s`+k, visited in a
random walk starting from s`, which is induced by the environment and the policy π. Consider∥∥(Bπ)kV − Ṽ π

∥∥
∞ = γk max

s`

∣∣∣Ea`s`+1...s`+k|s`
[
V (s`+k)− Ṽ π(s`+k)

]∣∣∣ (by Lemma 8) (39)

= γk max
s`

∣∣∣∑
s`+k

p(k)(s`+k|s`)
(
V (s`+k)− Ṽ π(s`+k)

)∣∣∣ (40)

= γk max
s`

∣∣∣p(k)(: |s`) ·
(
V − Ṽ π

)∣∣∣ (41)

≤ γk max
s`
‖p(k)(: |s`)‖1 ‖V − Ṽ π‖∞ (by Hölder’s inequality) (42)

= γk‖V − Ṽ π‖∞. (43)

Corollary 10. For any bounded V and any ε > 0 there exists a k0 such that (Bπ)kV ≥ Ṽ π − ε for
all k ≥ k0.

Proof. By Lemma 9 we have (Bπ)kV ≥ Ṽ π − γk
∥∥V − Ṽ π∥∥∞ for all k ≥ 0. Therefore, for any

ε > 0 there exists a k0 such that γk
∥∥V − Ṽ π∥∥∞ < ε for all k ≥ k0, since V is assumed bounded.

Thus, any value function will converge to Ṽ π via repeated application of on-policy backups Bπ.
Below we will also need to make use of the following monotonicity property of the on-policy Bellman
operator.

Lemma 11. For any π, if V (1) ≥ V (2) then BπV (1) ≥ BπV (2).

6

Proof. Assume V (1) ≥ V (2) and note that for any state s`

(BπV (2))(s`)− (BπV (1))(s`) = γEa`s`+1|s`
[
V (2)(s`+1)− V (1)(s`+1)

]
(44)

≤ 0 since it was assumed that V (2) ≤ V (1). (45)

C.3 Proof of main optimality claims for off-policy softmax updates

Define the optimal value function by

V †(s) = max
π

OENT(s, π) = max
π

Ṽ π(s) for all s. (46)

For τ > 0, define the softmax Bellman operator B∗ by

(B∗V)(s) = τ log
∑
a

exp
((
r(s, a) + γEs′|s,a[V (s′)]

)
/τ
)

(47)

= Fτ (Q(s, :)) where Q(s, a) = r(s, a) + γEs′|s,a[V (s′)] for all a. (48)

Lemma 12. For γ < 1, the fixed point of the softmax Bellman operator, V ∗ = B∗V ∗, exists and is
unique.

Proof. First observe that the softmax Bellman operator is a contraction in the infinity norm. That is,
consider two value functions, V (1) and V (2), and let p(s′|s, a) denote the state transition probability
function determined by the environment. We then have∥∥∥B∗V (1) − B∗V (2)

∥∥∥
∞

= max
s

∣∣∣(B∗V (1))(s)− (B∗V (2))(s)
∣∣∣ (49)

= max
s

∣∣∣Fτ(Q(1)(s, :)
)
− Fτ

(
Q(2)(s, :)

)∣∣∣ (50)

≤ max
s

max
a

∣∣∣Q(1)(s, a)−Q(2)(s, a)
∣∣∣ (by Corollary 6) (51)

= γmax
s

max
a

∣∣∣Es′|s,a[V (1)(s′)− V (2)(s′)
]∣∣∣ (52)

= γmax
s

max
a

∣∣∣p(: |s, a) ·
(
V (1) − V (2)

)∣∣∣ (53)

≤ γmax
s

max
a
‖p(: |s, a)‖1 ‖V (1) − V (2)‖∞ (Hölder’s inequality) (54)

= γ‖V (1) − V (2)‖∞ < ‖V (1) − V (2)‖∞ if γ < 1. (55)

The existence and uniqueness of V ∗ then follows from the contraction map fixed-point theorem
[2].

Lemma 13. For any π, if V ≥ B∗V then V ≥ (Bπ)kV for all k.

