
6 Appendix

6.1 Prime optimization problem

In the following, we will derive a constrained optimization problem whose solution minimizes
the Bethe free energy (Eq. (13)) under moment matching constraint and additional regularization
constraint. The Bethe free energy is convex over p̂t and concave over qt. Hence it could have multiple
minima in the domain of p̂t and qt. To address this issue, we first introduce the Legendre-Fenchel dual
(also called convex conjugate) of −

∫
dxtqt(xt) log qt(xt) and reformulate the objective function.

We start from minimizing the Bethe free energy FBethe subject to the expectation propagation con-
straints.

minimize over p̂t(xt−1,t), qt(xt) :

FBethe =
∑
t

∫
dxt−1,tp̂t(xt−1,t) log

p̂t(xt−1,t)

P (xt, yt|xt−1)
−
∑
t

∫
dxtqt(xt) log qt(xt) (10)

subject to :
〈f(xt)〉p̂t(xt−1,t)

= 〈f(xt)〉qt(xt)
= 〈f(xt)〉p̂t+1(xt,t+1) ,∫

dxtqt(x) = 1 =

∫
dxt−1,tp̂t(xt−1,t).

Formally, the convex conjugate of a function f(x) is defined as f∗(y) = maxx
{
yTx− f(x)

}
,

where the domain of y is restricted so that the maximum value is finite. This is also known as the
Legendre-Fenchel transformation. For each valid distribution qt(xt) in the exponential family, the
entropy function −

∫
dxtqt(xt) log qt(xt) can be interpreted as the conjugate function of the log

partition:

−
∫
dxtqt(xt) log qt(xt) = minγt

{
−γ>t · 〈f(xt)〉qt + log

∫
dxt exp(γ>t · f(xt))

}
(11)

The form can be also verified by checking the derivatives over γt. We in essence exploit the
Legendre-Fenchel duality between the log partition and the entropy.

We thereafter arrive at

minimize over p̂t, qt, γt for all t :

FBethe’ =
∑
t

∫
dxt−1,tp̂t(xt−1,t) log

p̂t(xt−1,t)

P (xt, yt|xt−1)
−
∑
t

γ>t · 〈f(xt)〉qt +
∑
t

log

∫
dxt exp(γ>t · f(xt))

(12)
subject to :
〈f(xt)〉p̂t(xt−1,t)

= 〈f(xt)〉qt(xt)
= 〈f(xt)〉p̂t+1(xt,t+1) ,∫

dxtqt(x) = 1 =

∫
dxt−1,tp̂t(xt−1,t).

To get rid of the dependence over q(xt), we replace 〈f(xt)〉q(xt)
in the target with 〈f(xt)〉p̂t(xt−1,t)

by utilizing the constraint 〈f(xt)〉p̂t(xt−1,t)
= 〈f(xt)〉qt(xt)

. Instead of searching γt over the over-
complete whole space, we further add a regularization constraint to bound the prime variable γt and
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will later see how this constraint helps us to build a concave dual function.

minimize over p̂t(xt−1,t), γt :

FPrimal =
∑
t

∫
dxt−1,tp̂t(xt−1,t) log

p̂t(xt−1,t)

P (xt, yt|xt−1)
−
∑
t

γ>t · 〈f(xt)〉p̂t +
∑
t

log

∫
dxt exp(γ>t · f(xt))

(13)
subject to :
〈f(xt)〉p̂t(xt−1,t)

= 〈f(xt)〉p̂t+1(xt,t+1)

γ>t γt ≤ ηt (14)∫
dxt−1,tp̂t(xt−1,t) = 1.

6.2 Solving the primal problem with Lagrange duality

We solve this problem with Lagrange duality theorem. First, we define the Lagrangian function L by
introducing the Lagrange multipliers αt, λt and ξt to incorporate those constraints:

L = FPrimal +
∑
t

α>t

(
〈f(xt)〉p̂t(xt−1,t)

− 〈f(xt)〉p̂t+1(xt,t+1)

)
+
∑
t

λt
2

(
γ>t γt − ηt

)
+
∑
t

ξt(

∫
dxt−1,tp̂t(xt−1,t)− 1) (15)

where the inequality multiplier λt ≥ 0. The Lagrange duality theorem implies that FDual(αt, λt, ξt) =
infp̂t(xt−1,t),γtL(p̂t(xt−1,t), γt, αt, λt, ξt). To find the infimum of Lagrangian given dual variables,
we need first find extreme point of Lagrangian. Set the derivative of L over p̂t(xt−1,t), γt to zero, we
get

∂L
∂p̂t(xt−1,t)

= log
p̂t(xt−1,t)

