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Abstract

Data augmentation is a ubiquitous technique for increasing the size of labeled train-
ing sets by leveraging task-specific data transformations that preserve class labels.
While it is often easy for domain experts to specify individual transformations,
constructing and tuning the more sophisticated compositions typically needed to
achieve state-of-the-art results is a time-consuming manual task in practice. We
propose a method for automating this process by learning a generative sequence
model over user-specified transformation functions using a generative adversarial
approach. Our method can make use of arbitrary, non-deterministic transformation
functions, is robust to misspecified user input, and is trained on unlabeled data.
The learned transformation model can then be used to perform data augmentation
for any end discriminative model. In our experiments, we show the efficacy of our
approach on both image and text datasets, achieving improvements of 4.0 accuracy
points on CIFAR-10, 1.4 F1 points on the ACE relation extraction task, and 3.4 ac-
curacy points when using domain-specific transformation operations on a medical
imaging dataset as compared to standard heuristic augmentation approaches.

1 Introduction

Modern machine learning models, such as deep neural networks, may have billions of free parameters
and accordingly require massive labeled data sets for training. In most settings, labeled data is not
available in sufficient quantities to avoid overfitting to the training set. The technique of artificially
expanding labeled training sets by transforming data points in ways which preserve class labels
– known as data augmentation – has quickly become a critical and effective tool for combatting
this labeled data scarcity problem. Data augmentation can be seen as a form of weak supervision,
providing a way for practitioners to leverage their knowledge of invariances in a task or domain.
And indeed, data augmentation is cited as essential to nearly every state-of-the-art result in image
classification [4, 8, 12, 26] (see Appendix A.1), and is becoming increasingly common in other
modalities as well [21].

Even on well studied benchmark tasks, however, the choice of data augmentation strategy is known to
cause large variances in end performance and be difficult to select [12, 8], with papers often reporting
their heuristically found parameter ranges [4]. In practice, it is often simple to formulate a large set
of primitive transformation operations, but time-consuming and difficult to find the parameterizations
and compositions of them needed for state-of-the-art results. In particular, many transformation
operations will have vastly different effects based on parameterization, the set of other transformations
they are applied with, and even their particular order of composition. For example, brightness and
saturation enhancements might be destructive when applied together, but produce realistic images
when paired with geometric transformations.
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Figure 1: Three examples of transformation functions (TFs) in different domains: Two example
sequences of incremental image TFs applied to CIFAR-10 images (left); a conditional word-swap
TF using an externally trained language model and specifically targeting nouns (NN) between entity
mentions (E1,E2) for a relation extraction task (middle); and an unsupervised segementation-based
translation TF applied to mass-containing mammography images (right).

Given the difficulty of searching over this configuration space, the de facto norm in practice consists
of applying one or more transformations in random order and with random parameterizations selected
from hand-tuned ranges. Recent lines of work attempt to automate data augmentation entirely, but
either rely on large quantities of labeled data [1, 22], restricted sets of simple transformations [9, 14],
or consider only local perturbations that are not informed by domain knowledge [1, 23] (see Section 4).
In contrast, our aim is to directly and flexibly leverage domain experts’ knowledge of invariances as a
valuable form of weak supervision in real-world settings where labeled training data is limited.

In this paper, we present a new method for data augmentation that directly leverages user domain
knowledge in the form of transformation operations, and automates the difficult process of composing
and parameterizing them. We formulate the problem as one of learning a generative sequence model
over black-box transformation functions (TFs): user-specified operators representing incremental
transformations to data points that need not be differentiable nor deterministic. For example, TFs
could rotate an image by a small degree, swap a word in a sentence, or translate a segmented structure
in an image (Fig. 1). We then design a generative adversarial objective [10] which allows us to train
the sequence model to produce transformed data points which are still within the data distribution of
interest, using unlabeled data. Because the TFs can be stochastic or non-differentiable, we present a
reinforcement learning-based training strategy for this model. The learned model can then be used to
perform data augmentation on labeled training data for any end discriminative model.

Given the flexibility of our representation of the data augmentation process, we can apply our
approach in many different domains, and on different modalities including both text and images.
On a real-world mammography image task, we achieve a 3.4 accuracy point boost above randomly
composed augmentation by learning to appropriately combine standard image TFs with domain-
specific TFs derived in collaboration with radiology experts. Using novel language model-based
TFs, we see a 1.4 F1 boost over heuristic augmentation on a text relation extraction task from
the ACE corpus. And on a 10%-subsample of the CIFAR-10 dataset, we achieve a 4.0 accuracy
point gain over a standard heuristic augmentation approach and are competitive with comparable
semi-supervised approaches. Additionally, we show empirical results suggesting that the proposed
approach is robust to misspecified TFs. Our hope is that the proposed method will be of practical
value to practitioners and of interest to researchers, so we have open-sourced the code at https:
//github.com/HazyResearch/tanda.

2 Modeling Setup and Motivation

In the standard data augmentation setting, our aim is to expand a labeled training set by leveraging
knowledge of class-preserving transformations. For a practitioner with domain expertise, providing
individual transformations is straightforward. However, high performance augmentation techniques
use compositions of finely tuned transformations to achieve state-of-the-art results [8, 4, 12], and
heuristically searching over this space of all possible compositions and parameterizations for a new
task is often infeasible. Our goal is to automate this task by learning to compose and parameterize a
set of user-specified transformation operators in ways that are diverse but still preserve class labels.