Proof. Observe for any s that the assumption implies

V (s) ≥ (B∗V)(s) (56)

= max
π̃(:|s)∈∆

∑
a

π̃(a|s)
(
r(s, a) + γEs′|s,a[V (s′)]− τ log π̃(a|s)

)
(57)

≥
∑
a

π(a|s)
(
r(s, a) + γEs′|s,a[V (s′)]− τ log π(a|s)

)
(58)

= (BπV)(s). (59)

The result then follows by the monotonicity of Bπ (Lemma 11).

Corollary 14. For any π, if V is bounded and V ≥ B∗V , then V ≥ Ṽ π .

Proof. Consider an arbitrary policy π. If V ≥ B∗V , then by Corollary 14 we have V ≥ (Bπ)kV for
all k. Then by Corollary 10, for any ε > 0 there exists a k0 such that V ≥ (Bπ)kV ≥ Ṽ π − ε for all
k ≥ k0 since V is bounded; hence V ≥ Ṽ π − ε for all ε > 0. We conclude that V ≥ Ṽ π .

7

Next, given the existence of V ∗, we define a specific policy π∗ as follows
π∗(: |s) = fτ

(
Q∗(s, :)

)
, where (60)

Q∗(s, a) = r(s, a) + γEs′|s,a[V ∗(s′)]. (61)
Note that we are simply defining π∗ at this stage and have not as yet proved it has any particular
properties; but we will see shortly that it is, in fact, an optimal policy.

Lemma 15. V ∗ = Ṽ π
∗
; that is, for π∗ defined in (60), V ∗ gives its entropy regularized expected

return from any state.

Proof. We establish the claim by showing B∗Ṽ π∗ = Ṽ π
∗
. In particular, for an arbitrary state s

consider
(B∗Ṽ π

∗
)(s) = Fτ

(
Q̃π
∗
(s, :)

)
by (48) (62)

= π∗(: |s) ·
(
Q̃π
∗
(s, :)− τ log π∗(: |s)

)
by Lemma 1 (63)

= Ṽ π
∗
(s) by Lemma 7. (64)

Theorem 16. The fixed point of the softmax Bellman operator is the optimal value function: V ∗ = V †.

Proof. Since V ∗ ≥ B∗V ∗ (in fact, V ∗ = B∗V ∗) we have V ∗ ≥ Ṽ π for all π by Corollary 14, hence
V ∗ ≥ V †. Next observe that by Lemma 15 we have V † ≥ Ṽ π

∗
= V ∗. Finally, by Lemma 12, we

know that the fixed point V ∗ = B∗V ∗ is unique, hence V † = V ∗.

Corollary 17 (Optimality Implies Consistency). The optimal state value function V ∗ and optimal
policy π∗ satisfy V ∗(s) = r(s, a) + γEs′|s,a[V ∗(s′)]− τ log π∗(a|s) for every state s and action a.

Proof. First note that
Q∗(s, a) = r(s, a) + γEs′|s,a[V ∗(s′)] by (61) (65)

= r(s, a) + γEs′|s,a[V π
∗
(s′)] by Lemma 15 (66)

= Qπ
∗
(s, a) by (22). (67)

Then observe that for any state s,
V ∗(s) = Fτ

(
Q∗(s, :)

)
by (48) (68)

= Fτ
(
Qπ
∗
(s, :)

)
from above (69)

= π∗(: |s) ·
(
Qπ
∗
(s, :)− τ log π∗(: |s)

)
by Lemma 1 (70)

= Qπ
∗
(s, a)− τ log π∗(a|s) for all a by Corollary 2 (71)

= Q∗(s, a)− τ log π∗(a|s) for all a from above. (72)

Corollary 18 (Consistency Implies Optimality). If V and π satisfy, for all s and a:
V (s) = r(s, a) + γEs′|s,a[V (s′)]− τ log π(a|s); then V = V ∗ and π = π∗.

Proof. We will show that satisfying the constraint for every s and a implies B∗V = V ; it will then
immediately follow that V = V ∗ and π = π∗ by Lemma 12. LetQ(s, a) = r(s, a)+γEs′|s,a[V (s′)].
Consider an arbitrary state s, and observe that

(B∗V)(s) = Fτ
(
Q(s, :)

)
(by (48)) (73)

= max
π∈∆

{
π ·
(
Q(s, :)− τ logπ

)}
(by Lemma 1) (74)

= Q(s, a)− τ log π(a|s) for all a (by Corollary 3) (75)

= r(s, a) + γEs′|s,a[V (s′)]− τ log π(a|s) for all a (by definition of Q above) (76)

= V (s) (by the consistency assumption on V and π). (77)

8

C.4 Proof of Theorem 1 from Main Text

Note: Theorem 1 from the main body was stated under an assumption of deterministic dynamics. We
used this assumption in the main body merely to keep presentation simple and understandable. The
development given in this appendix considers the more general case of a stochastic environment. We
give the proof here for the more general setting; the result stated in Theorem 1 follows as a special
case.

