
Online to Offline Conversions, Universality and
Adaptive Minibatch Sizes

(Including supplementary material)

Kfir Y. Levy
Department of Computer Science, ETH Zürich.

yehuda.levy@inf.ethz.ch

Abstract

We present an approach towards convex optimization that relies on a novel scheme
which converts adaptive online algorithms into offline methods. In the offline
optimization setting, our derived methods are shown to obtain favourable adaptive
guarantees which depend on the harmonic sum of the queried gradients. We
further show that our methods implicitly adapt to the objective’s structure: in the
smooth case fast convergence rates are ensured without any prior knowledge of
the smoothness parameter, while still maintaining guarantees in the non-smooth
setting. Our approach has a natural extension to the stochastic setting, resulting in
a lazy version of SGD (stochastic GD), where minibathces are chosen adaptively
depending on the magnitude of the gradients. Thus providing a principled approach
towards choosing minibatch sizes.

1 Introduction

Over the past years data adaptiveness has proven to be crucial to the success of learning algorithms.
The objective function underlying “big data" applications often demonstrates intricate structure:
the scale and smoothness are often unknown and may change substantially in between different
regions/directions, [1]. Learning methods that acclimatize to these changes may exhibit superior
performance compared to non adaptive procedures.

State-of-the-art first order methods like AdaGrad, [1], and Adam, [2], adapt the learning rate on the
fly according to the feedback (i.e. gradients) received during the optimization process. AdaGrad and
Adam are guaranteed to work well in the online convex optimization setting, where loss functions
may be chosen adversarially and change between rounds. Nevertheless, this setting is harder than the
stochastic/offline settings, which may better depict practical applications. Interestingly, even in the
offline convex optimization setting it could be shown that in several scenarios very simple schemes
may substantially outperform the output of AdaGrad/Adam. An example of such a simple scheme is
choosing the point with the smallest gradient norm among all rounds. In the first part of this work we
address this issue and design adaptive methods for the offline convex optimization setting. At heart of
our derivations is a novel scheme which converts adaptive online algorithms into offline methods with
favourable guarantees1. Our shceme is inspired by standard online to batch conversions, [3].

A seemingly different issue is choosing the minibatch size, b, in the stochastic setting. Stochastic
optimization algorithms that can access a noisy gradient oracle may choose to invoke the oracle
b times in every query point, subsequently employing an averaged gradient estimate. Theory for
stochastic convex optimization suggests to use a minibatch of b = 1, and predicts a degradation of

√
b

1For concreteness we concentrate in this work on converting AdaGrad, [1]. Note that our conversion scheme
applies more widely to other adaptive online methods.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



factor upon using larger minibatch sizes2. Nevertheless in practice larger minibatch sizes are usually
found to be effective. In the second part of this work we design stochastic optimization methods in
which minibatch sizes are chosen adaptively without any theoretical degradation. These are natural
extensions of the offline methods presented in the first part.

Our contributions:

Offline setting: We present two (families of) algorithms AdaNGD (Alg. 2) and SC-AdaNGD
(Alg. 3) for the convex/strongly-convex settings which achieve favourable adaptive guarantees
(Thms. 2.1, 2.2, 3.1, 3.2 ). The latter theorems also establish their universality, i.e., their ability to
implicitly take advantage of the objective’s smoothness and attain rates as fast as GD would have
achieved if the smoothness parameter was known. In contrast to other universal approaches such as
line-search-GD, [4], and universal gradient [5], we do so without any line search procedure.
Concretely, without the knowledge of the smoothness parameter our algorithm ensures an O(1/

√
T )

rate in general convex case and an O(1/T ) rate if the objective is also smooth (Thms. 2.1, 2.2). In
the strongly-convex case our algorithm ensures an O(1/T ) rate in general and an O(exp(−γT )) rate
if the objective is also smooth (Thm. 3.2 ), where γ is the condition number.

Stochastic setting: We present Lazy-SGD (Algorithm 4) which is an extension of our offline
algorithms. Lazy-SGD employs larger minibatch sizes in points with smaller gradients, which
selectively reduces the variance in the “more important" query points. Lazy-SGD guarantees are
comparable with SGD in the convex/strongly-convex settings (Thms. 4.2, 4.3).

