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Abstract

Catastrophic forgetting is a problem of neural networks that loses the information
of the first task after training the second task. Here, we propose a method, i.e. in-
cremental moment matching (IMM), to resolve this problem. IMM incrementally
matches the moment of the posterior distribution of the neural network which is
trained on the first and the second task, respectively. To make the search space
of posterior parameter smooth, the IMM procedure is complemented by various
transfer learning techniques including weight transfer, L2-norm of the old and the
new parameter, and a variant of dropout with the old parameter. We analyze our ap-
proach on a variety of datasets including the MNIST, CIFAR-10, Caltech-UCSD-
Birds, and Lifelog datasets. The experimental results show that IMM achieves
state-of-the-art performance by balancing the information between an old and a
new network.

1 Introduction

Catastrophic forgetting is a fundamental challenge for artificial general intelligence based on neural
networks. The models that use stochastic gradient descent often forget the information of previous
tasks after being trained on a new task [1, 2]. Online multi-task learning that handles such problems
is described as continual learning. This classic problem has resurfaced with the renaissance of deep
learning research [3, 4].

Recently, the concept of applying a regularization function to a network trained by the old task to
learning a new task has received much attention. This approach can be interpreted as an approxima-
tion of sequential Bayesian [5, 6]. Representative examples of this regularization approach include
learning without forgetting [7] and elastic weight consolidation [8]. These algorithms succeeded in
some experiments where their own assumption of the regularization function fits the problem.

Here, we propose incremental moment matching (IMM) to resolve the catastrophic forgetting prob-
lem. IMM uses the framework of Bayesian neural networks, which implies that uncertainty is intro-
duced on the parameters in neural networks, and that the posterior distribution is calculated [9, 10].
The dimension of the random variable in the posterior distribution is the number of the parameters
in the neural networks. IMM approximates the mixture of Gaussian posterior with each component
representing parameters for a single task to one Gaussian distribution for a combined task. To merge
the posteriors, we introduce two novel methods of moment matching. One is mean-IMM, which
simply averages the parameters of two networks for old and new tasks as the minimization of the
average of KL-divergence between one approximated posterior distribution for the combined task
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Figure 1: Geometric illustration of incremental moment matching (IMM). Mean-IMM simply av-
erages the parameters of two neural networks, whereas mode-IMM tries to find a maximum of the
mixture of Gaussian posteriors. To make IMM be reasonable, the search space of the loss function
between the posterior means µ1 and µ2 should be reasonably smooth and convex-like. To find a
µ2 which satisfies this condition of a smooth and convex-like path from µ1, we propose applying
various transfer techniques for the IMM procedure.

and each Gaussian posterior for the single task [11]. The other is mode-IMM, which merges the pa-
rameters of two networks using a Laplacian approximation [9] to approximate a mode of the mixture
of two Gaussian posteriors, which represent the parameters of the two networks.

In general, it is too naïve to assume that the final posterior distribution for the whole task is Gaussian.
To make our IMM work, the search space of the loss function between the posterior means needs to
be smooth and convex-like. In other words, there should not be high cost barriers between the means
of the two networks for an old and a new task. To make our assumption of Gaussian distribution for
neural network reasonable, we applied three main transfer learning techniques on the IMM proce-
dure: weight transfer, L2-norm of the old and the new parameters, and our newly proposed variant
of dropout using the old parameters. The whole procedure of IMM is illustrated in Figure 1.

2 Previous Works on Catastrophic Forgetting

One of the major approaches preventing catastrophic forgetting is to use an ensemble of neural net-
works. When a new task arrives, the algorithm makes a new network, and shares the representation
between the tasks [12, 13]. However, this approach has a complexity issue, especially in inference,
because the number of networks increases as the number of new tasks that need to be learned in-
creases.

Another approach studies the methods using implicit distributed storage of information, in typical
stochastic gradient descent (SGD) learning. These methods use the idea of dropout, maxout, or neu-
ral module to distributively store the information for each task by making use of the large capacity of
the neural network [4]. Unfortunately, most studies following this approach had limited success and
failed to preserve performance on the old task when an extreme change to the environment occurred
[3]. Alternatively, Fernando et al. [14] proposed PathNet, which extends the idea of the ensemble
approach for parameter reuse [13] within a single network. In PathNet, a neural network has ten or
twenty modules in each layer, and three or four modules are picked for one task in each layer by
an evolutionary approach. This method alleviates the complexity issue of the ensemble approach to
continual learning in a plausible way.

The approach with a regularization term also has received attention. Learning without forgetting
(LwF) is one example of this approach, which uses the pseudo-training data from the old task [7].
Before learning the new task, LwF puts the training data of the new task into the old network,
and uses the output as pseudo-labels of the pseudo-training data. By optimizing both the pseudo-
training data of the old task and the real data of the new task, LwF attempts to prevent catastrophic
forgetting. This framework is promising where the properties of the pseudo training set is similar to
the ideal training set. Elastic weight consolidation (EWC), another example of this approach, uses
sequential Bayesian estimation to update neural networks for continual learning [8]. In EWC, the
posterior distribution trained by the previous task is used to update the new prior distribution. This
new prior is used for learning the new posterior distribution of the new task in a Bayesian manner.
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EWC assumes that the covariance matrix of the posterior is diagonal and there are no correlations
between the nodes. Though this assumption is fragile, EWC performs well in some domains.

