
A Notation and Figures

Notation Terminology and explanation
MAB (pure exploration for best-arm identification in) multi-armed bandits
FDR(J) the expected ratio of # false discoveries to # discoveries up to experiment J
mFDR(J) the ratio of expected # false discoveries to expected # discoveries
α target for FDR or mFDR control after any number of experiments
BDR(J) the best arm discovery rate (generalization of test power)
εBDR(J) the ε-best arm discovery rate (softer metric than BDR)
LCB,UCB the lower and upper confidence bounds used in the best-arm algorithms
j ∈ N experiment counter (number of MAB instances)
Tj ∈ N stopping time for the j-th experiment
P jt , Pt ∈ [0, 1] always valid p-value after time t (in experiment j, explicit or implicit)
P j always valid p-value for experiment j at its stopping time Tj
αj ∈ [0, 1] threshold set by the online FDR algorithm for P j , using {pi}j−1i=1
T (αj) ∈ N stopping time for the j-th experiment, when experiment uses αj
0 the control or default arm
{1, . . . ,K} K = K(j) alternatives or treatment arms (experiment j implicit)
i ∈ {0, . . . ,K} K + 1 options or “all arms”
i?, ib the best of all arms, and the arm returned by MAB
µi, µ∗ the mean of the i-th arm, and the mean of the best arm
t, ni(t) ∈ N total number of pulls, number of times arm i is pulled up to time t

Table 1: Common notation used throughout the paper.

A.1 Figure: Illustration for the modified LUCB algorithm

In this section we provide intuition how the approximation factor ε affects the commonly known
LUCB algorithm.
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Figure 4: (a) The means of arms {1, 2, 3} are within ε of the best arm, but only arms {1, 2} are at
least ε better than the control arm 0. Thus, returning any of arms {3, 4, 5} would result in a false
discovery when ε > 0. (b) An example of the stopping condition being critically met and returning a
non-control arm ht. While LCBht

> UCB`t − ε is satisfied with some slack, LCBht
> UCB0 + ε is

just barely satisfied.

B Experiment details

In this section we provide further detail about the setup and interpretation of our experimental results.
We also include plots for artificial Bernoulli draws and the experiments based on the real-world New
Yorker Cartoon Caption Contest.
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B.1 Bernoulli and Gaussian draws on artificial data

For the Gaussian draws, we set µi? = 8. The gap to the second best arm is ∆ = 3 so that all means
µi 6=i? are drawn uniformly between Unif ∼ [0, 5]. The number of hypotheses is fixed to be 500. For
Bernoulli draws we choose the maximum mean to be µi? = 0.4, ∆ = 0.3 so that all means µi6=i? are
drawn uniformly between Unif ∼ [0, 0.1]. The number of hypotheses is fixed at 50. We display the
empirical average over 100 runs where each run uses the same hypothesis sequence (indicating which
hypotheses are true and false) and sequence of means µi for each hypothesis. The only randomness
we average over comes from the random Gaussian/Bernoulli draws which cause different rejections
Rj and αj , so that the randomness in each draw propagates through the online FDR procedure. The
results can be seen in Figures 2 and 5.
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Figure 5: (a) Power over truncation time TS (per hypothesis) for 50 arms and (b) Sample complexity
over number of arms for truncation time TS = 5000 for Bernoulli draws with fixed µi? = 0.7,
∆ = 0.3 over 50 hypotheses with 20 non-nulls, averaged over 100 runs.

Note that the behavior for both Gaussian and Bernoullis are comparable, which is not surprising due
to the choice of the subGaussian LIL bound. However one may notice that the choice of the gap of
∆ = 3 vs. ∆ = 0.3 drastically increases sample complexity so that the phase transition for power is
shifted to very large TS .

