
Supplementary Material for
Efficient Optimization for Linear Dynamical Systems
with Applications to Clustering and Sparse Coding

Wenbing Huang1,3, Mehrtash Harandi2, Tong Zhang2

Lijie Fan3, Fuchun Sun3, Junzhou Huang1

1 Tencent AI Lab. ;
2 Data61, CSIRO and Australian National University, Australia;

3 Department of Computer Science and Technology, Tsinghua University,
Tsinghua National Lab. for Information Science and Technology (TNList);

1{helendhuang, joehhuang}@tencent.com
2{mehrtash.harandi@data61.csiro.au, tong.zhang@anu.edu.cn}

3{flj14@mails, fcsun@mail}.tsinghua.edu.cn

This supplementary material provides the proofs of Theorems 1, 4 and 5, and presents the full
flowcharts of applying PGD (Algorithm 1) for clustering and sparse coding. Moreover, we also
introduce more details of the datasets YUPENN [1], DynTex [2] and DynTex++ [3] that are applied in
our experiments. Finally, we provide additional experimental evaluations to compare the classification
accuracies between the projection and Martin kernels.

In this supplementary material, bold capital letters denote matrices (e.g., X) and bold lower-case
letters denote column vectors (e.g., x). In is the n × n identity matrix. The orthogonal group is
denoted by O(n), i.e., O(n) = {R ∈ Rn×n|RRT = RTR = In}. ‖ · ‖1 is the `1 norm of a vector;
‖ · ‖F is the Frobenius norm of a matrix. XT denotes the matrix transposition. X : returns the
vectorized elements from the columns of X . ⊗ denotes the Kronecker-product. dX performs the
differential operation on X .

1 Proofs

Theorem 1. For any given LDS, the system tuple (A,C) ∈ Rn×n × Rm×n and all its equivalent
representations have the canonical form (ΛV ,U), where U ∈ ST(m,n), V ∈ O(n) and Λ ∈
Rn×n is diagonal with the diagonal elements arranged in a descend order, i.e. λ1 ≥ λ2 ≥ · · · ≥ λn.

Proof. Let the SVD of A be UAΛV T
A. According to P-equivalence (Eq.(3)), we obtain

(A,C) ∼ (UT
AAUA,CUA)

∼ (ΛV T
AUA,CUA)

= (ΛV ,U), (21)

where V = V T
AUA and U = CUA are orthogonal.

Several matrix computation properties are applied for the proof of Theorem 4:

1. d(Y Z) := (I ⊗ Y)dZ : +(ZT ⊗ I)dY :

2. (ABC) := (CT ⊗A)B :

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

3. (ABC) :T= B :T (C ⊗AT)

4. (A⊗B)T = (AT ⊗BT)

Interested readers can find more details in http://www.ee.ic.ac.uk/hp/staff/dmb/
matrix/calculus.html.

For better readability, we repeat Theorem 4 before its proof.

Theorem 4. Let the extended observability matrices of two LDSs (A1,C1) and (A2,C2) be O1 and
O2, respectively. Furthermore, let G12 = OT

1 O2 =
∑∞
t=0(AT

1)tCT
1 C2A

t
2 be the product-matrix

between O1 and O2. Given the gradient of the objective function with respect to the product-matrix
∂Γ
∂G12

.
= H , the gradients with respect to the system parameters are

∂Γ

∂A1
= G12A2R

T
12,

∂Γ

∂C1
= C2R

T
12,

∂Γ

∂A2
= GT

12A1R12,
∂Γ

∂C2
= C1R12, (22)

where R12 is obtained by solving the following DLE

A1R12A
T
2 −R12 + H = 0. (23)

Proof. The definition G12 = OT
1 O2 implies that

AT
1 G12A2 −G12 = −CT

1 C2. (24)

By vectorizing and computing the differential on both sides of Eq. (24), we arrive at

AT
2 G

T
12 ⊗ IndA

T
1 : +In ⊗AT

1 G12dA2 : +CT
2 ⊗ IndC

T
1 : +In ⊗CT

1 dC2 :

