6 Appendix

6.1 Prime optimization problem

In the following, we will derive a constrained optimization problem whose solution minimizes
the Bethe free energy (Eq. (13)) under moment matching constraint and additional regularization
constraint. The Bethe free energy is convex over p; and concave over ¢;. Hence it could have multiple
minima in the domain of p; and ¢;. To address this issue, we first introduce the Legendre-Fenchel dual
(also called convex conjugate) of — [ dz;q;(x) log ¢ (x;) and reformulate the objective function.

We start from minimizing the Bethe free energy Fyeme Subject to the expectation propagation con-
straints.

minimize over Py (z:—1.¢), qt(T¢) :

) x
Fgetne = Z/dxt—l,tpt(xt—l,t)logppttilt Z/dl‘t(h z¢)log qi (2+) (10)
t

(xtayt|$t 1

subject to :

FEDNpe 0 = F@D g = FE@) 5, @00

/dtht —1—/d-73t 1,60t (T—1,1).

Formally, the convex conjugate of a function f(x) is defined as f*(y) = max, {y"z — f(z)},
where the domain of y is restricted so that the maximum value is finite. This is also known as the
Legendre-Fenchel transformation. For each valid distribution ¢;(z;) in the exponential family, the
entropy function — [ dz,q;(z;)log ¢; () can be interpreted as the conjugate function of the log
partition:

—/dxtqt(fct)logqt(xt) = min,, {—%T (f@))g, +log/dwtexp(7;~f(xt))} (11)

The form can be also verified by checking the derivatives over ;. We in essence exploit the
Legendre-Fenchel duality between the log partition and the entropy.

‘We thereafter arrive at

minimize over Py, g,y for all ¢ :

. T
Fpeme = Z/dwtfl,tpt(xtfl,t)bg Ppttilt Z% (Tt))g, + Zlog/dmt exp(y, - f(x1))
t t

(It,yt|$t 1

(12)
subject to :

<f(xt)>pt(zt,1,t) = <f(xt)>qt(:rt) = <f($t)>ﬁt+1($t,t+1) ’
/dxtqt(x) =1= /dxt—l,tﬁt(xt—l,t)-

To get rid of the dependence over g(x), we replace (f(21)) (., in the target with (f(z4));, s, | .

by utilizing the constraint (f(2¢)), (1, , ,) = (f(2t)) 4, (x,)- Instead of searching 7, over the over-
complete whole space, we further add a regularization constraint to bound the prime variable ~; and
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will later see how this constraint helps us to build a concave dual function.

minimize over py(T¢—1.4), Vs

N x
Fprima = Z/dﬂ?t—l,tpt(l‘t—l,t) log Ppttilt Z’Yt It)>ﬁt + Zlog/dmt eXP(’YtT - f(ze))
t t

(Tt yelze—1)
(13)
subject to :
<f($t)>ﬁt(wt,1‘t) = <f($t)>ﬁt+1(g;t1t+1)
W e < me (14)

/dxt—uﬁt(xt—l,t) =1.

6.2 Solving the primal problem with Lagrange duality

We solve this problem with Lagrange duality theorem. First, we define the Lagrangian function £ by
introducing the Lagrange multipliers cy, A\; and &; to incorporate those constraints:

L = Ferima + Za;r (<f(xt)>ﬁt(mt—l,t) - <f(xt)>i"f+l (w f+1)> + Z ’Yt i )
t

+ 3l [ doer il - 1) 1)
t

where the inequality multiplier A; > 0. The Lagrange duality theorem implies that Fpy,(cu, At, &) =
infp, (o, )y LPe(Te—1,), Ve, 2, At, &¢). To find the infimum of Lagrangian given dual variables,
we need first find extreme point of Lagrangian. Set the derivative of £ over ps(x:—1,¢), Y+ to zero, we
get

oL _ De(Te—1¢) T T T set
m —logm+l+’yt f(mt) Qg f(mtfl)—"_at f(xt)+§t =0
=pe(Ti-14) = 7 exp(a_y - f(xi-1))P(ae, yelws—1) exp((y — af) - f(a)) (16)

where Z; 1, = exp(ft + 1) = /d$t71,t eXp(Oé;rq : f(xt—l))P(fEt» yt|$t—1) eXp((’YtT - 042—) : f(xt))