P (xt, yt|xt−1)
+ 1 + γ>t · f(xt)− α>t−1 · f(xt−1) + α>t · f(xt) + ξt

set
= 0

⇒p̂t(xt−1,t) =
1

Zt−1,t
exp(α>t−1 · f(xt−1))P (xt, yt|xt−1) exp((γ>t − α>t ) · f(xt)) (16)

where Zt−1,t = exp(ξt + 1) =

∫
dxt−1,t exp(α>t−1 · f(xt−1))P (xt, yt|xt−1) exp((γ>t − α>t ) · f(xt))

∂L
∂γt

= −〈f(xt)〉p̂t + 〈f(xt)〉γt + λtγt = 0 (17)

where 〈f(xt)〉γt =

∫
dxtf(xt) exp(γ>t f(xt))∫
dxt exp(γ>t f(xt))

Our notation with γt as subscript means the statistics over the exponential family distribution
parameterized by γt . Substituting Eq. (16) into our Lagrangian function (Eq. (15)), we get the
following dual form, which is concave over αt, λt for all t. This is an concave maximization problem
whose solution is the global maximum.
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maximize over αt, λt for all t :

FDual = −
∑
t

logZt−1,t +
∑
t

log
∫
dxt exp(γ>t f(xt)) +

∑
t

λt
2

(
γ>t γt − ηt

)
(18)

subject to : λt ≥ 0

where Zt−1,t =

∫
dxt−1,t exp(α>t−1 · f(xt−1))P (xt, yt|xt−1) exp((γ>t − α>t ) · f(xt)) (19)

− 〈f(xt)〉p̂t + 〈f(xt)〉γt + λtγt = 0 (20)

p̂t(xt−1,t) =
1

Zt−1,t
exp(α>t−1 · f(xt−1))P (xt, yt|xt−1) exp((γ>t − α>t ) · f(xt)) (21)

In the dual problem, we have dropped the dual variable ξt since it takes value to normalize p̂t(xt−1,t)
as a valid primal probability. For any dual variable αt, λt, we have mapped primal variables p̂t(xt−1,t)
and γt as implicit functions defined by the extreme point conditions Eq. (16),(17). We have the
following theoretic guarantee.

Proposition 1: The Lagrangian function has positive definite Hessian matrix when
covγt (f(xt), f(xt)) + λtI −

〈
f(xt) · f(xt)

>〉
p̂t(xt−1,t)

� 0.

Proof : The hessian matrix is defined as a square matrix of second-order partial derivatives over
variables. Since the variables are all indexed by time t and there is no correlation term between two
variables indexed with t and t′. It’s suffice to check the positive definiteness of Hessian over one time
slice, i.e. over p̂t(xt−1,t), γt . We can finally claim overall positive definiteness by noticing that a
sum of positive semi-definite matrix with non-intersect column vectors z to make zTMz = 0 will be
a positive definite matrix.

With the form of Lagrangian in Eq. (15), the hessian matrix over p̂t(xt−1,t), γt becomes

H =

[ 1
p̂t(xt−1,t)

−f(xt)

−f(xt)
> covγt (f(xt), f(xt)) + λt

]
Using Schur complements, we have the equivalence condition of above hessian matrix to be positive
definite as:

H � 0 ⇐⇒ covγt (f(xt), f(xt)) + λtI −
〈
f(xt) · f(xt)

>〉
p̂t(xt−1,t)

� 0

Thus the proof is done.�

The Proposition 1 ensures the dual function as infimum of Lagrangian function given dual variable.
Since the dual function is the point wise infimum of a family of affine functions of αt, λt, ξt, it is
concave. We name covγt (f(xt), f(xt)) + λtI −

〈
f(xt) · f(xt)

>〉
p̂t(xt−1,t)

� 0 as dual feasible
constraint. Instead of a whole space of dual variables αt, λt, now we only consider constrained
domain by dual feasible constraint.

Proposition 2: The implicit function of p̂t(xt−1,t) and γt defined by Eq. (16), (17) has unique
solution under dual feasible constraint.