EWC is a monumental recent work that uses sequential Bayesian for continual learning of neural
networks. However, updating the parameter of complex hierarchical models by sequential Bayesian
estimation is not new [5]. Sequential Bayes was used to learn topic models from stream data by
Broderick et al. [6]. Huang et al. applied sequential Bayesian to adapt a deep neural network to
the specific user in the speech recognition domain [15, 16]. They assigned the layer for the user
adaptation and applied MAP estimation to this single layer. Similar to our IMM method, Bayesian
moment matching is used for sum-product networks, a kind of deep hierarchical probabilistic model
[17]. Though sum-product networks are usually not scalable to large datasets, their online learning
method is useful, and it achieves similar performance to the batch learner. Our method using moment
matching focuses on continual learning and deals with significantly different statistics between tasks,
unlike the previous method.

3 Incremental Moment Matching

In incremental moment matching (IMM), the moments of posterior distributions are matched in an
incremental way. In our work, we use a Gaussian distribution to approximate the posterior distri-
bution of parameters. Given K sequential tasks, we want to find the optimal parameter µ∗1:K and
Σ∗1:K of the Gaussian approximation function q1:K from the posterior parameter for each kth task,
(µk,Σk).

p1:K ≡ p(θ|X1, · · · , XK , y1, · · · , yK) ≈ q1:K ≡ q(θ|µ1:K ,Σ1:K) (1)
pk ≡ p(θ|Xk, yk) ≈ qk ≡ q(θ|µk,Σk) (2)

q1:K denotes an approximation of the true posterior distribution p1:K for the whole task, and qk
denotes an approximation of the true posterior distribution pk over the training dataset (Xk, yk) for
the kth task. θ denotes the vectorized parameter of the neural network. The dimension of µk and
µ1:k is D, and the dimension of Σk and Σ1:k is D×D, respectively, where D is the dimension of θ.
For example, a multi-layer perceptrons (MLP) with [784-800-800-800-10] has the number of nodes,
D = 1917610 including bias terms.

Next, we explain two proposed moment matching algorithms for the continual learning of modern
deep neural networks. The two algorithms generate two different moments of Gaussian with different
objective functions for the same dataset.

3.1 Mean-based Incremental Moment Matching (mean-IMM)

Mean-IMM averages the parameters of two networks in each layer, using mixing ratios αk with∑K
k αk = 1. The objective function of mean-IMM is to minimize the following local KL-distance

or the weighted sum of KL-divergence between each qk and q1:K [11, 18]:

µ∗1:K ,Σ
∗
1:K = argmin

µ1:K ,Σ1:K

∑K
k αkKL(qk||q1:K) (3)

µ∗1:K =
∑K
k αkµk (4)

Σ∗1:K =
∑K
k αk(Σk + (µk − µ∗1:K)(µk − µ∗1:K)T ) (5)

µ∗1:K and Σ∗1:K are the optimal solution of the local KL-distance. Notice that covariance information
is not needed for mean-IMM, since calculating µ∗1:K does not require any Σk. A series of µk is
sufficient to perform the task. The idea of mean-IMM is commonly used in shallow networks [19,
20]. However, the contribution of this paper is to discover when and how mean-IMM can be applied
in modern deep neural networks and to show it can performs better with other transfer techniques.

Future works may include other measures to merge the networks, including the KL-divergence be-
tween q1:K and the mixture of each qk (i.e. KL(q1:K ||

∑K
k αkqk)) [18].
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3.2 Mode-based Incremental Moment Matching (mode-IMM)

Mode-IMM is a variant of mean-IMM which uses the covariance information of the posterior of
Gaussian distribution. In general, a weighted average of two mean vectors of Gaussian distributions
is not a mode of MoG. In discriminative learning, the maximum of the distribution is of primary
interest. According to Ray and Lindsay [21], all the modes of MoG with K clusters lie on (K − 1)-
dimensional hypersurface {θ|θ = (

∑K
k akΣ−1

k )−1(
∑K
k akΣ−1

k µk), 0 < ak < 1 and
∑
k ak = 1}.

See Appendix A for more details.

Motivated by the above description, a mode-IMM approximate MoG with Laplacian approximation,
in which the logarithm of the function is expressed by the Taylor expansion [9]. Using Laplacian
approximation, the MoG is approximated as follows:

log q1:K ≈
∑K
k αk log qk + C = −1

2
θT (
∑K
k αkΣ−1

k )θ + (
∑K
k αkΣ−1

k µk)θ + C ′ (6)

µ∗1:K = Σ∗1:K · (
∑K
k αkΣ−1

k µk) (7)

Σ∗1:K = (
∑K
k αkΣ−1

k )−1 (8)

For Equation 8, we add εI to the term to be inverted in practice, with an identity matrix I and a small
constant ε.