0L (faa))y, + (), + Mn =0 amn

6% B
dai f(xe) ex tT Lt
where (f(z¢)).,, = I fd];(t eip(vl}(;(”i()) :

Our notation with ~; as subscript means the statistics over the exponential family distribution
parameterized by 7; . Substituting Eq. into our Lagrangian function (Eq. (13)), we get the
following dual form, which is concave over oy, A; for all ¢. This is an concave maximization problem
whose solution is the global maximum.
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maximize over oy, A\; for all ¢ :

Fow = — Y log Zi 10+ Zlog/dxt oxp(vy f(+)) + Z (v e —me) (18)

subject to : )t\t >0 t

where Z;_1 ; = /dxt—l,t eXP(OétT—1 f(@i—1)) Py, ye|we—1) eXP((“YtT - OétT) “fze))  (19)
= (flxe))p, + (f(@e)),, + Aeye =0 (20)

exp(ay_y - f(2e-1)) P(xe, yalre—1) exp((y —a)) - f(a1)) 2n

i1
In the dual problem, we have dropped the dual variable §; since it takes value to normalize p;(x¢—1 ;)
as a valid primal probability. For any dual variable o, ¢, we have mapped primal variables p;(z;_1 +)
and ~y; as implicit functions defined by the extreme point conditions Eq. (16),(I7). We have the
following theoretic guarantee.

Proposition 1: The Lagrangian function has positive definite Hessian matrix when

COV, (f(xe), fe)) + A — <f($t) : f(xt)—r> > 0.

Pt(mt—l,f,)

Proof : The hessian matrix is defined as a square matrix of second-order partial derivatives over
variables. Since the variables are all indexed by time ¢ and there is no correlation term between two
variables indexed with ¢ and ¢'. It’s suffice to check the positive definiteness of Hessian over one time
slice, i.e. over py(x¢—1,),v: - We can finally claim overall positive definiteness by noticing that a
sum of positive semi-definite matrix with non-intersect column vectors z to make 27 Mz = 0 will be
a positive definite matrix.

With the form of Lagrangian in Eq. (I3), the hessian matrix over p;(z¢—1¢), 7y becomes

ﬁt(mtl—l,t) _f(ajt)
_f(xt)T COV% (f(xt)a f('rt)) + At

Using Schur complements, we have the equivalence condition of above hessian matrix to be positive
definite as:

H=

H=0 < covy, (f(xe), flxe) + M — (f(ze) - f2e) "), =0

pt(zt—l,t)

Thus the proof is done.[]

The Proposition 1 ensures the dual function as infimum of Lagrangian function given dual variable.
Since the dual function is the point wise infimum of a family of affine functions of a, A, &, it is

concave. We name cov, (f(z1), f(x¢)) + A — (f(2) - f(xt>—r>m(mf,_1,t) = 0 as dual feasible

constraint. Instead of a whole space of dual variables a;, A\s, now we only consider constrained
domain by dual feasible constraint.

Proposition 2: The implicit function of p;(z;_; ;) and ; defined by Eq. (16), has unique
solution under dual feasible constraint.

Proof : The extreme point equations define implicit function of p;(z;—1+) and ;. Con-
sider — (f(z¢));, + (f(z4)),, + Avx = 0 and plug in Eq. (I6), we have 7; as root of

function F'(v) = —(f(21));, + (f(x1)),, + Avye. Check the derivative, we have % =
—Vary, (f(xt)) + covy, (f(z¢), f(xt)) + Acl. The dual feasible constraint is cov., (f(z¢), f(x¢)) +
Al — <f(xt)'f(xt)T>ﬁt(zt71t) > 0. Therefore we have cov., (f(z:), f(xe)) + Ml >

<f(117t) ‘ f(xt)T> > Varp, (f(z;)) and aF(%) 0.