Proof : The extreme point equations define implicit function of p̂t(xt−1,t) and γt. Con-
sider −〈f(xt)〉p̂t + 〈f(xt)〉γt + λtγt = 0 and plug in Eq. (16), we have γt as root of

function F (γt) = −〈f(xt)〉p̂t + 〈f(xt)〉γt + λtγt. Check the derivative, we have ∂F (γt)
∂γt

=

−Varp̂t(f(xt)) + covγt (f(xt), f(xt)) + λtI . The dual feasible constraint is covγt (f(xt), f(xt)) +
λtI −

〈
f(xt) · f(xt)

>〉
p̂t(xt−1,t)

� 0. Therefore we have covγt (f(xt), f(xt)) + λtI �〈
f(xt) · f(xt)

>〉
p̂t(xt−1,t)

� Varp̂t(f(xt)) and ∂F (γt)
∂γt

� 0.
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For monotonic functional F (γt), it has at most one root. Since F (γt) could achieve negative/positive
infinity when γttakes negative/positive infinity, we have the root of F (γt) = 0 has unique solution. �

The Lagrange dual problem is a concave maximization problem with bounded domain. Hence it has
a unique global optima. A gradient ascent algorithm or a converging fixed point algorithm should
converge to the solution. The partial derivatives of the dual function over the dual variables are the
following.

∂FDual

∂αt
= −〈f(xt)〉p̂t+1(xt,t+1) + 〈f(xt)〉p̂t(xt−1,t)

+
∂γt
∂αt
·
(
−〈f(xt)〉p̂t + 〈f(xt)〉γt + λtγt

)
= −〈f(xt)〉p̂t+1(xt,t+1) + 〈f(xt)〉p̂t(xt−1,t)

∂FDual

∂λt
=

1

2

(
γ>t γt − ηt

)
+
∂γt
∂λt
·
(
−〈f(xt)〉p̂t + 〈f(xt)〉γt + λtγt

)
=

1

2

(
γ>t γt − ηt

)

where p̂t(xt−1,t) and γt are implicit functions defined by the extreme point conditions Eq. (16),(17).
Hence we can get a fixed point iteration through the first derivatives over αt to zero. Empirically,
the fixed point iteration converges even without the dual feasible constraint (λt = 0); Since the dual
feasible constraint bound the λt, we should not set the derivative over λt to zero.

∂FDual

∂αt

set
= 0⇒ forward:α(new)

t = α
(old)
t + γ

(
〈f(xt)〉p̂t(xt−1,t)

)
− γ(old)

t

backward:γ(new)
t = γ

(
〈f(xt)〉p̂t+1(xt,t+1)

)

6.3 Inference with SKM

In the SKM, we have the event based kernel as Eq. (3) and the form of p̂t(xt−1,t) as Eq. 16. We
write γt − αt as βt and make mean field assumption that α>t−1 · f(xt−1) =

∑
m α

(m)T
t−1 · f(x

(m)
t−1),

β>t · f(xt) =
∑
m β

(m)T
t · f(x

(m)
t ), where the parameter α(m)

t−1, β(m)
t ,the statistics f(x

(m)
t−1), f(x

(m)
t )

only involve one specific species m and there is no correlation terms. Substitute the P (xt, vt|xt−1)
explicitly and , i.e. , we have

p̂t(xt−1,t, vt) = 1
Zt−1,t

∏
m α

(m)
t−1(x

(m)
t−1)

∏
m β

(m)
t (x

(m)
t ) · P (yt|xt) · I (xt ∈ (xmin, xmax))

·

{
τ · cv

∏M
m=1 g

(m)
v (x

(m)
t−1) ·

∏M
m=1 I(x

(m)
t − x(m)

t−1 = ∆
(m)
v ) if vt = v

(1− τ
∑
v cv

∏M
m=1 g

(m)
v (x

(m)
t−1)) ·

∏M
m=1 I(x

(m)
t − x(m)

t−1 = 0) if vt = ∅
(22)

To simplify the notation, we abbreviate exp(α
(m)T
t−1 · f(x

(m)
t−1)) as α(m)

t−1(x
(m)
t−1) and exp(β

(m)T
t ·

f(x
(m)
t )) as β(m)

t (x
(m)
t ). We can marginalize the joint solution Eq. 22 over x(m′)

t−1 , x
(m′)
t for all the

other species m′ 6= m and get the marginal distribution for each particular species m:
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For vt = v,

p̂
(m)
t (x

(m)
t−1, x

(m)
t , vt) =

1

Zt−1,t
α

(m)
t−1(x

(m)
t−1)P (y

(m)
t |x(m)

t )β
(m)
t (x

(m)
t ) · I

(
x

(m)
t ∈ (x

(m)
min , x

(m)
max)

)
· τcvg(m)

v (x
(m)
t−1)I(x

(m)
t − x(m)

t−1 = ∆(m)
v )

·
∏
m′ 6=m

∫
x
(m′)
t −x(m

′)
t−1 =∆

(m′)
v

dx
(m′)
t−1,tα

(m′)
t−1 (x

(m′)
t−1 )P (y

(m′)
t |x(m

′)
t )β

(m′)
t (x

(m′)
t )g

(m′)
v (x

(m′)
t−1 )I

(
x
(m′)
t ∈(x

(m′)
min ,x

(m′)
max )