Proof. Assuming a stochastic environment, as developed in this appendix, we will establish that the
optimal policy and state value function, π∗ and V ∗ respectively, satisfy

V ∗(s) = −τ log π∗(a|s) + r(s, a) + γEs′|s,a[V ∗(s′)] (78)

for all s and a. Theorem 1 will then follow as a special case.

Consider the policy π∗ defined in (60). From Corollary 15 we know that Ṽ π
∗

= V ∗ and from
Theorem 16 we know V ∗ = V †, hence Ṽ π

∗
= V †; that is, π∗ is the optimizer of OENT(s, π) for

any state s (including s0). Therefore, this must be the same π∗ as considered in the premise. The
assertion (78) then follows directly from Corollary 17.

C.5 Proof of Corollary 2 from Main Text

Note: We consider the more general case of a stochastic environment as developed in this appendix.
First note that the consistency property for the stochastic case (78) can be rewritten as

Es′|s,a
[
− V ∗(s) + γV ∗(s′) + r(s, a)− τ log π∗(a|s)

]
= 0 (79)

for all s and a. For a stochastic environment, the generalized version of (13) in Corollary 2 can then
be expressed as

Es2...st|s1,a1...at−1

[
− V ∗(s1) + γt−1V ∗(st) +

t−1∑
i=1

γi−1
(
r(si, ai)− τ log π∗(ai|si)

)]
= 0 (80)

for all states s1 and action sequences a1...at−1. We now show that (79) implies (80).

Proof. Observe that by (79) we have

0 = Es2...st|s1,a1...at−1

[t−1∑
i=1

γi−1
(
− V ∗(si) + γV ∗(si+1) + r(si, ai)− τ log π∗(ai|si)

)]
(81)

= Es2...st|s1,a1...at−1

[t−1∑
i=1

γi−1
(
− V ∗(si) + γV ∗(si+1)

)
+

t−1∑
i=1

γi−1
(
r(si, ai)− τ log π∗(ai|si)

)]
(82)

= Es2...st|s1,a1...at−1

[
− V ∗(s1) + γt−1V ∗(st) +

t−1∑
i=1

γi−1
(
r(si, ai)− τ log π∗(ai|si)

)]
(83)

by a telescopic sum on the first term, which yields the result.

C.6 Proof of Theorem 3 from Main Text

Note: Again, we consider the more general case of a stochastic environment. The consistency
property in this setting is given by (78) above.

Proof. Consider a policy πθ and value function Vφ that satisfy the general consistency property for a
stochastic environment: Vφ(s) = −τ log πθ(a|s) + r(s, a) + γEs′|s,a[Vφ(s′)] for all s and a. Then
by Corollary 18, we must have Vφ = V ∗ and πθ = π∗. Theorem 3 follows as a special case when the
environment is deterministic.

9

References
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,

M. Isard, et al. Tensorflow: A system for large-scale machine learning. arXiv:1605.08695, 2016.

[2] D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 2. Athena Scientific, 1995.

[3] J. Borwein and A. Lewis. Convex Analysis and Nonlinear Optimization. Springer, 2000.

[4] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
OpenAI Gym. arXiv:1606.01540, 2016.

[5] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput., 1997.

[6] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. ICLR, 2015.

[7] J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function
approximation. IEEE Transactions on Automatic Control, 42(5), 1997.

10

	Pseudocode
	Experimental Details
	Synthetic Tree
	Algorithmic Tasks
	Implementation Details

	Proofs
	Basic results for one-shot entropy regularized optimization
	Background results for on-policy entropy regularized updates
	Proof of main optimality claims for off-policy softmax updates
	Proof of Theorem 1 from Main Text
	Proof of Corollary 2 from Main Text
	Proof of Theorem 3 from Main Text