B.1.1 Application to New Yorker captions

In the simulations with real data we consider the crowd-sourced data collected for the New Yorker
Magazine’s Cartoon Caption contest: for a fixed cartoon, captions are shown to individuals online one
at a time and they are asked to rate them as ‘unfunny’, ‘somewhat funny’, or ‘funny’. We considered
30 contests4 where for each contest, we computed the fraction of times each caption was rated as
either ‘somewhat funny’ or ‘funny’. We treat each caption as an arm, but because each caption was
only shown a finite number of times in the dataset, we simulate draws from a Bernoulli distribution
with the observed empirical mean computed from the dataset. When considering subsets of the arms
in any given experiment, we always use the captions with the highest empirical means (i.e. if n = 10
then we use the 10 captions that had the highest empirical means in that contest).

Although MAB-FDR still outperforms AB-FDR by a large margin, the plots in Figures 6 also show
how the power and sample complexity notably differ from our toy simulation, where we seem to have
chosen a rather benign distribution of means - in this setting, the gap ∆ is much lower, often around
∼ 0.01.

4Contest numbers 520-551, excluding 525 and 540 as they were not present. Full dataset and its description
is available at https://github.com/nextml/NEXT-data/.
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Figure 6: (a) BDR over number of arms, i.e. truncation time per hypothesis for 10 arms and (b)
Sample complexity over number of arms for truncation time TS = 130000 for Bernoulli draws, 30
hypotheses with 12 non-nulls and averaged over 100 runs.

B.2 mFDR and FDR control

In this section we use simulations to demonstrate the second part of our meta algorithm which deals
with the control of the false discovery rate or its modified version. Since bandit algorithms have a
very high best-arm discovery guarantee which in practice even exceeds its theoretical guarantee of
at least 1 − αj , mFDR and FDR plots on MAB-FDR directly do not lead to very insightful plots
- namely the constant 0 line. However, we can demonstrate that even under adversarial conditions,
i.e. when the P -value under the null is much less concentrated around one than obtained via the best
arm bandit algorithm, mFDR or the false discovery proportion (FDP) in each run are still controlled
at any time t as Theorem 1 guarantees. Albeit not exactly reflecting mFDR control in the case of
MAB-FDR but in fact in an even harder setting, results from these experiments can be regarded as
valuable on their own - it emphasizes the fact that Theorem 1 guarantees mFDR control independent
of the adaptive sampling algorithm and specific choice of p-value as long as it is always valid.

C Proof of Proposition 1

For any fixed γ ∈ (0, 1), we have the equivalence
µ̂i,ni(t) − ϕni(t)(

γ
2K ) > µ̂0,n0(t) + ϕn0(t)(

γ
2 ) + ε ⇐⇒ pi,t ≤ γ.

If max
i=1,...,K

µi ≤ µ0 + ε, then we have

P

(
K⋃
i=1

∞⋃
t=1

{
µ̂i,ni(t) − ϕni(t)(

γ
2K ) > µ̂0,n0(t) + ϕn0(t)(

γ
2 ) + ε

})

= 1− P

(
K⋂
i=1

∞⋂
t=1

{
µ̂i,ni(t) − ϕni(t)(

γ
2K ) ≤ µ̂0,n0(t) + ϕn0(t)(

γ
2 ) + ε

})

≤ 1− P

( ∞⋂
t=1

{
µ0 ≤ µ̂0,t + ϕt(

γ
2 )
}
∩

K⋂
i=1

∞⋂
t=1

{
µ̂i,ni(t) − ϕni(t)(

γ
2K ) ≤ µi

})

≤ P

( ∞⋃
t=1

{
µ0 > µ̂0,t + ϕt(

γ
2 )
})

+

K∑
i=1

P

( ∞⋃
t=1

{
µ̂i,ni(t) − ϕni(t)(

γ
2K ) > µi

})
≤ γ

2 +K γ
2K

= γ

by equation (4). Thus, we have P
(⋃K

i=1

⋃∞
t=1

{
pi,t ≤ γ

})
≤ γ, which completes the proof.
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D Proof of Proposition 2

We first prove that the algorithm 1 terminates in finite time before moving on to prove the sample
complexity statements for the two claims. It suffices to argue for δ/2 ≤ 0.1 and we discuss the other
case at the end.