DPe(Te—1,¢)
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For monotonic functional F'(+y;), it has at most one root. Since F'(y;) could achieve negative/positive
infinity when ~;takes negative/positive infinity, we have the root of F'(y;) = 0 has unique solution. [

The Lagrange dual problem is a concave maximization problem with bounded domain. Hence it has
a unique global optima. A gradient ascent algorithm or a converging fixed point algorithm should
converge to the solution. The partial derivatives of the dual function over the dual variables are the
following.

O0Fpua .
8Zt ! <f($t)>ﬁf,+1(rr,,t+1) + <f($t)>pt(wt_1‘t) + 87(15 . (— <f(xt)>:[7t + <f($t)>% + )\t%)
=@ s e T @D @0
0 ual a Vi
git | _ ; (v ve—me) + W (7 (f(aa))y, + (fxe)),, + /\t%>

1
= ) (’YtT% —Ut)

where p;(x;—1 ;) and 7, are implicit functions defined by the extreme point conditions Eq. (]E[),(]E)
Hence we can get a fixed point iteration through the first derivatives over o to zero. Empirically,
the fixed point iteration converges even without the dual feasible constraint (A\; = 0); Since the dual
feasible constraint bound the \;, we should not set the derivative over \; to zero.

OF, .
82"a' 20 = forwardia)™") = of”? + 4 (<f () p, (2, n) 7
) ,

backwardivt(new) =7 (<f($t)>ﬁt+1(mt,t+1>)

6.3 Inference with SKM

In the SKM, we have the event based kernel as Eq. @) and the form of p;(x,—1 ) as Eq. . 16| We
write v, — «; as ; and make mean field assumption that o ; - f(24-1) = Y, a(m)T (xgmi),
Bl - flx) =3, 5(m)T ( )), where the parameter aginz, t(m),the statistics f(m,(:m%) f(xg ))

only involve one specific species m and there is no correlation terms. Substitute the P(x4, vg|z—1)
explicitly and , i.e. , we have

Be(xe1,6,00) = 72— T ™) @) T B ™) - Pluele) - T (24 € (miny Tma))
el g @) Ty 1™ =) = A) it =
17, e [IN_ g™ @) - TN 1™ — 2™ = 0) ifv, =0
(22)

(m)T . f( (m))) (m)( (m) (m)T

To simplify the notation, we abbreviate exp(a; x;_ 1)) as oy (x;_ 1) and exp(f;

f(z ,Em))) as ﬂt(m)( Xy )). We can marginalize the joint solution Eq. over mi_l), x,g ) for all the
other species m’ # m and get the marginal distribution for each particular species m:
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For vy = v,

. 1
H, 25, 1) = 5l ) PG ) B ) () € (0, a4

g™ (@)1 = a7} = AL)

’HL/ m m m m m m ’NL/ ’"L, ‘NLI m m
H /dxﬁ,l) () (200 py ) (D) gD (4D 6 >(x§71>)1(m§ V@l o ))>

sTmax

AT ) g m!) _ p(m')
For vy = 0,

~(m m m 1 m m m m m m m m m
B @™ ) = eI PGB @) 1 (317 € (ol ol

(™ — 2™ = 0)

!’ ’ ! ! ! ’ ! ’
11 / da{™D, ol D @™ ) Py |28 (2™ )>I(z§m Vel zmQ))

m’/#m
=" (=0

1
oM @) P(y™ ™)™ (@) - 1 (2™ € (2l @) )

t—1 min ? “Ymax
Zi-1,t

creogt™ (M) I(@™ — &™) = 0)

’ ’ ’ ’ ’ ’ ’ ’
H / (m )t ,(sT1)< E’L‘R)P(.yi’" )Izim ))Bgm )(zgm ))ggm )(ZET1)>I("E§"L )e(z‘(;i: ) (m )))

»>Tmax
’
m ¢mx<m'>_m<m )—o

t t—1

Extract the term  [] [ da{™),a{™) 2" ) P(y{™ |2{™) 8™ (™)1 (zsmwe(zfn’; ) a(n))), we arrive

mI;ﬁmIim ) _ ETl):O
at

. 1
P @I el v) = —o - @I P B @) - Plal™ vl
t

where P(z{™ vt|x<mi) =7 (x§m> e (zlm (m))) .