In our method, transformations are modeled as sequences of incremental user-specified operations,
called transformation functions (TFs) (Fig. 1). Rather than making the strong assumption that all
the provided TFs preserve class labels, as existing approaches do, we assume a weaker form of class
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Figure 2: A high-level diagram of our method. Users input a set of transformation functions h1, ..., hK
and unlabeled data. A generative adversarial approach is then used to train a null class discriminator,
D∅, and a generator, G, which produces TF sequences hτ1 , ..., hτL . Finally, the trained generator is
used to perform data augmentation for an end discriminative model Df .

invariance which enables us to use unlabeled data to learn a generative model over transformation
sequences. We then propose two representative model classes to handle modeling both commutative
and non-commutative transformations.

2.1 Augmentation as Sequence Modeling

In our approach, we represent transformations as sequences of incremental operations. In this setting,
the user provides a set of K TFs, hi : X 7→ X , i ∈ [1,K]. Each TF performs an incremental
transformation: for example, hi could rotate an image by five degrees, swap a word in a sentence, or
move a segmented tumor mass around a background mammography image (see Fig. 1). In order to
accommodate a wide range of such user-defined TFs, we treat them as black-box functions which
need not be deterministic nor differentiable.

This formulation gives us a tractable way to tune both the parameterization and composition of the
TFs in a discretized but fine-grained manner. Our representation can be thought of as an implicit
binning strategy for tuning parameterizations – e.g. a 15 degree rotation might be represented as
three applications of a five-degree rotation TF. It also provides a direct way to represent compositions
of multiple transformation operations. This is critical as a multitude of state-of-the-art results in
the literature show the importance of using compositions of more than one transformations per
image [8, 4, 12], which we also confirm experimentally in Section 5.

2.2 Weakening the Class-Invariance Assumption

Any data augmentation technique fundamentally relies on some assumption about the transformation
operations’ relation to the class labels. Previous approaches make the unrealistic assumption that all
provided transformation operations preserve class labels for all data points. That is,

y(hτL ◦ . . . ◦ hτ1(x)) = y(x) (1)

for label mapping function y, any sequence of TF indices τ1, ..., τL, and all data points x.

This assumption puts a large burden of precise specification on the user, and based on our observations,
is violated by many real-world data augmentation strategies. Instead, we consider a weaker modeling
assumption. We assume that transformation operations will not map between classes, but might
destructively map data points out of the distribution of interest entirely:

y(hτL ◦ . . . ◦ hτ1(x)) ∈ {y(x), y∅} (2)

where y∅ represents an out-of-distribution null class. Intuitively, this weaker assumption is motivated
by the categorical image classification setting, where we observe that transformation operations
provided by the user will almost never turn, for example, a plane into a car, but may often turn a
plane into an indistinguishable “garbage” image (Fig. 3). We are the first to consider this weaker
invariance assumption, which we believe more closely matches various practical data augmentation
settings of interest. In Section 5, we also provide empirical evidence that this weaker assumption is
useful in binary classification settings and over modalities other than image data. Critically, it also
enables us to learn a model of TF sequences using unlabeled data alone.
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Figure 3: Our modeling assumption is that transformations may
map out of the natural distribution of interest, but will rarely
map between classes. As a demonstration, we take images from
CIFAR-10 (each row) and randomly search for a transformation
sequence that best maps them to a different class (each column),
according to a trained discriminative model. The matches rarely
resemble the target class but often no longer look like “normal”
images at all. Note that we consider a fixed set of user-provided
TFs, not adversarially selected ones.

Figure 4: Some example trans-
formed images generated us-
ing an augmentation genera-
tive model trained using our
approach. Note that this is
not meant as a comparison to
Fig. 3.

2.3 Minimizing Null Class Mappings Using Unlabeled Data

Given assumption (2), our objective is to learn a model Gθ which generates sequences of TF indices
τ ∈ {1,K}L with fixed length L, such that the resulting TF sequences hτ1 , ..., hτL are not likely to
map data points into y∅. Crucially, this does not involve using the class labels of any data points,
and so we can use unlabeled data. Our goal is then to minimize the the probability of a generated
sequence mapping unlabeled data points into the null class, with respect to θ:

J∅ = Eτ∼GθEx∼U [P (y(hτL ◦ . . . ◦ hτ1(x)) = y∅)] (3)

where U is some distribution of unlabeled data.

Generative Adversarial Objective In order to approximate P (y(hτ1 ◦ . . . ◦ hτL(x)) = y∅), we
jointly train the generator Gθ and a discriminative model D∅φ using a generative adversarial network
(GAN) objective [10], now minimizing with respect to θ and maximizing with respect to φ:

J̃∅ = Eτ∼GθEx∼U
[
log(1−D∅φ(hτL ◦ . . . ◦ hτ1(x)))

]
+ Ex′∼U

[
log(D∅φ(x

′))
]

(4)

As in the standard GAN setup, the training procedure can be viewed as a minimax game in which the
discriminator’s goal is to assign low values to transformed, out-of-distribution data points and high
values to real in-distribution data points, while simultaneously, the generator’s goal is to generate
transformation sequences which produce data points that are indistinguishable from real data points
according to the discriminator. For D∅φ, we use an all-convolution CNN as in [25]. For further details,
see Appendix D.4.

Diversity Objective An additional concern is that the model will learn a variety of null transforma-
tion sequences (e.g. rotating first left than right repeatedly). Given the potentially large state-space of
actions, and the black-box nature of the user-specified TFs, it seems infeasible to hard-code sets of
inverse operations to avoid. To mitigate this, we instead consider a second objective term:

Jd = Eτ∼GθEx∼U [d(hτL ◦ . . . ◦ hτ1(x), x)] (5)

where d : X × X → R is some distance function. For d, we evaluated using both distance in the raw
input space, and in the feature space learned by the final pre-softmax layer of the discriminator D∅φ.
Combining eqns. 4 and 5, our final objective is then J = J̃∅+αJ

−1
d where α > 0 is a hyperparameter.