On the technical side, our online to offline conversion schemes employ three simultaneous mech-
anisms: an adaptive online algorithm used in conjunction with gradient normalization and with
a respective importance weighting. To the best of our knowledge the combination of the above
techniques is novel, and we believe it might also find use in other scenarios.

This paper is organized as follows. In Sections 2,3, we present our methods for the offline
convex/strongly-convex settings. Section 4 describes our methods for the stochastic setting, and
Section 5 concludes. Extensions and a preliminary experimental study appear in the Appendix.

1.1 Related Work

The authors of [1] simultaneously to [6], were the first to suggest AdaGrad—an adaptive gradient
based method, and prove its efficiency in tackling online convex problems. AdaGrad was subsequently
adjusted to the deep-learning setting to yield the RMSprop, [7], and Adadelta, [8], heuristics. Adam,
[2], is a popular adaptive algorithm which is often the method of choice in deep-learning applications.
It combines ideas from AdaGrad together with momentum machinery, [9].

An optimization procedure is called universal if it implicitly adapts to the objective’s smoothness. In
[5], universal gradient methods are devised for the general convex setting. Concretely, without the
knowledge of the smoothness parameter, these methods attain the standard O(1/T ), an accelerated
O(1/T 2) rates for smooth objectives, and an O(1/

√
T ) rate in the non-smooth case. The core

technique in this work is a line search procedure which estimates the smoothness parameter in
every iteration. For strongly-convex and smooth objectives, line search techniques, [4], ensure
linear convergence rate, without the knowledge of the smoothness parameter. However, line search
is not “fully universal", in the sense that it holds no guarantees in the non-smooth case. For the
latter setting we present a method which is “fully universal" (Thm. 3.2), nevertheless it requires the
strong-convexity parameter.

The usefulness of employing normalized gradients was demonstrated in several non-convex scenarios.
In the context of quasi-convex optimization, [10], and [11], established convergence guarantees for
the offline/stochastic settings. More recently, it was shown in [12], that normalized gradient descent
is more appropriate than GD for saddle-evasion scenarios.

In the context of stochastic optimization, the effect of minibatch size was extensively investigated
throughout the past years, [13, 14, 15, 16, 17, 18]. Yet, all of these studies: (i) assume a smooth
expected loss, (ii) discuss fixed minibatch sizes. Conversely, our work discusses adaptive minibatch
sizes, and applies to both smooth/non-smooth expected losses.

2A degradation by a
√
b factor in the general case and by a b factor in the strongly-convex case.

2



Algorithm 1 Adaptive Gradient Descent (AdaGrad)
Input: #Iterations T , x1 ∈ Rd, set K
Set: Q0 = 0
for t = 1 . . . T do

Calculate: gt = ∇ft(xt)
Update:

Qt = Qt−1 + ‖gt‖2

Set: ηt = D/
√

2Qt
Update: xt+1 = ΠK (xt − ηtgt)

end for

1.2 Preliminaries

Notation: ‖ · ‖ denotes the `2 norm, G denotes a bound on the norm of the objective’s gradients, and
[T ] := {1, . . . , T}. For a set K ∈ Rd its diameter is defined as D = supx,y∈K ‖x − y‖. Next we
define H-strongly-convex/β-smooth functions,

f(y) ≥ f(x) +∇f(x)>(y − x) +
H

2
‖x− y‖2; ∀x, y ∈ K (H-strong-convexity)

f(y) ≤ f(x) +∇f(x)>(y − x) +
β

2
‖x− y‖2; ∀x, y ∈ K (β-smoothness)

1.2.1 AdaGrad

The methods presented in this paper lean on AdaGrad (Alg. 1), an online optimization method which
employs an adaptive learning rate. The following theorem states AdaGrad’s guarantees, [1],
Theorem 1.1. Let K be a convex set with diameter D. Let {ft}Tt=1 be an arbitrary sequence of
convex loss functions. Then Algorithm 1 guarantees the following regret;

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x) ≤

√√√√2D2

T∑
t=1

‖gt‖2 .

2 Adaptive Normalized Gradient Descent (AdaNGD)

In this section we discuss the convex optimization setting and introduce our AdaNGDk algorithm,
which depends on a parameter k ∈ R. We first derive a general convergence rate which holds for a
general k. Subsequently, we elaborate on the k = 1, 2 cases which exhibit universality as well as
adaptive guarantees that may be substantially better compared to standard methods.