D.1 Proof of termination in finite time

First we prove by contradiction that the algorithm terminates in finite time with probability one for
the case µ0 ≥ maxKi=1 µi − ε.
Assuming that there exist runs for which the algorithm does not terminate, the set of arms defined by

S := {i : LCB0(t) ≤ UCBi(t)− ε infinitely often (i.o.)}
is necessarily non-empty for these runs. We now show that this assumption yields a contradiction so
that

P(Algorithm does not terminate) ≤ P(LCB0(t) ≤ max
i=1,...,K

UCBi(t)− ε i.o.) = 0 (11)

First take note that by definition of the algorithm, if an arm i is drawn infinitely often (i.o.), then so is
the control arm 0 and we have LCB0(t)→ µ0 as well as UCBi(t)→ µi as t→∞. This follows by
the law of large numbers combined with the fact that ϕni(t), ϕn0(t) → 0 as t→∞, since ϕn → 0 as
n→∞. Since for the null hypothesis we have µ0 > µi − ε, it follows that LCB0(t) > UCBi(t)− ε
for all t ≥ t′ for some t′.

This argument implies that all arms i ∈ S can only be drawn a finite number of times, i.e. ni(t) <∞
for all i ∈ S. However, the fact that they are not drawn i.o. implies that ht 6= i and `t 6= i i.o. for all
i ∈ S, so that there exists i′ 6∈ S such that maxi∈S UCBi(t) ≤ UCBi′(t) i.o. By definition of S we
then obtain

LCB0(t) ≤ UCBi′(t)− ε i.o. (12)
However, since i′ 6∈ S, inequality (12) cannot hold and equation (11) is proved.

A nearly identical argument to the above shows that the stopping condition is met in finite time.

D.2 Proof for sample complexity

Define i? = arg maxi=0,1,...,K µi (breaking ties arbitrarily) and ni(t) to be the number of times
sample i was drawn until time t. For any i ∈ {0, 1, . . . ,K} and η ∈ R we define the following key
quantity

τi(η, ξ) := min{n ∈ N : 2ϕn( δ
2K ) < max{|η − µi|, ξ}} (13)

. min
{

(η − µi)−2 log(K log((η − µi)−2)/δ), ξ−2 log(K log(ξ−2)/δ)
}

where we set τi(µi, 0) = ∞, but this case will not arise because whenever η = µi for some i, we
will necessarily have ξ > 0.

Let us define the events

Ei =

∞⋂
n=1

{|µ̂i,n − µi| ≤ ϕn( δ
2K )}.

By a union bound and the LIL bound in (4), we have for δ/2K < 0.1 that P
(⋃K

i=0 Eci
)
≤ K+1

2K δ ≤ δ
for K ≥ 2. For δ

2K > 0.1, note that for all δ′ < δ we have ϕn(δ′) ≤ ϕn(δ) so that

P(Eci ) = P(ϕn( δ
2K ) < µ̂i,n − µi)

≤ P(ϕn(0.1) < µ̂i,n − µi) ≤ δ
2K ∀i = 1, . . . ,K

Throughout the rest of the proof we assume the events Ei hold.

The following simple lemma regarding the key quantity τi will be used throughout the proof.
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Lemma 1. Fix i ∈ {0, 1, . . . ,K} and η > 0. For any t ∈ N, whenever ni(t) ≥ τi(η, ξ) we have
that under the event