Here, we assume diagonal covariance matrices, which means that there is no correlation among
parameters. This diagonal assumption is useful, since it decreases the number of parameters for
each covariance matrix from O(D2) to O(D) for the dimension of the parameters D.

For covariance, we use the inverse of a Fisher information matrix, following [8, 22]. The main
idea of this approximation is that the square of gradients for parameters is a good indicator of their
precision, which is the inverse of the variance. The Fisher information matrix for the kth task, Fk is
defined as:

Fk = E

[
∂

∂µk
ln p(ỹ|x, µk) · ∂

∂µk
ln p(ỹ|x, µk)T

]
, (9)

where the probability of the expectation follows x ∼ πk and ỹ ∼ p(y|x, µk), where πk denotes an
empirical distribution of Xk.

4 Transfer Techniques for Incremental Moment Matching

In general, the loss function of neural networks is not convex. Consider that shuffling nodes and
their weights in a neural network preserves the original performance. If the parameters of two neural
networks initialized independently are averaged, it might perform poorly because of the high cost
barriers between the parameters of the two neural networks [23]. However, we will show that various
transfer learning techniques can be used to ease this problem, and make the assumption of Gaussian
distribution for neural networks reasonable. In this section, we introduce three practical techniques
for IMM, including weight-transfer, L2-transfer, and drop-transfer.

4.1 Weight-Transfer

Weight-transfer initialize the parameters for the new task µk with the parameters of the previous
task µk−1 [24]. In our experiments, the use of weight-transfer was critical to the continual learn-
ing performance. For this reason, the experiments on IMM in this paper use the weight-transfer
technique by default.

The weight-transfer technique is motivated by the geometrical property of neural networks discov-
ered in the previous work [23]. They found that there is a straight path from the initial point to the
solution without any high cost barrier, in various types of neural networks and datasets. This dis-
covery suggests that the weight-transfer from the previous task to the new task makes a smooth loss
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Figure 2: Experimental results on visualizing the effect of weight-transfer. The geometric property
of the parameter space of the neural network is analyzed. Brighter is better. θ1, θ2, and θ3 are the
vectorized parameters of trained networks from randomly selected subsets of the CIFAR-10 dataset.
This figure shows that there are better solutions between the three locally optimized parameters.

surface between two solutions for the tasks, so that the optimal solution for both tasks lies on the
interpolated point of the two solutions.

To empirically validate the concept of weight-transfer, we use the linear path analysis proposed by
Goodfellow et al. [23] (Figure 2). We randomly chose 18,000 instances from the training dataset
of CIFAR-10, and divided them into three subsets of 6,000 instances each. These three subsets are
used for sequential training by CNN models, parameterized by θ1, θ2, and θ3, respectively. Here, θ2

is initialized from θ1, and then θ3 is initialized from θ2, in the same way as weight-transfer. In this
analysis, each loss and accuracy is evaluated at a series of points θ = θ1 + α(θ2 − θ1) + β(θ3 −
θ2), varying α and β. In Figure 2, the loss surface of the model on each online subset is nearly
convex. The figure shows that the parameter at 1

3 (θ1 + θ2 + θ3), which is the same as the solution
of mean-IMM, performs better than any other reference points θ1, θ2, or θ3. However, when θ2 is
not initialized by θ1, the convex-like shape disappears, since there is a high cost barrier between the
loss function of θ1 and θ2.

4.2 L2-transfer

L2-transfer is a variant of L2-regularization. L2-transfer can be interpreted as a special case of
EWC where the prior distribution is Gaussian with λI as a covariance matrix. In L2-transfer, a
regularization term of the distance between µk−1 and µk is added to the following objective function
for finding µk, where λ is a hyperparameter:

log p(yk|Xk, µk)− λ · ||µk − µk−1||22 (10)

The concept of L2-transfer is commonly used in transfer learning [25, 26] and continual learning
[7, 8] with large λ. Unlike the previous usage of large λ, we use small λ for the IMM procedure.
In other words, µk is first trained by Equation 10 with small λ, and then merged to µ1:k in our
IMM. Since we want to make the loss surface between µk−1 and µk smooth, and not to minimize
the distance between µk−1 and µk. In convex optimization, the L2-regularizer makes the convex
function strictly convex. Similarly, we hope L2-transfer with small λ help to find a µk with a convex-
like loss space between µk−1 and µk.

4.3 Drop-transfer

Drop-transfer is a novel method devised in this paper. Drop-transfer is a variant of dropout where
µk−1 is the zero point of the dropout procedure. In the training phase, the following µ̂k,i is used for
the weight vector corresponding to the ith node µk,i:

µ̂k,i =

{
µk−1,i, if ith node is turned off

1
1−p · µk,i −

p
1−p · µk−1,i, otherwise

(11)

where p is the dropout ratio. Notice that the expectation of µ̂k,i is µk,i.
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