Our method AdaNGDk is depicted in Alg. 2. This algorithm can be thought of as an online to offline
conversion scheme which utilizes AdaGrad (Alg. 1) as a black box and eventually outputs a weighted
sum of the online queries. Indeed, for a fixed k ∈ R, it is not hard to notice that AdaNGDk is
equivalent to invoking AdaGrad with the following loss sequence {f̃t(x) := g>t x/‖gt‖k}Tt=1. And
eventually weighting each query point inversely proportional to the k’th power norm of its gradient.
The reason behind this scheme is that in offline optimization it makes sense to dramatically reduce
the learning rate upon uncountering a point with a very small gradient. For k ≥ 1, this is achieved by
invoking AdaGrad with gradients normalized by their k’th power norm. Since we discuss constrained
optimization, we use the projection operator defined as, ΠK(y) := minx∈K ‖x−y‖ . The next lemma
states the guarantee of AdaNGD for a general k:
Lemma 2.1. Let k ∈ R, K be a convex set with diameter D, and f be a convex function; Also let x̄T
be the output of AdaNGDk (Algorithm 2), then the following holds:

f(x̄T )−min
x∈K

f(x) ≤

√
2D2

∑T
t=1 1/‖gt‖2(k−1)∑T
t=1 1/‖gt‖k

3



Algorithm 2 Adaptive Normalized Gradient Descent (AdaNGDk)
Input: #Iterations T , x1 ∈ Rd, set K , parameter k
Set: Q0 = 0
for t = 1 . . . T − 1 do

Calculate: gt = ∇f(xt), ĝt = gt/‖gt‖k
Update:

Qt = Qt−1 + 1/‖gt‖2(k−1)

Set ηt = D/
√

2Qt
Update: xt+1 = ΠK (xt − ηtĝt)

end for
Return: x̄T =

∑T
t=1

1/‖gt‖k∑T
τ=1 1/‖gτ‖k

xt

Proof sketch. Notice that the AdaNGDk algorithm is equivalent to applying AdaGrad to the following
loss sequence: {f̃t(x) := g>t x/‖gt‖k}Tt=1. Thus, applying Theorem 1.1, and using the definition of
x̄T together with Jensen’s inequality the lemma follows.

For k = 0, Algorithm 2 becomes AdaGrad (Alg. 1). Next we focus on the cases where k = 1, 2,
showing improved adaptive rates and universality compared to GD/AdaGrad. These improved rates
are attained thanks to the adaptivity of the learning rate: when query points with small gradients are
encountered, AdaNGDk (with k ≥ 1) reduces the learning rate, thus focusing on the region around
these points. The hindsight weighting further emphasizes points with smaller gradients.

2.1 AdaNGD1

Here we show that AdaNGD1 enjoys a rate of O(1/
√
T ) in the non-smooth convex setting, and a

fast rate of O(1/T ) in the smooth setting. We emphasize that the same algorithm enjoys these rates
simultaneously, without any prior knowledge of the smoothness or of the gradient norms.

From Algorithm 2 it can be noted that for k = 1 the learning rate becomes independent of the
gradients, i.e. ηt = D/

√
2t, the update is made according to the direction of the gradients, and the

weighting is inversely proportional to the norm of the gradients. The following Theorem establishes
the guarantees of AdaNGD1,
Theorem 2.1. Let k = 1, K be a convex set with diameter D, and f be a convex function; Also let
x̄T be the outputs of AdaNGD1 (Alg. 2), then the following holds:

f(x̄T )−min
x∈K

f(x) ≤
√

2D2T∑T
t=1 1/‖gt‖

≤
√

2GD√
T

.

Moreover, if f is also β-smooth and the global minimum x∗ = arg minx∈Rn f(x) belongs to K, then:

f(x̄T )−min
x∈K

f(x) ≤ D
√
T∑T

t=1 1/‖gt‖
≤ 4βD2

T
.

Proof sketch. The data dependent bound is a direct corollary of Lemma 2.1. The general case bound
holds by using ‖gt‖ ≤ G. The bound for the smooth case is proven by showing

∑T
t=1 ‖gt‖ ≤ O(

√
T ).

This translates to a lower bound
∑T
t=1 1/‖gt‖ ≥ Ω(T 3/2), which concludes the proof.