= (In2 −AT
2 ⊗AT

1)dG12 : (25)

Thus,

∂G12 :

∂AT
1 :

= (In2 −AT
2 ⊗AT

1)−1(AT
2 G

T
12 ⊗ In), (26)

∂G12 :

∂A2 :
= (In2 −AT

2 ⊗AT
1)−1(In ⊗AT

1 G12), (27)

∂G12 :

∂CT
1 :

= (In2 −AT
2 ⊗AT

1)−1(CT
2 ⊗ In), (28)

∂G12 :

∂C2 :
= (In2 −AT

2 ⊗AT
1)−1(In ⊗CT

1), (29)

where the invertibility of the term (In2 −AT
2 ⊗AT

1) is guaranteed by the stability of A1 and A2.

Under the vectorized form, we have ∂Γ
∂G12: = (G12 :)T. Applying the chain rule, we obtain

∂Γ

∂AT
1 :

=
∂Γ

∂G12 :

∂G12 :

∂AT
1 :

= (R12 :)T(AT
2 G

T
12 ⊗ In) = (R12A

T
2 G

T
12 :)T, (30)

∂Γ

∂A2 :
=

∂Γ

∂G12 :

∂G12 :

∂A2 :
= (R12 :)T(In ⊗AT

1 G12) = (GT
12A1R12 :)T, (31)

∂Γ

∂CT
1 :

=
∂Γ

∂G12 :

∂G12 :

∂CT
1 :

= (R12 :)T(CT
2 ⊗ In) = (R12C

T
2 :)T, (32)

∂Γ

∂C2 :
=

∂Γ

∂G12 :

∂G12 :

∂C2 :
= (R12 :)T(In ⊗CT

1) = (C1R12 :)T, (33)

where we have defined

(R12 :)T = (H :)T(In2 −AT
2 ⊗AT

1)−1. (34)

2

http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/calculus.html
http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/calculus.html

Then,

(R12 :)T = (H :)T(In2 −AT
2 ⊗AT

1)−1

⇒ (R12 :)T(In2 −AT
2 ⊗AT

1) = (H :)T

⇒ (In2 −A2 ⊗A1)(R12 :) = H :

⇒ R12 : −(A2 ⊗A1)R12 := H :

⇒ R12 : −(A1R12A
T
2) := G12 :

⇒ R12 −A1R12A
T
2 = H

⇒ A1R12A
T
2 −R12 + H = 0 (35)

Substituting the matrix R12 into Eq. (30-33) concludes the proof.

Note that one can directly derive R12 from Eq. (34). However, it will increase the computational
complexity drastically as the inversion of (In2 −AT

2 ⊗AT
1)−1 leads to O(n6) flops. We recall that

our solution by using the DLE (Eq. (35)) only requires O(n3) flops.

Theorem 5. The update direction in Eq.(18) is a descent direction.

Proof. We denote the update in Eq.(18) by d. Then d = ε
max(ε,|λk−τ∇λk|) (λk − τ∇λk) − λk. To

prove d is along a descent direction, we need to prove dT∇λk < 0 for small τ . To be specific,
dT∇λk = −aτ(∇λk)T∇λk − (1− a)λT

k∇λk, where 0 < a = ε
max(ε,|λk−τ∇λk|) ≤ 1.

Thus,

dT∇λk ≤ −aτ |∇λk|2 + (1− a)|λT
k∇λk|,

≤ −aτ |∇λk|2 + (1− a)|λk||∇λk|, (Cauchy Schwarz inequality)

≤ −aτ |∇λk|2 + (1− a)ε|∇λk|,

= a(−τ |∇λk|2 + (
1

a
− 1)ε|∇λk|),

= a(−τ |∇λk|2 + (max(ε, |λk − τ∇λk|)− ε)|∇λk|),
≤ a(−τ |∇λk|2 + (max(ε, |λk|+ τ |∇λk|)− ε)|∇λk|),
≤ a(−τ |∇λk|2 + τ |∇λk||∇λk|),
= 0, (36)

where dT∇λk = 0 if and only if |λk| = ε, λk and ∇λk have the opposite directions.