We minimize J with respect to θ and maximize with respect to φ.
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2.4 Modeling Transformation Sequences

We now consider two model classes for Gθ:

Independent Model We first consider a mean field model in which each sequential TF is chosen
independently. This reduces our task to one of learning K parameters, which we can think of as
representing the task-specific “accuracies” or “frequencies” of each TF. For example, we might want to
learn that elastic deformations or swirls should only rarely be applied to images in CIFAR-10, but that
small rotations can be applied frequently. In particular, a mean field model also provides a simple way
of effectively learning stochastic, discretized parameterizations of the TFs. For example, if we have a
TF representing five-degree rotations, Rotate5Deg, a marginal value of PGθ (Rotate5Deg) = 0.1
could be thought of as roughly equivalent to learning to rotate 0.5L degrees on average.

State-Based Model There are important cases, however, where the independent representation
learned by the mean field model could be overly limited. In many settings, certain TFs may have
very different effects depending on which other TFs are applied with them. As an example, certain
similar pairs of image transformations might be overly lossy when applied together, such as a blur
and a zoom operation, or a brighten and a saturate operation. A mean field model could not represent
such disjunctions as these. Another scenario where an independent model fails is where the TFs are
non-commutative, such as with lossy operators (e.g. image transformations which use aliasing). In
both of these cases, modeling the sequences of transformations could be important. Therefore we
consider a long short-term memory (LSTM) network as as a representative sequence model. The
output from each cell of the network is a distribution over the TFs. The next TF in the sequence is
then sampled from this distribution, and is fed as a one-hot vector to the next cell in the network.

3 Learning a Transformation Sequence Model

The core challenge that we now face in learning Gθ is that it generates sequences over TFs which are
not necessarily differentiable or deterministic. This constraint is a critical facet of our approach from
the usability perspective, as it allows users to easily write TFs as black-box scripts in the language of
their choosing, leveraging arbitrary subfunctions, libraries, and methods. In order to work around this
constraint, we now describe our model in the syntax of reinforcement learning (RL), which provides a
convenient framework and set of approaches for handling computation graphs with non-differentiable
or stochastic nodes [29].

Reinforcement Learning Formulation Let τi be the index of the ith TF applied, and x̃i be the
resulting incrementally transformed data point. Then we consider st = (x, x̃1, x̃2, ..., x̃t, τ1, ...., τt)
as the state after having applied t of the incremental TFs. Note that we include the incrementally
transformed data points x̃1, ..., x̃t in st since the TFs may be stochastic. Each of the model classes
considered for Gθ then uses a different state representation ŝ. For the mean field model, the state
representation used is ŝMF

t = ∅. For the LSTM model, we use ŝLSTM
t = LSTM(τt, st−1), the state

update operation performed by a standard LSTM cell parameterized by θ.

Policy Gradient with Incremental Rewards Let `t(x, τ) = log(1−D∅φ(x̃t)) be the cumulative
loss for a data point x at step t, with `0(x) = `0(x, τ) ≡ log(1−D∅φ(x)). Let R(st) = `t(x, τ)−
`t−1(x, τ) be the incremental reward, representing the difference in discriminator loss at incremental
transformation step t. We can now recast the first term of our objective J̃∅ as an expected sum of
incremental rewards:

U(θ) ≡ Eτ∼GθEx∼U
[
log(1−D∅φ(hτ1 ◦ . . . ◦ hτL(x)))

]
= Eτ∼GθEx∼U

[
`0(x) +

L∑
t=1

R(st)

]
(6)

We omit `0 in practice, equivalent to using the loss of x as a baseline term. Next, let πθ be the
stochastic transition policy implictly defined by Gθ. We compute the recurrent policy gradient [34]
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of the objective U(θ) as:

∇θU(θ) = Eτ∼GθEx∼U

[
L∑
t=1

R(st)∇θ log πθ(τt | ŝt−1)

]
(7)

Following standard practice, we approximate this quantity by sampling batches of n data points and
m sampled action sequences per data point. We also use standard techniques of discounting with
factor γ ∈ [0, 1] and considering only future rewards [13]. See Appendix C for details.

4 Related Work

We now review related work, both to motivate comparisons in the experiments section and to present
complementary lines of work.

Heuristic Data Augmentation Most state-of-the-art image classification pipelines use some lim-
ited form of data augmentation [12, 8]. This generally consists of applying crops, flips, or small affine
transformations, in fixed order or at random, and with parameters drawn randomly from hand-tuned
ranges. In addition, various studies have applied heuristic data augmentation techniques to modalities
such as audio [33] and text [21]. As reported in the literature, the selection of these augmentation
strategies can have large performance impacts, and thus can require extensive selection and tuning by
hand [4, 8] (see Appendix A.1 as well).

Interpolation-Based Techniques Some techniques have explored generating augmented training
sets by interpolating between labeled data points. For example, the well-known SMOTE algorithm
applies this basic technique for oversampling in class-imbalanced settings [3], and recent work
explores using a similar interpolation approach in a learned feature space [6]. [14] proposes learning
a class-conditional model of diffeomorphisms interpolating between nearest-neighbor labeled data
points as a way to perform augmentation. We view these approaches as complementary but orthogonal,
as our goal is to directly exploit user domain knowledge of class-invariant transformation operations.