The data dependent bound in Theorem 2.1 may be substantially better compared to the bound of
the GD/AdaGrad. As an example, assume that half of the gradients encountered during the run
of the algorithm are of O(1) norms, and the other gradient norms decay proportionally to O(1/t).
In this case the guarantee of GD/AdaGrad is O(1/

√
T ), whereas AdaNGD1 guarantees a bound

that behaves like O(1/T 3/2). Note that the above example presumes that all algorithms encounter
the same gradient magnitudes, which might be untrue. Nevertheless in the smooth case AdaNGD1

provably benefits due to its adaptivity.

4



Algorithm 3 Strongly-Convex AdaNGD (SC-AdaNGDk)
Input: #Iterations T , x1 ∈ Rd, set K, strong-convexity H , parameter k
Set: Q0 = 0
for t = 1 . . . T − 1 do

Calculate: gt = ∇f(xt), ĝt = gt/‖gt‖k
Update:

Qt = Qt−1 + 1/‖gt‖k

Set ηt = 1/HQt
Update: xt+1 = ΠK (xt − ηtĝt)

end for
Return: x̄T =

∑T
t=1

1/‖gt‖k∑T
τ=1 1/‖gτ‖k

xt

2.2 AdaNGD2

Here we show that AdaNGD2 enjoys comparable guarantees to AdaNGD1 in the general/smooth
case. Similarly to AdaNGD1 the same algorithm enjoys these rates simultaneously, without any
prior knowledge of the smoothness or of the gradient norms. The following Theorem establishes the
guarantees of AdaNGD2,
Theorem 2.2. Let k = 2, K be a convex set with diameter D, and f be a convex function; Also let
x̄T be the outputs of AdaNGD2 (Alg. 2), then the following holds:

f(x̄T )−min
x∈K

f(x) ≤
√

2D2√∑T
t=1 1/‖gt‖2

≤
√

2GD√
T

.

Moreover, if f is also β-smooth and the global minimum x∗ = arg minx∈Rn f(x) belongs to K, then:

f(x̄T )−min
x∈K

f(x) ≤
√

2D2√∑T
t=1 1/‖gt‖2

≤ 4βD2

T
.

It is interesting to note that AdaNGD2 will have always performed better than AdaGrad, had both
algorithms encountered the same gradient norms. This is due to the well known inequality between
arithmetic and harmonic means, [19], 1

T

∑T
t=1 at ≥

1
1
T

∑T
t=1 1/at

, ∀{at}Tt=1 ⊂ R+ , which directly

implies, 1√∑T
t=1 1/‖gt‖2

≤ 1
T

√∑T
t=1 ‖gt‖2 .

3 Adaptive NGD for Strongly Convex Functions

Here we discuss the offline optimization setting of strongly convex objectives. We introduce our
SC-AdaNGDk algorithm, and present convergence rates for general k ∈ R. Subsequently, we
elaborate on the k = 1, 2 cases which exhibit universality as well as adaptive guarantees that may be
substantially better compared to standard methods.

Our SC-AdaNGDk algorithm is depicted in Algorithm 3. Similarly to its non strongly-convex
counterpart, SC-AdaNGDk can be thought of as an online to offline conversion scheme which utilizes
an online algorithm which we denote SC-AdaGrad (we elaborate on the latter in the appendix). The
next Lemma states its guarantees,
Lemma 3.1. Let k ∈ R, and K be a convex set. Let f be an H-strongly-convex function; Also let x̄T
be the outputs of SC-AdaNGDk (Alg. 3), then the following holds:

f(x̄T )−min
x∈K

f(x) ≤ 1

2H
∑T
t=1 ‖gt‖−k

T∑
t=1

‖gt‖−2(k−1)∑t
τ=1 ‖gτ‖−k

.

Proof sketch. In the appendix we present and analyze SC-AdaGrad. This is an online first order algo-
rithm for strongly-convex functions in which the learning rate decays according to ηt = 1/

∑t
τ=1Hτ ,

5



where Hτ is the strong-convexity parameter of the loss function at time τ . Then we show that
SC-AdaNGDk is equivalent to applying SC-AdaGrad to the following loss sequence:{

f̃t(x) =
1

‖gt‖k
g>t x+

H

2‖gt‖k
‖x− xt‖2

}T
t=1

.