⋂
i=0,...,K Ei, we have

UCBi(t) ≤ max{η, µi + ξ} if η ≥ µi
LCBi(t) ≥ min{η, µi − ξ} if η ≤ µi

Proof. Assume ni(t) ≥ τi(η, ξ). If η ≥ µi we have by definition of Ei that

UCBi(t) = µ̂i,ni(t) + ϕni(t)(
δ
2 ) ≤ µi + 2ϕni(t)(

δ
2K ) < µi + max{η − µi, ξ}

and if η ≤ µi
LCBi(t) = µ̂i,ni(t) − ϕni(t)(

δ
2K ) ≥ µi − 2ϕni(t)(

δ
2K ) > µi −max{µi − η, ξ} = µi + min{η − µi,−ξ}

D.2.1 Proof of Proposition 2 (a) µ0 > max
i=1,...,K

µi − ε

At each time t which does not satisfy the stopping condition, arm 0 and arg maxi=1,...,K UCBi(t)
are pulled. Note that by Lemma 1

{n0(t) ≥ τ0(
µ0+( max

i=1,...,K
µi−ε)

2 , 0)} =⇒ LCB0(t) ≥ min{
µ0+( max

i=1,...,K
µi−ε)

2 , µ0} ≥
µ0+( max

i=1,...,K
µi−ε)

2
(14)

so that t > n0(t) makes sure that there were enough draws for the particular arm 0 (since it’s drawn
every time). For i 6= 0 we have

{ni(t) ≥ τi(
(µ0+ε)+ max

i=1,...,K
µi

2 , 0)} =⇒ UCBi(t) ≤ max{
(µ0+ε)+ max

i=1,...,K
µi

2 , µi} ≤
(µ0+ε)+ max

i=1,...,K
µi

2 .
(15)

which makes t >
∑K
i=0 ni(t) a necessary condition.

Reversely whenever t >
∑K
i=0 ni(t), for all arms i 6= 0 we have UCBi(t) ≤

(µ0+ε)+ max
i=1,...,K

µi

2 . In
essence, once arm i has been sampled ni(t) times, because of (15), it will not be sampled again
- either, because all of the other UCBi(t) satisfy the same upper bound, the algorithm will have

stopped, or, if for some i we have UCBi(t) >
(µ0+ε)+ max

i=1,...,K
µi

2 that will be the arm that is drawn.
Thus,

{t ≥ B1(µ, δ) := τ0(
µ0+(max{ max

i=1,...,K
µi−ε)

2 , 0) +

K∑
i=1

τi(
(µ0+ε)+ max

i=1,...,K
µi

2 , 0)}

=⇒ {LCB0(t)− UCBi(t) ≥ −ε ∀i 6= 0},
i.e., the stopping condition is met, where the first term accounts for satisfying (14), the second term
accounts for satisfying (15) for all i 6= 0, and the third term accounts for satisfying Equation (16).
Denoting T (δ) as the stopping time of the algorithm, this implies that with probability at least 1− δ,
we have T (δ) ≤ B1(µ, δ) and arm 0 is returned.

Let us now simplify the expression to make it more accessible to the reader and arrive at the theorem
statement. Defining max{|η − µi|, ξ} as the effective gap in the definition of τi(η, ξ) in Equation 13,
it is straightforward to verify that the effective gap associated with arm 0 is equal to

α0 & min

{
(µ0 + ε)− max

j=1,...,K
µj

}
.

And the effective gap for any other arm i is equal to

αi & min {(µ0 + ε)− µi} .
Using these quantities, we can see that the upper bound B1(µ, δ) scales like∑K
i=0 α

−2
i log(K log(α−2i )/δ).
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D.2.2 Proof of Proposition 2 (b) max
i=1,...,K

µi = µi? > µ0 + ε

At each time t which does not satisfy the stopping condition, arm 0 is pulled. Note again that by
Lemma 1

{n0(t) ≥ τ0(
(µi?−ε)+µ0

2 , 0)} =⇒ UCB0(t) ≤ max{ (µi?−ε)+µ0

2 , µ0} ≤
(µi? − ε) + µ0

2
.

The following claim is key to proving this case (where u ∈ (0, 1) be an absolute constant to be
defined later).