Adversarial Data Augmentation Several lines of recent work have explored techniques which
can be viewed as forms of data augmentation that are adversarial with respect to the end classification
model. In one set of approaches, transformation operations are selected adaptively from a given set in
order to maximize the loss of the end classification model being trained [32, 9]. These procedures
make the strong assumption that all of the provided transformations will preserve class labels, or
use bespoke models over restricted sets of operations [30]. Another line of recent work has showed
that augmentation via small adversarial linear perturbations can act as a regularizer [11, 23]. While
complimentary, this work does not consider taking advantage of non-local transformations derived
from user knowledge of task or domain invariances.

Finally, generative adversarial networks (GANs) [10] have recently made great progress in learning
complete data generation models from unlabeled data. These can be used to augment labeled training
sets as well. Class-conditional GANs [1, 22] generate artificial data points but require large sets of
labeled training data to learn from. Standard unsupervised GANs can be used to generate additional
out-of-class data points that can then augment labeled training sets [27, 31]. We compare our proposed
approach with these methods empirically in Section 5.

5 Experiments

We experimentally validate the proposed framework by learning augmentation models for several
benchmark and real-world data sets, exploring both image recognition and natural language under-
standing tasks. Our focus is on the performance of end classification models trained on labeled
datasets augmented with our approach and others used in practice. We also examine robustness to
user misspecification of TFs, and sensitivity to core hyperparameters.

5.1 Datasets and Transformation Functions

Benchmark Image Datasets We ran experiments on the MNIST [19] and CIFAR-10 [18] datasets,
using only a subset of the class labels to train the end classification models and treating the rest
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as unlabeled data. We used a generic set of TFs for both MNIST and CIFAR-10: small rotations,
shears, central swirls, and elastic deformations. We also used morphologic operations for MNIST,
and adjustments to hue, saturation, contrast, and brightness for CIFAR-10.

Benchmark Text Dataset We applied our approach to the Employment relation extraction subtask
from the NIST Automatic Content Extraction (ACE) corpus [7], where the goal is to identify mentions
of employer-employee relations in news articles. Given the standard class imbalance in information
extraction tasks like this, we used data augmentation to oversample the minority positive class. The
flexibility of our TF representation allowed us to take a straightforward but novel approach to data
augmentation in this setting. We constructed a trigram language model using the ACE corpus and
Reuters Corpus Volume I [20] from which we can sample a word conditioned on the preceding
words. We then used this model as the basis for a set of TFs that select words to swap based on the
part-of-speech tag and location relative to entities of interest (see Appendix D.2 for details).

Mammography Tumor-Classification Dataset To demonstrate the effectiveness of our approach
on real-world applications, we also considered the task of classifying benign versus malignant tumors
from images in the Digital Database for Screening Mammography (DDSM) dataset [16, 5, 28], which
is a class-balanced dataset consisting of 1506 labeled mammograms. In collaboration with domain
experts in radiology, we constructed two basic TF sets. The first set consisted of standard image
transformation operations subselected so as not to break class-invariance in the mammography setting.
For example, brightness operations were excluded for this reason. The second set consisted of both
the first set as well as several novel segmentation-based transplantation TFs. Each of these TFs
utilized the output of an unsupervised segmentation algorithm to isolate the tumor mass, perform
a transformation operation such as rotation or shifting, and then stitch it into a randomly-sampled
benign tissue image. See Fig. 1 (right panel) for an illustrative example, and Appendix D.3 for further
details.

5.2 End Classifier Performance

We evaluated our approach by using it to augment labeled training sets for the tasks mentioned above,
and show that we achieve strong gains over heuristic baselines. In particular, for a given set of TFs,
we evaluate the performance of mean field (MF) and LSTM generators trained using our approach
against two standard data augmentation techniques used in practice. The first (Basic) consists of
applying random crops to images, or performing simple minority class duplication for the ACE
relation extraction task. The second (Heur.) is the standard heuristic approach of applying random
compositions of the given set of transformation operations, the most common technique used in
practice [4, 12, 15]. For both our approaches (MF and LSTM) and Heur., we additionally use the
same random cropping technique as in the Basic approach. We present these results in Table 1, where
we report test set accuracy (or F1 score for ACE), and use a random subsample of the available
labeled training data. Additionally, we include an extra row for the DDSM task highlighting the
impact of adding domain-specific (DS) TFs – the segmentation-based operations described above –
on performance.

In Table 2 we additionally compare to two related generative-adversarial methods, the Categorical
GAN (CatGAN) [31], and the semi-supervised GAN (SS-GAN) from [27]. Both of these methods
use GAN-based architectures trained on unlabeled data to generate new out-of-class data points
with which to augment a labeled training set. Following their protocol for CIFAR-10, we train our
generator on the full set of unlabeled data, and our end discriminator on ten disjoint random folds of
the labeled training set not including the validation set (i.e. n = 4000 each), averaging the results.

In all settings, we train our TF sequence generator on the full set of unlabeled data. We select a fixed
sequence length for each task via an initial calibration experiment (Fig. 5b). We use L = 5 for ACE,
L = 7 for DDSM + DS, and L = 10 for all other tasks. We note that our findings here mirrored
those in the literature, namely that compositions of multiple TFs lead to higher end model accuracies.
We selected hyperparameters of the generator via performance on a validation set. We then used the
trained generator to transform the entire training set at each epoch of end classification model training.
For MNIST and DDSM we use a four-layer all-convolutional CNN, for CIFAR10 we use a 56-layer
ResNet [15], and for ACE we use a bi-directional LSTM. Additionally, we incorporate a basic
transformation regularization term as in [26] (see Appendix D.6), and train for the last ten epochs
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Task % None Basic Heur. MF LSTM
MNIST 1 90.2 95.3 95.9 96.5 96.7

10 97.3 98.7 99.0 99.2 99.1

CIFAR-10 10 66.0 73.1 77.5 79.8 81.5
100 87.8 91.9 92.3 94.4 94.0

ACE (F1) 100 62.7 59.9 62.8 62.9 64.2
DDSM 10 57.6 58.8 59.3 58.2 61.0
DDSM + DS 53.7 59.9 62.7

Table 1: Test set performance of end models trained on subsamples
of the labeled training data (%), not including validation splits, using
various data augmentation approaches. None indicates performance
with no augmentation. All tasks are measured in accuracy, except
ACE which is measured by F1 score.