The lemma follows by combining the regret bound of SC-AdaGrad together with the definition of x̄T
and with Jensen’s inequality.

For k = 0, SC-AdaNGD becomes the standard GD algorithm which uses learning rate of ηt = 1/Ht.
Next we focus on the cases where k = 1, 2.

3.1 SC-AdaNGD1

Here we show that SC-AdaNGD1 enjoys a rate of Õ(1/T ) for strongly-convex objectives, and a
faster rate of Õ(1/T 2) assuming that the objective is also smooth. We emphasize that the same
algorithm enjoys these rates simultaneously, without any prior knowledge of the smoothness or of the
gradient norms. The following theorem establishes the guarantees of SC-AdaNGD1,
Theorem 3.1. Let k = 1, and K be a convex set. Let f be a G-Lipschitz and H-strongly-convex
function; Also let x̄T be the outputs of SC-AdaNGD1 (Alg. 3), then the following holds:

f(x̄T )−min
x∈K

f(x) ≤
G
(

1 + log
(∑T

t=1
G
‖gt‖

))
2H
∑T
t=1

1
‖gt‖

≤ G2(1 + log T )

2HT
.

Moreover, if f is also β-smooth and the global minimum x∗ = arg minx∈Rn f(x) belongs to K, then,

f(x̄T )−min
x∈K

f(x) ≤ (β/H)G2 (1 + log T )
2

HT 2
.

3.2 SC-AdaNGD2

Here we show that SC-AdaNGD2 enjoys the standard Õ(1/T ) rate for strongly-convex objectives,
and a linear rate assuming that the objective is also smooth. We emphasize that the same algorithm
enjoys these rates simultaneously, without any prior knowledge of the smoothness or of the gradient
norms. In the case where k = 2 the guarantee of SC-AdaNGD is as follows,
Theorem 3.2. Let k = 2, K be a convex set, and f be a G-Lipschitz and H-strongly-convex function;
Also let x̄T be the outputs of SC-AdaNGD2 (Alg. 3), then the following holds:

f(x̄T )−min
x∈K

f(x) ≤
1 + log(G2

∑T
t=1 ‖gt‖−2)

2H
∑T
t=1 ‖gt‖−2

≤ G2(1 + log T )

2HT
.

Moreover, if f is also β-smooth and the global minimum x∗ = arg minx∈Rn f(x) belongs to K, then,

f(x̄T )−min
x∈K

f(x) ≤ 3G2

2H
e−

H
β T

(
1 +

H

β
T

)
.

Intuition: For strongly-convex objectives the appropriate GD algorithm utilizes two very extreme
learning rates of ηt ∝ 1/t vs. ηt = 1/β for the general/smooth settings respectively. A possible
explanation to the universality of SCAdaNGD2 is that it implicitly interpolate between these rates.
Indeed the update rule of our algorithm can be written as follows, xt+1 = xt − 1

H
‖gt‖−2∑t
τ=1 ‖gτ‖−2 gt .

Thus, ignoring the hindsight weighting, SCAdaNGD2 is equivalent to GD with an adaptive learning
rate η̃t := ‖gt‖−2/H

∑t
τ=1 ‖gτ‖−2. Now, when all gradient norms are of the same magnitude, then

η̃t ∝ 1/t, which boils down to the standard GD for strongly-convex objectives. Conversely, assume
that the gradients are exponentially decaying, i.e., that ‖gt‖ ∝ qt for some q < 1. In this case η̃t is
approximately constant. We believe that the latter applies for strongly-convex & smooth case.

6



Algorithm 4 Lazy Stochastic Gradient Descent (LazySGD)
Input: #Oracle Queries T , x1 ∈ Rd, set K, η0, p
Set: t = 0, s = 0
while t ≤ T do

Update: s = s+ 1
Set G = GradOracle(xs), i.e., G generates i.i.d. noisy samples of∇f(xs)
Get: (g̃s, ns) = AE(G, T − t) % Adaptive Minibatch

Update: t = t+ ns
Calculate: ĝs = nsg̃s
Set: ηs = η0/t

p

Update: xs+1 = ΠK (xs − ηsĝs)
end while
Return: x̄T =

∑s
i=1

ni
T xi . (Note that

∑s
i=1 ni = T )