Claim 1. Under the event
⋂
i=0,...,K Ei, for any u ≤ 2

7 and µ̄ ∈ [maxj 6=i? µj , µi? ], we have

|{s ≥ 2

K∑
i=0

τi(µ̄, uε) : LCBhs
(s) ≤ µi? − 5

2uε or UCB`s(s) ≥ µi? + uε}| <
K∑
i=0

τi(µ̄, uε) (16)

The proof of this claim can be found in Appendix G. Note that for all s we have that

LCBhs
(s) ≥ µi? − 5

2uε and UCB`s(s) ≤ µi? + uε =⇒ LCBhs
(s) ≥ UCB`s(s)− ε.

Intuitively the inequality (16) thus limits the number of times that for t ≥ 2
∑K
i=0 τi(µ̄, uε), the

criterion LCBhs
(s) ≥ UCB`s(s) − ε is not fulfilled. We refer to the times when it is fulfilled, as

“good” times.

Applying Claim 1 with µ̄ = maxj 6=i?
µi?+µj

2 and u =
µi?−(µ0+ε)

5ε we then observe that on the “good”
times, we have

LCBht
≥ µi? − 5

2uε =
µi? + (µ0 + ε)

2
=

(µi? − ε) + µ0

2
+ ε,

so that we directly obtain that with probability at least 1− δ,

T (δ) ≤ B2(µ, δ) := τ0(
(µi?−ε)+µ0

2 , 0) + 3

K∑
i=0

τi(max
j 6=i?

µi?+µj

2 ,min{ 27ε,
µi?−(µ0+ε)

5 }).

Let us now simplify the expression. It is straightforward to verify that the effective gap associated
with arm 0 is equal to

α0 & min

{
( max
i=1,...,K

µi−ε)−µ0

2 ,max

{
max
j 6=i?

µi?+µj

2 − µ0,
2
7ε

}}
& min

{
max

j=1,...,K
µj − (µ0 + ε),max{∆0, ε}

}
and the effective gap for any other arm i is equal to

αi & max

{
|max
j 6=i?

µi?+µj

2 − µi|,min{ 27ε,
( max
i=1,...,K

µi−ε)−µ0

5 }
}

& max

{
∆i,min

{
max

j=1,...,K
µj − (µ0 + ε), ε

}}
where we recall that ∆i = µi? − µi if i 6= i?, and ∆i? = µi? − maxj 6=i? µj other-
wise. Using these quantities, the upper bound B2(µ, δ) on the stopping time T (δ) scales like∑K

i=0 α
−2
i log(K log(α−2i )/δ). This concludes the proof of the proposition.

E Proof of Theorem 1

We now turn to the proof of Theorem 1, splitting our argument into parts (a) and (b), respectively.
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E.1 Proof of part (a)

In order for generalized alpha-investing procedures such as LORD to successfully control the mFDR,
it is sufficient that p-values under the null be conditionally super-uniform, meaning that for all j ∈ H0,
we have

P0(P j ≤ αj |F j−1) ≤ αj(R1, . . . , Rj−1) (17)

where F j−1 is the σ-field induced by R1, . . . , Rj−1. Note that as long as condition (17) is satisfied,
Tj and thus P j could potentially depend on αj , i.e. the rejection indicator variables R1, . . . , Rj−1
and potentially P 1, . . . , P j−1. See Aharoni and Rosset [3] for further details.

It thus suffices to show that condition (17) holds for our definition of p-value in our framework. We
know that by Proposition 1 we have for any random stopping time, thus any fixed truncation time TS ,
that P0(P jT ≤ αj) ≤ αj . We now show that the same bound also holds for the (αj-dependent) bandit
stopping time T (αj), i.e. that P0(P jT (αj)

≤ αj) ≤ αj .
Under the null hypothesis, the best arm is at most ε better than the control arm, i.e. µ0 > µi − ε, so
that by Proposition 2 we have that with probability≥ 1−αj , ib = 0, i.e. LCB0(t) > UCBi(t)−ε for
all i 6= 0. Hence, LCBi(t)− UCB0(t) < ε, and thus, by the definition of the p-values, P ji,T (αj)

= 1

for all i with probability ≥ 1− αj . It finally follows that P0(P jT (αj)
≤ αj) ≤ αj .