2 Gradients of the kernels with respect to the LDS parameters

For the reader’s convenience, we also provide the gradients of the projection kernel (Eq. (5)) and the
Martin kernel (Eq. (19)). These gradients are necessary to pass the gradients from the loss back to the
LDS parameters.

2.1 Projection kernel

Suppose we are updating the r-th dictionary atom and passing the gradient through the kernel between
Dr and Dj . Recall that the projection kernel is given by

k(Dr,Dj) = Tr
(
G−1
rr GrjG

−1
jj Gjr

)
.

Then,
∂k(Dr,Dj)

∂Grr
= −G−1

rr GrjG
−1
jj GjrG

−1
rr , (37)

∂k(Dr,Dj)

∂Grj
= G−1

rr GrjG
−1
jj , (38)

∂k(Dr,Dj)

∂Gjr
= G−1

jj GjrG
−1
rr . (39)

3

2.2 Martin kernel

The Martin kernel is defined as

k(Dr,Dj) = det
(
G−1
rr GrjG

−1
jj Gjr

)
.

Thus,

∂k(Dr,Dj)

∂Grr
= −det

(
G−1
rr GrjG

−1
jj Gjr

)
G−1
rr , (40)

∂k(Dr,Dj)

∂Grj
= det

(
G−1
rr GrjG

−1
jj Gjr

)
G−1
jr , (41)

∂k(Dr,Dj)

∂Gjr
= det

(
G−1
rr GrjG

−1
jj Gjr

)
G−1
jr . (42)

3 Algorithms for clustering and sparse coding

In the paper, § 4 has demonstrated how to apply the PGD method to compute the mean for clus-
tering and learn the dictionary atoms for sparse coding. We now embed the PGD method into the
implementations of these two tasks and provide full details in Algorithms 2 and 3 below.

Algorithm 2 The PGD method for clustering
Input: The data tuples {(Ai,Ci)}Ni=1; the initialization of the means {(Ami ,Cmi)}Ci ;
According to Theorem 1, compute the canonical formulations of {(Ai,Ci)}Ni=1 and
{(Ami ,Cmi)}Ci as {(Λi,V i,U i)}Ni=1 and {(Λmi ,V mi ,Umi)}Ci=1, respectively;
for t = 1 to maxIter do

Assign the data tuples to the closest clusters according to the given metric;
for i = 1 to C do

Update the mean tuple (Λmi ,V mi ,Umi) of the i-th cluster via Algorithm 1;
end for

end for
Output: the means {(Ami ,Cmi)}Ci .

Algorithm 3 The PGD method for sparse coding
Input: The data tuples {(Ai,Ci)}Ni=1; the initialization of the dictionary atoms {(A′

j ,C
′
j)}Jj ;

According to Theorem 1, compute the canonical formulations of {(Ai,Ci)}Ni=1 and
{(Ami ,Cmi)}Ci as {(Λi,V i,U i)}Ni=1 and {(Λ′

j ,V
′
j ,U

′
j)}Jj=1, respectively;

for t = 1 to maxIter do
Compute the sparse codes zi given LDS dictionary by the homotopy-LARS algorithm [4];
for r = 1 to J do

Update the r-th atom via Algorithm 1 with only one iteration;
end for

end for
Output: the dictionary atoms {(A′

j ,C
′
j)}Jj .

4 Datasets

YUPENN dataset introduced in [1] consists of fourteen dynamic scene categories where each category
has 30 color videos. Analysing this dataset is challenging as the videos are obtained from various
sources, e.g., YouTube, BBC Motion Gallery and Getty Images. The videos have an average
dimension of 250 × 370 × 145 and vary significantly in resolution, frame rate, scene appearance,
scale, illumination condition, and camera viewpoint. Representative examples from different classes
are illustrated in Figure 1. We convert all videos to gray-scales and down-sample each frame to have
a maximum spatial dimension of 128 pixels while keeping the original aspect ratio.