Model Acc. (%)
CatGAN 80.42± 0.58
SS-GAN 81.37± 2.32
LSTM 81.47± 0.46

Table 2: Reported end
model accuracies, averaged
across 10% subsample folds,
on CIFAR-10 for compara-
ble GAN methods.

(a) (b)

Figure 5: (a) Learned TF frequency parameters for misspecified and normal TFs on MNIST. The
mean field model correctly learns to avoid the misspecified TFs. (b) Larger sequence lengths lead
to higher end model accuracy on CIFAR-10, while random performs best with shorter sequences,
according to a sequence length calibration experiment.

without applying any transformations as in [12]. In all cases, we use hyperparameters as reported in
the literature. For further details of generator and end model training see the Appendix D.4.

We see that across the applications studied, our approach outperforms the heuristic data augmentation
approach most commonly used in practice. Furthermore, the LSTM generator outperforms the
simple mean field one in most settings, indicating the value of modeling sequential structure in data
augmentation. In particular, we realize significant gains over standard heuristic data augmentation on
CIFAR-10, where we are competitive with comparable semi-supervised GAN approaches, but with
significantly smaller variance. We also train the same CIFAR-10 end model using the full labeled
training dataset, and again see strong relative gains (2.1 pts. in accuracy over heuristic), coming
within 2.1 points of the current state-of-the-art [17] using our much simpler end model.

On the ACE and DDSM tasks, we also achieve strong performance gains, showing the ability of our
method to productively incorporate more complex transformation operations from domain expert
users. In particular, in DDSM we observe that the addition of the segmentation-based TFs causes
the heuristic augmentation approach to perform significantly worse, due to a large number of new
failure modes resulting from combinations of the segmentation-based TFs – which use gradient-based
blending – and the standard TFs such as zoom and rotate. In contrast, our LSTM model learns to
avoid these destructive subsequences and achieves the highest score, resulting in a 9.0 point boost
over the comparable heuristic approach.

8



Robustness to TF Misspecification One of the high-level goals of our approach is to enable an
easier interface for users by not requiring that the TFs they specify be completely class-preserving.
The lack of any assumption of well-specified transformation operations in our approach, and the
strong empirical performance realized, is evidence of this robustness. To additionally illustrate the
robustness of our approach to misspecified TFs, we train a mean field generator on MNIST using the
standard TF set, but with two TFs (shear operations) parameterized so as to map almost all images to
the null class. We see in Fig. 5a that the generator learns to avoid applying the misspecified TFs (red
lines) almost entirely.

6 Conclusion and Future Work

We presented a method for learning how to parameterize and compose user-provided black-box
transformation operations used for data augmentation. Our approach is able to model arbitrary TFs,
allowing practitioners to leverage domain knowledge in a flexible and simple manner. By training a
generative sequence model over the specified transformation functions using reinforcement learning
in a GAN-like framework, we are able to generate realistic transformed data points which are useful
for data augmentation. We demonstrated that our method yields strong gains over standard heuristic
approaches to data augmentation for a range of applications, modalities, and complex domain-specific
transformation functions. There are many possible future directions of research for learning data
augmentation strategies in the proposed model, such as conditioning the generator’s stochastic policy
on a featurized version of the data point being transformed, and generating TF sequences of dynamic
length. More broadly, we are excited about further formalizing data augmentation as a novel form of
weak supervision, allowing users to directly encode domain knowledge about invariants into machine
learning models.
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A Additional Background

A.1 Review of Data Augmentation Use in State-of-the-Art

To underscore both the omnipresence and diversity of heuristic data augmentation in practice, we
compiled a list of the top ten models for the well documented CIFAR-10 and CIFAR-100 tasks
(Table 3). We see that in 10 out of 10 of the top CIFAR-10 results and 9 out of 10 of the top
CIFAR-100 results use data augmentation, for average boosts (when reported) of 3.71 and 13.39
points in accuracy, respectively. Moreover, we see that while some sets of papers inherit a simple
data augmentation strategy from prior work (in particular, all the recent ResNet variants), there are
still a large variety of approaches. And in general, the particular choice of data augmentation strategy
is widely reported to have large effects on performance.

Note that the below table is compiled from a well-known online compendium 2 and from the latest
CVPR best paper [17] (indicated by a *) which achieves new state-of-the-art results. We compile it
for illustrative purposes and it is not necessarily comprehensive. Also note that we selected CIFAR-
10/100 both as a representative and well-studied task, but also due to the availability of published
results. For competitions such as ImageNet, although data augmentation is widely reported to be
critical, many top results are reported very opaquely, with little described about implementation
details such as data augmentation.