Putting things together, under the true null hypothesis (omitting the index j ∈ H0 to simplify notation)
we directly have that for any αj

P0(P jTj
(αj) ≤ αj) = P0

(
P jT (αj)

≤ αj
∣∣T (αj) ≤ TS

)
P0(T (αj) ≤ TS)

+ P0

(
P jTS
≤ αj

∣∣T (αj) > TS
)
P0(T (αj) > TS)

≤ αj(P0(T (αj) ≤ TS) + P0(T (αj) > TS)) = αj

for all fixed αj even when the stopping time T (αj) is dependent on αj . This is equivalent to stating
that for any sequence R1, . . . , Rj−1 we have

P0(P j ≤ αj(R1, . . . , Rj−1)|F j−1) = P0(P jT (αj(R1,...,Rj−1))
≤ αj(R1, . . . , Rj−1))

≤ αj(R1, . . . , Rj−1)

and the proof is complete.

E.2 Proof of part (b)

It suffices to prove that for a single experiment j and TS =∞, we have P1(P jT (αj)
≤ αj) ≥ 1− αj

where P1 is the distribution of a non-null experiment j. First observe that at stopping time T (αj) of
Algorithm 1, either P ji,T (αj)

≤ αj or P ji,T (αj)
= 1 for all i. The former event happens whenever the

algorithm exits with ib ∈ S?, i.e. when LCBib(t) ≥ UCB`t(t)− ε holds. Then, by definition of the
p-value in equation (6) and `t we must have that P jib,T (αj)

≤ αj . As a consequence, by Proposition 2,
we have

P1(P jT (αj)
≤ αj) ≥ P(P jT (αj)

≤ αj)
≥ P1(Algorithm 1 exits with ib ∈ S?)
≥ 1− αj .

F Notes on FDR control

We can prove FDR control for our framework using the specific online FDR procedure called LORD
’15 introduced in [13]. When used in Procedure 2, the only adjustment that needs to be made is to
reset W (j + 1) to α in step 2 after every rejection, yielding αj = αγj−τj for any sequence {γj}∞j=1

such that
∑∞
j=1 γj = 1. We call the adjusted procedure MAB-LORD’ for short.
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Theorem 2 (Online FDR control for MAB-LORD). (a) MAB-LORD’ achieves mFDR and FDR
control at a specified level α for stopping times Tj = min{T (αj),M}.

(b) Furthermore, if we set TS =∞, MAB-LORD’ satisfies

εBDR(J) ≥ (1− α)

|H1(J)| . (18)

Note that LORD as in [13] is less powerful than in [4] since the values αj in the former can be much
smaller than those in [4], which could in fact exceed the level α. Therefore, for FDR control we
currently do have to sacrifice some power.

Proof. We leverage the proposition that can be obtained from a slightly more careful analysis of the
procedure than in [13].

Proposition 3. If P0(P j ≤ αj | τj) ≤ αj , i.e. the distribution of the p−values under the null are
superuniform conditioned on the last rejection, using the online LORD’15 procedure controls the
FDR at each t.

Note that this proposition allows online FDR control for any, possibly dependent, p-values which
are conditionally superuniform. This condition is not equivalent to (17) in general, it is in fact less
restrictive since the probability is conditioned only on a function τ̃j = max{k ≤ j : Rk = 1} of
all past rejections. Formally, the sigma algebra induced by τj−1 is contained in F j−1 and hence
P0(P j ≤ αj | τj−1) ≤ P0(P j ≤ αj | R1, . . . , Rj) by the tower property. Finally, utilizing the fact
that our p-values are conditionally super-uniform as proven in Section E.1, i.e. inequality (17) holds,
the condition for Proposition 3 is fulfilled and the proof is complete.