Algorithm 5 Adaptive Estimate (AE)
Input: random vectors generator G, sample budget Tmax, sample factor m0

Set: i = 0, N = 0, g̃0 = 0
while N < Tmax do

Take τi = min{2i, Tmax −N} samples from G
Set N ← N + τi
Update: g̃N ← Average of N samples received so far from G
If ‖g̃N‖ > 3m0/

√
N then return (g̃N , N)

Update i← i+ 1
end while
Return: (g̃N , N)

4 Adaptive NGD for Stochastic Optimization

Here we show that using data-dependent minibatch sizes, we can adapt our (SC-)AdaNGD2 algo-
rithms (Algs. 2, 3 with k = 2) to the stochastic setting, and achieve the well know convergence rates
for the convex/strongly-convex settings. Next we introduce the stochastic optimization setting, and
then we present and discuss our Lazy SGD algorithm.

Setup: We consider the problem of minimizing a convex/strongly-convex function f : K 7→ R,
where K ∈ Rd is a convex set. We assume that optimization lasts for T rounds; on each round
t = 1, . . . , T , we may query a point xt ∈ K, and receive a feedback. After the last round, we choose
x̄T ∈ K, and our performance measure is the expected excess loss, defined as,

E[f(x̄T )]−min
x∈K

f(x) .

Here we assume that our feedback is a first order noisy oracle G : K 7→ Rd such that upon
querying G with a point xt ∈ K, we receive a bounded and unbiased gradient estimate, G(xt),
such E[G(xt)|xt] = ∇f(xt); ‖G(xt)‖ ≤ G. We also assume that the that the internal coin tosses
(randomizations) of the oracle are independent. It is well known that variants of Stochastic Gradient
Descent (SGD) are ensured to output an estimate x̄T such that the excess loss is bounded by
O(1/

√
T )/O(1/T ) for the setups of convex/strongly-convex stochastic optimization, [20], [21].

Notation: In this section we make a clear distinction between the number of queries to the gradient
oracle, denoted henceforth by T ; and between the number of iterations in the algorithm, denoted
henceforth by S. We care about the dependence of the excess loss in T .

4.1 Lazy Stochastic Gradient Descent

Data Dependent Minibatch sizes: The Lazy SGD (Alg. 4) algorithm that we present in this section,
uses a minibatch size that changes in between query points. Given a query point xs, Lazy SGD
invokes the noisy gradient oracle Õ(1/‖gs‖2) times, where gs := ∇f(xs)

3. Thus, in contrast to

3Note that the gradient norm, ‖gs‖, is unknown to the algorithm. Nevertheless it is estimated on the fly.

7



SGD which utilizes a fixed number of oracle calls per query point, our algorithm tends to stall in
points with smaller gradients, hence the name Lazy SGD.

Here we give some intuition regarding our adaptive minibatch size rule: Consider the stochastic
optimization setting. However, imagine that instead of the noisy gradient oracle G, we may access an
improved (imaginary) oracle which provides us with unbiased estimates, g̃(x), that are accurate up
to some multiplicative factor, e.g., E[g̃(x)|x] = ∇f(x), and 1

2‖∇f(x)‖ ≤ ‖g̃(x)‖ ≤ 2‖∇f(x)‖ .
Then intuitively we could have used these estimates instead of the exact normalized gradients inside
our (SC-)AdaNGD2 algorithms (Algs. 2, 3 with k = 2), and still get similar (in expectation) data
dependent bounds. Quite nicely, we may use our original noisy oracle G to generate estimates
from this imaginary oracle. This can be done by invoking G for Õ(1/‖gs‖2) times at each query
point. Using this minibatch rule, the total number of calls to G (along all iterations) is equal to
T =

∑S
s=1 1/‖gs‖2. Plugging this into the data dependent bounds of (SC-)AdaNGD2 (Thms. 2.2,

3.2), we get the well known Õ(1/
√
T )/Õ(1/T ) rates for the stochastic convex settings.