B Additional Experiments

B.1 Synthetic Data Examples

Simple Synthetic Setup As both a diagnostic tool and as a simple way to probe the properties
of our approach, we construct a simple synthetic dataset consisting of points in two dimensions,
uniformly selected in a ball of radius r = 1 around the origin. We then consider various displacement
vectors as our TFs. We consider the same two generative models as in our main experiments – mean

2
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Dataset Pos. Name Err. w/DA Err. w/o DA Notes

CIFAR-10

1 DenseNet 3.46 - Random shifts, flips
2 Fractional Max-Pooling 3.47 - Randomized mix of translations, ro-

tations, reflections, stretching, shear-
ing, and random RGB color shift op-
erations

3* Wide ResNet 4.17 - Random shifts, flips

4 Striving for Simplicity: The
All Convolutional Net

4.41 9.08 “Heavy” augmentation: images ex-
panded, then scaled, rotated, color
shifted randomly

5* FractalNet 4.60 7.33 Random shifts, flips

6* ResNet (1001-Layer) 4.62 10.56 Random shifts, flips

7* ResNet with Stochastic
Depth (1202-Layer)

4.91 - Random shifts, flips

8 All You Need is a Good Init 5.84 - Random shifts, flips

9 Generalizing Pooling Func-
tions in Convolutional Neu-
ral Networks: Mixed, Gated,
and Tree

6.05 7.62 Flips, random shifts, other simple
ones

10 Spatially-Sparse Convolu-
tional Neural Networks

6.28 - Affine transformations

CIFAR-100

1* DenseNet 17.18 - Random shifts, flips

2* Wide ResNets 20.50 - Random shifts, flips

3* ResNet (1001-Layer) 22.71 33.47 Random shifts, flips

4* FractalNet 23.30 35.34 Random shifts, flips

5 Fast and Accurate Deep Net-
work Learning by Exponen-
tial Linear Units

- 24.28

6 Spatially-Sparse Convolu-
tional Neural Networks

24.3 - Affine transformations

7* ResNet with Stochastic
Depth (1202-Layer)

24.58 37.80 Random shifts, flips

8 Fractional Max-Pooling 26.39 - Randomized mix of translations, ro-
tations, reflections, stretching, and
shearing operations, and random
RGB color shifts

9* ResNet (110-Layer) 27.22 44.74 Random shifts, flips

10 Scalable Bayesian Optimiza-
tion Using Deep Neural Net-
works

27.4 - Hue, saturation, scalings, horizontal
flips

Table 3: Current state-of-the-art image classification models as ranked by reported performance on
the CIFAR-10 and CIFAR-100 tasks, and their error with (Err. w/ DA) and without (Err. w/o DA) data
augmentation. We include both scores and particular data augmentation techniques when reported,
although the latter is rarely reported with great precision.
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field and LSTM – and use either a basic fully-connected two-layer neural network or an oracle
discriminator f(x) = 1{||x|| < 1}.

(a) Mean field model on TF set 1 (b) Mean field model on TF set 2 (c) LSTM model on TF set 2

Figure 6: Original data points (blue) are transformed using sequences of vector displacement TFs
(L = 10) drawn from Gθ, producing augmented data points (red). Gθ is either a mean field model or
an LSTM, trained with an orcale discriminator D∅ for 15 epochs.

Synthetic Experiments In this setting, we define y∅(x) = 1{||x|| ≥ 1}, and consider two different
TF sets:

1. Good vs. Bad TFs: In a first toy scenario we consider TFs which are vector displacements
of random direction, with magnitude drawn from one of two distributions, N (µ1, σ1) or
N (µ2, σ2), where µ1 > 1 > µ2. In other words, the model should learn not to select certain
individual TFs.

2. Lossy TFs: We consider a second toy setting where random-direction displacement TFs
have magnitude drawn uniformly from N (µ, σ), µ < 1; however the magnitude of each TF
decays exponentially with the distance a point is outside of the unit ball. This simulates the
setting where TFs are irrecoverably lossy when applied in certain sequences.

As expected, we see that while the mean field model is able to model the first setting (Figure 6a),
it fails to adequately represent the second one (Figure 6b), whereas the RNN model is able to
(Figure 6c).

B.2 Robustness to Transformed Test Data

We run a simple experiment to test the robustness of the trained end classification models to the
individual TFs in the TF sets used. Specifically, on CIFAR-10 we create ten transformed copies a
10% subsample of the test data by transforming with a single TF, and then test the end model on this
set. We compare our approach with heuristic random augmentation and no data augmentation of the
model during training, and consider rotations, zooms, shears, and hue shifts. Results are presented in
Figure 7.

Figure 7: Accuracy scores on random 10% subsamples of test data (dotted lines) and on versions
augmented with a single transformation (vertical bars) with parameters drawn uniformly at random.
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We can consider evaluating the results in terms of absolute robustness – i.e. model accuracy – and
relative robustness, i.e. the change in model score when applied to the transformed test set. Roughly
we see that our approach is most absolutely robust. Random appears to be most relatively robust,
in particular on larger transformations, which we hypothesize our approach mostly learned to avoid
applying during training.