F.1 Proof of Proposition 3

Let τ̃i denote the time of the i-th rejection with τ̃0 = 0 (note that this is different from τj). and
define k(t) =

∑t
j=1Rj . Let Hj be the j−th hypothesis that was rejected. We adjust an argument

from [13].

First observe that {k(t) = `} = {τ̃` ≤ t, τ̃`+1 > t} and FDP (t) = FDP (τ̃k(t)) so that

EFDP (t) = EFDP (τk(t)) =

t∑
`=1

E
[∑j∈H0

Rj

`
| k(t) = `

]
P (k(t) = `)

=

t∑
`=1

P (k(t) = `)
∑̀
i=1

E
[1Hi∈H0

`
| k(t) = `

]
=

t∑
`=1

P (k(t) = `)
∑̀
i=1

E
[
E
(∑τ̃i

j=τ̃i−1+1Rj1j∈H0

`
| τ̃0, . . . , τ̃i−1

)
| τ̃` ≤ t, τ̃`+1 > t

]
Since for the LORD ’15 procedure, we have αt = γt−τt , and thus for all positive integers i,
the random variables Rj with j ≥ τ̃i−1 are conditionally independent of τ̃0, . . . , τ̃i−2 given τ̃i−1.
Additionally noting that τ̃i−1 = τj for all j ≥ τ̃i−1 by definition of τ̃ and τ , using E0(1pj≤αj |
τj) ≤ αj we obtain

E
(∑j∈(τ̃i−1,τ̃i]

⋂
j∈H0

Rj

`
| τ̃0, . . . , τ̃i−1

)
= E

(∑τ̃i
j=τ̃i−1+1Rj1j∈H0

`
| τ̃i−1

)
≤
∑τi
j=τi−1+1 1j∈H0E[Rj | τj ]

`

≤
∑τi
j=τi−1+1 αj

`
≤ α

`
.

The last inequality follows since between any two rejection times τk, τk+1, we have
τk+1∑
i=τk

αi ≤ α
∞∑
i=1

γi ≤ α.
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Since
∑t
`=1 P (k(t) = `) = 1 it follows that FDR control is obtained.

G Proof of Claim 1

Let µ̄ ∈ [maxj 6=i? µj , µi? ] and τi := τi(µ̄, uε). The following result is a a key ingredient for the
proof of the claim.
Proposition 4. For any time t and u ≤ 1/2,{

|{s ≤ t : hs = i?}| ≥
K∑
i=0

τi

}
=⇒ {UCB`t(t) ≤ µ̄+ uε} ∩ {LCBht

(t) ≥ µ̄− uε}
=⇒ {LCBht

(t)− UCB`t(t) ≥ −ε}.

Proof. If hs = i? then some i 6= i? is assigned to `s and UCBi(s) ≤ max{µ̄, µi + uε} ≤ µ̄ + uε
whenever ni(s) ≥ τi(µ̄, uε). Because `s is the highest upper confidence bound, the sum over
all τi represents exhausting all arms (i.e., pigeonhole principle). An analogous result holds for
LCBi?(t).

A direct consequence of Proposition 4 is that even though we don’t know which arm will be assigned
to ht at any given time t, we do know that if ht = i? for a sufficient number of times, namely

∑K
i=0 τi

times, the termination criteria will be met. Thus, assume ht 6= i? and note that

{ht = i, µi < µi? − 5
2uε, µ̂i,ni(t) ≥ min{µ̄, µi? − 3

2uε}}
=⇒ min{µ̄, µi? − 3

2uε} ≤ µ̂i,ni(t) ≤ µi + ϕni(t)(
δ

2K )

=⇒ {ni(t) < τi}
where the last line follows from µi + ϕni(t)(

δ
2K ) < min{µ̄, µi + uε} ≤ min{µ̄, µi? − 3

2uε}
whenever ni(t) ≥ τi. Furthermore, the following Proposition 5, says for t ≥ 2

∑K
i=0 τi we have that

µ̂ht,nht (t)
≥ min{µ̄, µi? − 3

2uε}.
Proposition 5. For any time t,

{t ≥ 2

K∑
i=0

τi} =⇒ {µ̂ht,nht (t)
≥ min{µ̄, µi? − 3

2uε}}.