4

Figure 1: Examples of the YUPENN dataset demonstrating various dynamic scenes (e.g., beach,
elevator and forest fire).

Figure 2: Examples from the DynTex dataset.

The DynTex dataset [2] contains 352 × 288 × 250 videos recorded under different environmental
conditions, scales and rotations (as illustrated in Figure 2). Three subsets, i.e., Alpha, Beta and
Gamma have been applied for classification benchmark in previous studies [2, 5]. However, both
Alpha and Beta have a small number of videos, i.e., 60 and 162, respectively; performing evaluations
on them could be easily bias. Hence, we formulate a new dataset by combining the samples of the
three subsets, leading to a larger dataset containing 307 videos of 12 classes: Calm water, Escalator,
Flags, Rotation, Sea, Smoke, Traffic, Fountain, Naked trees, Foliage, Grass and Flowers. In particular,
we first combine the classes Trees from Alpha and Beta, Naked trees and Foliage from Gamma into
two non-overlap categories Naked trees and Foliage; and then combine the classes Grass from Alpha,
Vegetation from Beta, and Flowers and Grass from Gamma into two categories Flowers and Grass;
and finally integrate other classes of the three subsets. We resize all the videos to 128× 128 of gray
scale.

DynTex++ [3] is an variant of DynTex, where the samples are extracted from the local regions of the
videos in DynTex. It consists of 3600 videos of 36 classes with 100 videos of size 50× 50× 50 per
class.

5 Experimental comparison between different kernels

We have performed the classification experiments of PGD based on the projection kernel in the paper
(Section 5.2). Now we provide additional experimental evaluations of PGD based on the Martin
kernel. In practice, we find that the original definition of Martin kernel in Eq.(19) produces a very
small value due to the determinant calculation. We thus revise the Martin kernel by computing powers
of the original kernel, namely,

km
(
(A1,C1), (A2,C2)

)
=
(

det
(
G−1

11 G12G
−1
22 G21

)) 1
γ

, (43)

where γ is set to be 100. We follow the same experimental set-ups as those in the paper. The
classification accuracies of the projection kernel and Martin kernel are provided in Table 1. It
is observed that Martin kernel almost works better in conjunction with PGD compared with the
projection kernel.

5

Table 1: Mean classification accuracies of the projection and Martin kernels.

Datasets +BoS +STPM
Projection Martin Projection Martin

YUPENN 84.1 86.1 93.6 94.2
DynTex 65.4 66.7 76.5 74.5

References
[1] Konstantinos G Derpanis, Matthieu Lecce, Kostas Daniilidis, and Richard P Wildes. Dynamic scene

understanding: The role of orientation features in space and time in scene classification. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 1306–1313. IEEE, 2012.

[2] Renaud Péteri, Sándor Fazekas, and Mark J. Huiskes. DynTex : a Comprehensive Database of Dynamic Tex-
tures. Pattern Recognition Letters, doi: 10.1016/j.patrec.2010.05.009, 2010. http://projects.cwi.nl/dyntex/.

[3] Bernard Ghanem and Narendra Ahuja. Maximum margin distance learning for dynamic texture recognition.
In European Conference on Computer Vision (ECCV), pages 223–236. Springer, 2010.

[4] David L Donoho and Yaakov Tsaig. Fast solution of `1-norm minimization problems when the solution
may be sparse. IEEE Transactions on Information Theory, 54(11):4789–4812, 2008.

[5] Yuhui Quan, Chenglong Bao, and Hui Ji. Equiangular kernel dictionary learning with applications to
dynamic texture analysis. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
308–316, 2016.

6

	Proofs
	Gradients of the kernels with respect to the LDS parameters
	Projection kernel
	Martin kernel

	Algorithms for clustering and sparse coding
	Datasets
	Experimental comparison between different kernels