C Reinforcement Learning Formulation Details

C.1 Variance reduction methods

In Section 3, the vanilla policy gradient of our objective was given as

∇θU(θ) = Eτ∼GθEx∼U

[
L∑
t=1

R(st)∇θ log πθ(τt | ŝt−1)

]
Noting that actions τt only impact future outcomes, following standard practice, we apply only future
rewards in order to reduce variance:

∇θU(θ) = Eτ∼GθEx∼U

[
L∑
t=1

∇θ log πθ(τt | ŝt−1)
L∑
t′=t

γt
′−tR(st′)

]
where γ ∈ [0, 1] is a discounting factor. Additionally, we use a baseline term bt to reduce variance
when estimating∇θU(θ):

∇θU(θ) = Eτ∼GθEx∼U

[
L∑
t=1

∇θ log πθ(τt | ŝt−1)

((
L∑
t′=t

γt
′−tR(ŝt′)

)
− bt

)]

C.2 Policy gradient estimation

Using a batch of n data points and m sampled action sequences per data point – given by the state
representations {ŝ(i,j)} and action sequences {τ (i,j)} – the gradient estimate is computed as:

∇θÛ(θ) =
1

nm

n∑
i=1

m∑
j=1

[
L∑
t=1

∇θ log πθ(τ (i,j)t | ŝ(i,j)t−1 )

((
L∑
t′=t

γt
′−tR(ŝ

(i,j)
t′ )

)
− b̂t

)]

where the baseline term b̂t is also computed using the batch:

b̂t =
1

nm

n∑
i=1

m∑
j=1

L∑
t′=t

γt
′−tR

(
ŝ
(i,j)
t′

)
In our experiments, we fixed n = 32 and m = 5.

D Experimental Details

D.1 Benchmark Image Datasets

We use the MNIST dataset with 5000 training data points used as a validation set. We use the
following TFs:

• Rotation (2.5, -2.5, 5, -5, 10, and -10 degrees)
• Zoom (0.9x, 1.1x)
• Shear (0.1, -0.1, 0.2, -0.2, 0.4, and -0.4 degrees)
• Swirl (0.1, -0.1, 0.2, -0.2, 0.4, and -0.4 degrees)
• Random elastic deformations (α = 1.0, 1.25, and 1.5)
• Erosion

14



• Dilation

For the CIFAR-10 dataset, we use the following TFs:

• Rotation (2.5, -2.5, 5, -5 degrees)

• Zoom (0.9x, 1.1x, 0.75x, 1.25x)

• Shear (0.1, -0.1, 0.25, and -0.25 degrees)

• Swirl (0.1, -0.1, 0.25, -0.25 degrees)

• Hue Shift (by 0.1, -0.1, 0.25, and -0.25)

• Enhance contrast (by 0.75, 1.25, 0.5, and 1.5)

• Enhance brightness (by 0.75, 1.25, 0.5, and 1.5)

• Enhance color (by 0.75, 1.25, 0.5, and 1.5)

• Horizontal flip

For both datasets, we also applied random padding (by 4 pixels on each side) followed by random
crops back to the original dimensions during training. We note that the choice of certain TFs to use in
certain datasets was deliberate – for example, we would not expect horizontal flips or hue shifts to be
appropriate in MNIST, or erosion and dilation to be useful in CIFAR-10. However, the particular
choice of parameterizations was mainly due to disjoint implementations of the two experiments. For
further details of the TF implementations used, see our code, which will be open-sourced after the
review process.

D.2 Benchmark Text Dataset

The ACE corpus consists of news articles and broadcast transcripts, all of which are pretagged with
entity mentions. The objective of the Employment relation subtask is to extract Person-Organization
entity pairs which are implied to have an affiliation in the text. We pose this as a binary classification
problem by first identifying relation candidates: any pair of Person-Organization entities which occur
in the same sentence. As noted in Section 5, there are far more true negative candidates than true
positive candidates. The end model is trained to classify relation candidates as either true or false
relations based on the raw text of the sentence in which they occur.

The language model described in Section 5 was constructed by recording counts of unigrams following
each unique trigram, bigram, and unigram in the corpus. Laplace smoothing was applied to the
counts, and basic filtering was applied to the n-grams. The sampler falls back to using bigrams then
unigrams if the trigram preceding the word we want to swap was filtered out of the corpus. We used
the following TFs in all experiments:

• Replace a noun to the left of both entities

• Replace a noun between the two entities

• Replace a noun to the right of both entities

• Replace a verb to the left of both entities

• Replace a verb between the two entities

• Replace a verb to the right of both entities

• Replace an adjective to the left of both entities

• Replace an adjective between the two entities

• Replace an adjective to the right of both entities

D.3 DDSM Mammography Task

We use the following transformation functions:

1. Rotate Image: Rotate the entire mammogram by a deterministic angle θ. Tumor geometry is
fundamentally invariant to 2-D orientation. TF run with θ ∈ [−5o,−2.5o, 2.5o, 5o].
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2. Zoom Image: Zoom in on the entire mammogram by a deterministic factor γ. Tumor
classification is insensitive to γ for γ close to one. TF run with γ ∈ {0.98, 1.02}

3. Enhance Image Contrast: Enhance contrast values of grayscale image by a deterministic
factor γ. Tumor classification is insensitive to γ for γ close to one. TF run with γ ∈
{0.95, 1.05}

4. Translate and Transplant Image: Extract pixels within mass segmentation. Perform trans-
lation of a bounding box of side length N pixels about mass center by a deterministic
vector ĝ. Transplant the translated bounding box containing the mass onto a randomly
sampled normal tissue image using Poisson blending. Retains information about the mass
itself within the context of a different set of normal tissue background. The bounding box
also retains information about the tissue in the tumor near field. TF run with N = 10,
ĝ ∈ {(−3, 0), (3, 0), (0,−3), (0, 3), (0, 0)}.

5. Rotate and Transplant Image: Extract pixels within mass segmentation. Perform rotation
of a bounding box of side length N pixels about mass center by a deterministic angle
θ. Transplant the rotated bounding box containing the mass onto a randomly sampled
normal tissue image using Poisson blending [24]. Retains information about the mass
itself within the context of a different set of normal tissue background. The bounding box
also retains information about the tissue in the tumor near field. TF run with N = 10,
θ ∈ {−5o,−2.5o, 2.5o, 5o}.