mm y Tmax
corgf™ @™ T g 1™ e =al™) o™ =

m! #m

m!#£m

!
< zwgu Y@(™) T g%’“)uzﬁ’“) oM =) v{™ =0

fdxgil;) (m/ )(m(m ))P(y(m )|x(m ))B(m )(x(m ))g(m )(x(m ))I( gm’)e(xr(n::')’xr(:l:;))>
mgrnl)_w(mﬂ):A’(m/)

s(m') _
g =
v J az{m,almD @m0y p(y{™ 2™ D)8 (@ >),( M) g (' >’mmax>))
x,m” <m'> 0
’ ’ ’ ’ ’ / ’
J ol @m0y P el ) @10l @ (o el o)) (23)
LM _(mh)_
~(m! ) o Tt Ti_1 =
o (m) () (z(m") (m) 4 (m") g(m") (4 1 (5(m") ¢ (4 (m) )
J ol @m0 P e ) @) (o el o))
z(m'),zw):
t t—1
Zm — Zy

’ ’ ’
[T [ aefmD,afm) @)l el )60 @)1 (2 @l alind) )

m'Em (m!) _ (m') _g
Tt L1

— t t min ? “max

= [ sl el @D P LB w0 (o) € (0l
(m) _ (m)

x;

ZCTHgvm>+1—ZCTH A(m>

all m all m
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(m)

, where Z, (m) .(m)

, Z; are respectively the normalization constant of & (xt 1,z yv) and

&(xi_1,24,v¢). In Eq. pgm)(xgmf,xgm),vt) takes the same form as the joint solution Eq.

, except a marginalized transition kernel P(;vgm), vy |x§Tl)) which sums over all the other species

m’ # m. Instead of coping with exploding joint state space, we can now cope with each marginalized
Markov chain with kernel P(x; (m) vt|xfm)) Moreover, g(m ), gf)m ) can be interpreted as expectation
of g factor at species m’. This suggests that each species evolves their states marginally according to
the average effects of the others.

To summarize, we give the general algorithms.

Algorithm 2 Fixed Point Algorithm

Input: The discrete time SKM model (Eq. Ell ; the observations ytm) for all ¢, m; the observation
model P(y{"™|z{"™); any initialization of a,m) g™ Alm
1: Define function: ForwardTransmon(at ), 8™
Find{t(m)(xgmi ;) from Eq. [23} Find %5 ™) from <f( (m))> iy = <f(x§m))> oy (o)
’th (Ztm ) Et’"l ( m

t—1,t
™m)

- ’yt(m) . ﬂt(m). Olltpllt Oégm), ’yt(m)
2: Define function: BackwardTransition(a™], ™)

Find ¢ (2} ) from Ba. 23 Find o,”3) trom (f(w™)) ) ey = (FGD) oy
Update 8™ « ~(™) — Eir Output 5", (")
repeat
for t=2to T do
a!™ 4{™ + ForwardTransition(o\™], 3™
end for
for t—T Itol do
8™ ™) BackwardTransition(a!™, Bt(m))
end for
until Convergence of 'yim)

Output 'yt(m)

Update at

,_
I e R A

—_

Algorithm 3 Gradient Ascent Algorithm
Input: The discrete time SKM model (Eq. ; the observations yt(m) for all ¢, m; the obser-

vation model P(y{™ |z{™); any initialization of a{™, 8™, 7{™ = (™ + ™). Function

ForwardTransition, BackwardTransition in algorithm 2

1: repeat

2:  fort=2to T-1 do

3: repeat

4: Update py(ze-1,6) = 7~ exp(ay_y - f(we-1))P(xe, yelwe-1) exp((v) —of)- f(z))

and (f(z+)), according tounder dual feasible constraint

5: until Convergence or enough number of iterations

6: end for

7. fort=T-1to2 do

8: Do the same as line 4 to 6

9:  end for
10: until Convergence
11: Output py(ws-14) = 7 exp(a_y - f(@1-1))P(we, yelwe—1) exp((v) — ) - f(2)) and

<f($t)>15t
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