)

For vt = ∅,

p̂
(m)
t (x

(m)
t−1, x

(m)
t , vt) =

1

Zt−1,t
α

(m)
t−1(x

(m)
t−1)P (y

(m)
t |x(m)

t )β
(m)
t (x

(m)
t ) · I

(
x

(m)
t ∈ (x

(m)
min , x

(m)
max)

)
· I(x

(m)
t − x(m)

t−1 = 0)

·
∏
m′ 6=m

∫
x
(m′)
t −x(m

′)
t−1 =0

dx
(m′)
t−1,tα

(m′)
t−1 (x

(m′)
t−1 )P (y

(m′)
t |x(m

′)
t )β

(m′)
t (x

(m′)
t )I

(
x
(m′)
t ∈(x

(m′)
min ,x

(m′)
max )

)

− 1

Zt−1,t
α

(m)
t−1(x

(m)
t−1)P (y

(m)
t |x(m)

t )β
(m)
t (x

(m)
t ) · I

(
x

(m)
t ∈ (x

(m)
min , x

(m)
max)

)
· τcvg(m)

v (x
(m)
t−1)I(x

(m)
t − x(m)

t−1 = 0)

·
∏
m′ 6=m

∫
x
(m′)
t −x(m

′)
t−1 =0

dx
(m′)
t−1,tα

(m′)
t−1 (x

(m′)
t−1 )P (y

(m′)
t |x(m

′)
t )β

(m′)
t (x

(m′)
t )g

(m′)
v (x

(m′)
t−1 )I

(
x
(m′)
t ∈(x

(m′)
min ,x

(m′)
max )

)

Extract the term
∏

m′ 6=m

∫
x
(m′)
t −x(m′)

t−1 =0

dx
(m′)
t−1,tα

(m′)
t−1 (x

(m′)
t−1 )P (y

(m′)
t |x(m′)

t )β
(m′)
t (x

(m′)
t )I

(
x
(m′)
t ∈(x

(m′)
min ,x(m′)

max )
)
, we arrive

at

p̂
(m)
t (x

(m)
t−1, x

(m)
t , vt) =

1

Z
(m)
t

· α(m)
t−1(x

(m)
t−1)P (y

(m)
t |x(m)

t )β
(m)
t (x

(m)
t ) · P (x

(m)
t , vt|x(m)

t−1)

whereP (x
(m)
t , vt|x(m)

t−1) = I
(
x

(m)
t ∈ (x

(m)
min , x

(m)
max)

)
·

cvτg
(m)
v (x

(m)
t−1)

∏
m′ 6=m

g̃
(m′)
v ·I(x(m)

t −x(m)
t−1=∆

(m)
v ) v

(m)
t = v1−

∑
v
cvτg

(m)
v (x

(m)
t−1)

∏
m′ 6=m

ĝ
(m′)
v

I(x(m)
t −x(m)

t−1=0) v
(m)
t = ∅

g̃(m′)
v =

∫
x
(m′)
t −x(m

′)
t−1 =∆

(m′)
v

dx
(m′)
t−1,tα

(m′)
t−1 (x

(m′)
t−1 )P (y

(m′)
t |x(m

′)
t )β

(m′)
t (x

(m′)
t )g

(m′)
v (x

(m′)
t−1 )I

(
x
(m′)
t ∈(x

(m′)
min ,x

(m′)
max )

)

∫
x
(m′)
t −x(m

′)
t−1 =0

dx
(m′)
t−1,tα

(m′)
t−1 (x

(m′)
t−1 )P (y

(m′)
t |x(m

′)
t )β

(m′)
t (x

(m′)
t )I

(
x
(m′)
t ∈(x

(m′)
min ,x

(m′)
max )

)

ĝ(m′)
v =

∫
x
(m′)
t −x(m

′)
t−1 =0

dx
(m′)
t−1,tα

(m′)
t−1 (x

(m′)
t−1 )P (y

(m′)
t |x(m

′)
t )β

(m′)
t (x

(m′)
t )g

(m′)
v (x

(m′)
t−1 )I

(
x
(m′)
t ∈(x

(m′)
min ,x

(m′)
max )

)

∫
x
(m′)
t −x(m

′)
t−1 =0

dx
(m′)
t−1,tα

(m′)
t−1 (x

(m′)
t−1 )P (y

(m′)
t |x(m

′)
t )β

(m′)
t (x

(m′)
t )I

(
x
(m′)
t ∈(x

(m′)
min ,x

(m′)
max )