The proof of the proposition can be found in Section G.1.

Combining this fact with the display immediately above and the observation that some i = ht, we
have that |{s ≥ 2

∑K
i=0 τi : µi? − µhs ≥ 5

2uε}| <
∑K
i=0 τi. Now, on one of these times t such that

{ht = i, ni(t) ≥ τi, µi? − µi < 5
2uε}, we have

LCBi(t) = µ̂i,ni(t) − ϕni(t)(
δ

2K ) ≥ µi − 2ϕni(t)(
δ

2K ) ≥ min{µ̄, µi − uε} ≥ µi? − 5
2uε.

The above display with the next proposition completes the proof of Equation 16.
Proposition 6. For any time t,

{t ≥
K∑
i=0

τi} =⇒ { max
i=0,1,...,K

UCBi(t) ≤ µi? + uε}.

Proof. Note that

{UCBi(t) ≥ µi? + uε} =⇒ {µi? + uε ≤ UCBi(t) = µ̂i,ni(t) + ϕni(t)(
δ
2 ) ≤ µi + 2ϕni(t)(

δ
2K )}

=⇒ {ni(t) < τi}
since µi + 2ϕni(t)(

δ
2K ) < max{µ̄, µi +uε} ≤ µi? +uε whenever ni(t) ≥ τi. Now, because at each

time t, the arm arg maxj=0,1,...,K UCBj(t) is pulled because it is either ht or `t, we conclude that
this arm can only be pulled τi times before satisfying UCBi(t) ≤ µi? + uε.
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G.1 Proof of Proposition 5

The above proposition implies,

{t ≥ 2

K∑
i=0

τi} =⇒
{
|{s ≤ t : hs 6= i?}| ≥

K∑
i=0

τi

}
.

Now consider the event

{ht 6= i?, `t = i} =⇒ µi? ≤ µ̂i?,ni? (t)
+ ϕni? (t)

( δ2 ) ≤ µ̂i,ni(t) + ϕni(t)(
δ
2 ) ≤ µi + 2ϕni(t)(

δ
2K )

=⇒ {µi? − µi ≤ 2ϕni(t)(
δ

2K )}
=⇒ {ni(t) < τi} ∪ {ni(t) ≥ τi, µi? − µi ≤ 2ϕni(t)(

δ
2K )}

=⇒ {ni(t) < τi} ∪ {ni(t) ≥ τi, µi? − µi ≤ max{|µ̄− µi|, uε}}
=⇒ {ni(t) < τi} ∪ {ni(t) ≥ τi, µi? − µi < uε} ∪ {ni(t) ≥ τi, i = i?}

by the definition of τi. Because at each time s ≤ t we have that some i = `s, if |{s ≤ t : hs 6=
i?}| ≥

∑K
i=0 τi, we have that

{t ≥ 2

K∑
i=0

τi} =⇒ {∃i : ni(t) ≥ τi and µi? − µi < uε} ∪ {ni(t) ≥ τi and i = i?}.

We use the fact that such an `t = i 6= i? exists that satisfies µi? − µi < uε to say

∃i 6= i? : µ̂i,ni(t) ≥ µi − ϕni(t)(
δ

2K ) ≥ µi −max{µi? − µi, uε}/2 ≥ µi? − 3
2uε

or `t = i? and

µ̂i?,ni? (t)
≥ µi? − ϕni? (t)

( δ
2K ) ≥ µi? −max{µi? − µ̄, uε}/2 = min{µ̄, µi? − 1

2uε}.
Because µ̂ht,nht (t)

≥ maxi=0,1,...,K µ̂i,ni(t), the proof of the claim is complete.
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