Note that for the Poisson blending TFs, it is important that the translation and rotation domains be
specified such that excessive proximity to the boundary of the destination image does not introduce
spurious gradient information into the blended image.

D.4 Details of Generative Adversarial Network Models

All models, both for the generator training as described in this section, and the end classification
model training described next, were implemented in Tensorflow 3.

Discriminator For image tasks, the discriminator used in the training of the generator in our
approach was the same model as in [25], an all-convolutional CNN with four convolutional layers
and leaky ReLU activations. For the text task, we used a unidirectional RNN with basic LSTM cells.

Mean Field Model The mean field model is represented simply as a length K vector of unbounded
variables, where K is the number of TFs. Applying the softmax function to this vector yields the TF
sampling distribution.

LSTM In the LSTM generative model, we create a length-L RNN with basic LSTM cells. The
input and output size for each cell is K. We feed an indicator vector of the last TF used as the input
to each cell, except for the first cell, which recieves a randomly initialized variable vector as its input.
The output of each cell is shifted and scaled to range from −r to r, where r is a hyperparameter.
Applying the softmax function to the shifted and scaled output yields the stochastic policy: a sampling
distribution over the K TFs. In our experiments, we fix r = 2 to avoid overfitting.

Training and Model Selection Procedure We trained the TF sequence generators jointly with
the discriminator using SGD with momentum (fixed at 0.9), in an adversarial manner as described
in [10]. We performed an initial search over the TF sequence length L as described in Section 5,
and then held it fixed at L = 10 for all subsequent experiments. We searched over a range of values
for learning rates for the generator and discriminator, as well as for hyperparameters specific to our
formulation, such as the diversity objective term coefficient α, the diversity objective term distance
metric d (choosing between distance in the raw input space or in the feature space learned by the final
pre-softmax layer of the discriminator), and whether or not to split the data used for the discriminator
and generator training steps.

We selected final generators to use for test set evaluation by using them to augment training data
for end classification models then evaluated on the validation set. In addition, we filtered some

3https://www.tensorflow.org
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generators out based on their loss (according to the discriminator D∅φ) as compared to that of random
TF sequences.

Diversity Objective For the diversity objective term, we tried both distance in the raw pixel-level
input space and distance in the feature space learned by the final pre-softmax layer of the discriminator
as choices for distance metric d. During training of the generators, we measured the average pairwise
generalized Jaccard distance. For CIFAR-10, as an example, the final batches had an average distance
of 0.52 compared to 0.86 for randomly generated sequences, which implied diversity in the learned
sequences. We also computed the ratio of unique TF n-grams to total possible n-grams, and measured
0.37 compared to 0.98 for random sequences as expected.

D.5 End Classification Models

MNIST and DDSM For MNIST and DDSM we use a similar architecture to the discriminator in
the previous section, adapted for the multinomial classification setting: a four-layer all-convolution
CNN with leaky ReLUs and batch norm.

CIFAR-10 Given the flexibility of end classifier choice with our approach, for CIFAR-10 we used
a more computationally expensive but standard model: a 56-layer ResNet as described in [15]. We
used batch norm, regularization, learning rate schedule, and all other hyperparameters as reported
in [15].

ACE The end model used for the ACE task was a bidirectional recurrent neural network using
LSTM cells with attention mechanisms. The maximum sentence length and attention window length
were both 50. Word embeddings were initialized from pretrained vectors via [2], and updated during
training. Hyperparameters were selected via a cursory grid search, and fixed for experiments.

D.6 End Model Training

Basic Training Procedure with Data Augmentation We trained all end models using minibatch
stochastic gradient descent with momentum (fixed at 0.9), using a fixed learning rate schedule set
once for each model and then fixed for all experiments. To perform data augmentation, during end
classifier training we transformed some portion of each minibatch, ptransform. For all experiments we
used ptransform = 1.0. Additionally, for the last ten epochs of training, we switched to ptransform = 0.0
following reported practice in the literature [12]. For all other hyperparameters we used default values
as reported in the respective literature, held fixed at these values for all experiments.

Transformation Regularization Term We additionally apply a transformation regularization (TR)
term to the transformed data points for all image experiments by adding a term to the loss function
which is the distance between the pre-softmax layer logits for each data point and its transformed
copy, similar to the term in [26]. Given the fact that we are producing these transformed data points
anyway, incorporating this term introduces little additional overhead.

Task % Augmentation Model TR Term Coefficient Accuracy (Dev.)

CIFAR-10 10

Heuristic 0 77.4
Heuristic 0.1 77.5
LSTM 0 80.4
LSTM 0.1 81.6

Table 4: A simple study of the effect of adding a transformation regularization (TR) term to the
objective function, evaluated on a labeled validation set. We see that adding the term improves
performance for both heuristic (random) TF sequences and for TF sequences generated by the trained
LSTM model, and that there is a larger positive effect for the latter.

In an early calibration experiment (Table 4), we found that introducing this regularization term (using
a coefficient of 0.1 and unlabeled data batch size of 20% that of the labeled data batch size) yielded
improvements in performance to the end model with both learned transformation sequences and
random sequences. However, we see that the positive effect is much larger for the trained LSTM
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sequences (1.2 points versus 0.1 points in accuracy). We chose to subsequently keep this term
fixed, viewing further calibration and exploration of this term as largely orthogonal to our central
experimental questions. However, we believe that this is an extremely interesting and empirically
proimising area for future study, especially given the indication that this term may be more effective
when used in conjunction with a trained augmentation model such as ours.
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