)

Z
(m)
t =

Zt∏
m′ 6=m

∫
x
(m′)
t −x(m

′)
t−1 =0

dx
(m′)
t−1,tα

(m′)
t−1 (x

(m′)
t−1 )P (y

(m′)
t |x(m

′)
t )β

(m′)
t (x

(m′)
t )I

(
x
(m′)
t ∈(x

(m′)
min ,x

(m′)
max )

)

=

∫
x
(m)
t =x

(m)
t−1

dx
(m)
t−1,tα

(m′)
t−1 (x

(m′)
t−1 )P (y

(m′)
t |x(m′)

t )β
(m′)
t (x

(m′)
t )I

(
x

(m′)
t ∈ (x

(m′)
min , x(m′)

max )
)

· (
∑
v

cvτ
∏
all m

g̃(m)
v + 1−

∑
v

cvτ
∏
all m

ĝ(m)
v )

(23)
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, where Z
(m)
t , Zt are respectively the normalization constant of ξ

(m)
t (x

(m)
t−1, x

(m)
t , vt) and

ξt(xt−1, xt, vt). In Eq. 23, p̂(m)
t (x

(m)
t−1, x

(m)
t , vt) takes the same form as the joint solution Eq.

22, except a marginalized transition kernel P (x
(m)
t , vt|x(m)

t−1) which sums over all the other species
m′ 6= m. Instead of coping with exploding joint state space, we can now cope with each marginalized
Markov chain with kernel P (x

(m)
t , vt|x(m)

t−1). Moreover, g̃(m′)
v , ĝ(m′)

v can be interpreted as expectation
of g factor at species m′. This suggests that each species evolves their states marginally according to
the average effects of the others.

To summarize, we give the general algorithms.

Algorithm 2 Fixed Point Algorithm

Input: The discrete time SKM model (Eq. 1, 2, 3); the observations y(m)
t for all t,m; the observation

model P (y
(m)
t |x(m)

t ); any initialization of α(m)
t , β(m)

t , λ(m)
t >0

1: Define function: ForwardTransition(α(m)
t−1, β(m)

t )

Find ξ(m)
t (x

(m)
t−1,t) from Eq. 23; Find γ(m)

t from
〈
f(x

(m)
t )

〉
γ
(m)
t (x

(m)
t )

=
〈
f(x

(m)
t )

〉
ξ
(m)
t (x

(m)
t−1,t)

;

Update α(m)
t ← γ

(m)
t − β(m)

t . Output α(m)
t , γ(m)

t

2: Define function: BackwardTransition(α(m)
t−1, β(m)

t )

Find ξ(m)
t (x

(m)
t−1,t) from Eq. 23; Find γ(m)

t−1 from
〈
f(x

(m)
t−1)

〉
γ
(m)
t−1(x

(m)
t−1)

=
〈
f(x

(m)
t−1)

〉
ξ
(m)
t (x

(m)
t−1,t)

;

Update β(m)
t−1 ← γ

(m)
t−1 − α

(m)
t−1. Output β(m)

t−1 , γ(m)
t−1

3: repeat
4: for t=2 to T do
5: α

(m)
t , γ

(m)
t ←ForwardTransition(α(m)

t−1, β(m)
t )

6: end for
7: for t=T-1 to 1 do
8: β

(m)
t , γ

(m)
t ←BackwardTransition(α(m)

t , β(m)
t+1 )

9: end for
10: until Convergence of γ(m)

t

11: Output γ(m)
t

Algorithm 3 Gradient Ascent Algorithm

Input: The discrete time SKM model (Eq. 1, 2, 3); the observations y(m)
t for all t, m; the obser-

vation model P (y
(m)
t |x(m)

t ); any initialization of α(m)
t , β(m)

t , γ(m)
t = α

(m)
t + β

(m)
t ; Function

ForwardTransition, BackwardTransition in algorithm 2
1: repeat
2: for t=2 to T-1 do
3: repeat
4: Update p̂t(xt−1,t) = 1

Zt−1,t
exp(α>t−1 ·f(xt−1))P (xt, yt|xt−1) exp((γ>t −α>t ) ·f(xt))

and 〈f(xt)〉p̂t according to 7,8,9 under dual feasible constraint
5: until Convergence or enough number of iterations
6: end for
7: for t=T-1 to 2 do
8: Do the same as line 4 to 6
9: end for

10: until Convergence
11: Output p̂t(xt−1,t) = 1

Zt−1,t
exp(α>t−1 · f(xt−1))P (xt, yt|xt−1) exp((γ>t − α>t ) · f(xt)) and

〈f(xt)〉p̂t
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