The imaginary oracle: The construction of the imaginary oracle from the original oracle appears in
Algorithm 5 (AE procedure) . It receives as an input, G, a generator of independent random vectors
with an (unknown) expected value g ∈ Rd. The algorithm outputs two variables: N which is an
estimate of 1/‖g‖2, and g̃N an average of N random vectors from G. Thus, it is natural to think of
Ng̃N as an estimate for g/‖g‖2. Moreover, it can be shown that E[N(g̃N − g)] = 0. Thus in a sense
we receive an unbiased estimate. The guarantees of Algorithm 5 appear below,
Lemma 4.1 (Informal). Let Tmax ≥ 1, δ ∈ (0, 1). Suppose an oracle G : K 7→ Rd that generates
G-bounded i.i.d. random vectors with an (unknown) expected value g ∈ Rd. Then w.p.≥ 1 − δ,
invoking AE (Algorithm 5), with m0 = Θ(G log(1/δ)), it is ensured that:

N = Θ(min{m0/‖g‖2, Tmax}), and E[N(g̃N − g)] = 0 .

Lazy SGD: Now, plugging the output of the AE algorithm into our offline algorithms (SC-)AdaNGD2,
we get their stochastic variants which appears in Algorithm 4 (Lazy SGD). This algorithm is equivalent
to the offline version of (SC-)AdaNGD2, with the difference that we use ns instead of 1/‖∇f(xs)‖2
and nsg̃s instead of∇f(xs)/‖∇f(xs)‖2.

Let T be a bound on the total number of queries to the the first order oracle G, and δ be the confidence
parameter used to set m0 in the AE procedure. Next we present the guarantees of LazySGD,
Lemma 4.2. Let δ = O(T−3/2); let K be a convex set with diameter D, and f be a convex function;
and assume ‖G(x)‖ ≤ G w.p.1. Then using LazySGD with η0 = D/

√
2G, p = 1/2, ensures:

E[f(x̄T )]−min
x∈K

f(x) ≤ O

(
GD log(T )√

T

)
.

Lemma 4.3. Let δ = O(T−2), letK be a convex set, and f be anH-strongly-convex convex function;
and assume ‖G(x)‖ ≤ G w.p.1. Then using LazySGD with η0 = 1/H , p = 1, ensures:

E[f(x̄T )]−min
x∈K

f(x) ≤ O

(
G2 log2(T )

HT

)
.

Note that LazySGD uses minibatch sizes that are adapted to the magnitude of the gradients, and still
maintains the optimal O(1/

√
T )/O(1/T ) rates. In contrast using a fixed minibatch size b for SGD

might degrade the convergence rates, yielding O(
√
b/
√
T )/O(b/T ) guarantees. This property of

LazySGD may be beneficial when considering distributed computations (see [13]).

5 Discussion

We have presented a new approach based on a conversion scheme, which exhibits universality and
new adaptive bounds in the offline convex optimization setting, and provides a principled approach
towards minibatch size selection in the stochastic setting. Among the many questions that remain
open is whether we can devise “accelerated" universal methods. Furthermore, our universality results
only apply when the global minimum is inside the constraints. Thus, it is natural to seek for methods
that ensure universality when this assumption is violated. Moreover, our algorithms depend on
a parameter k ∈ R, but only the cases where k ∈ {0, 1, 2} are well understood. Investigating a
wider spectrum of k values is intriguing. Lastly, it is interesting to modify and test our methods in
non-convex scenarios, especially in the context of deep-learning applications.

8



Acknowledgments

I would like to thank Elad Hazan and Shai Shalev-Shwartz for fruitful discussions during the early
stages of this work.

This work was supported by the ETH Zürich Postdoctoral Fellowship and Marie Curie Actions for
People COFUND program.

References
[1] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning

and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

[2] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[3] Nicolo Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the generalization ability of
on-line learning algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057, 2004.

[4] Stephen Wright and Jorge Nocedal. Numerical optimization. Springer Science, 35:67–68, 1999.

[5] Yu Nesterov. Universal gradient methods for convex optimization problems. Mathematical
Programming, 152(1-2):381–404, 2015.

[6] H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex
optimization. COLT 2010, page 244, 2010.

[7] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2),
2012.

[8] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

[9] Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of
convergence o (1/k2). In Doklady an SSSR, volume 269, pages 543–547, 1983.

[10] Yu E Nesterov. Minimization methods for nonsmooth convex and quasiconvex functions.
Matekon, 29:519–531, 1984.

[11] Elad Hazan, Kfir Levy, and Shai Shalev-Shwartz. Beyond convexity: Stochastic quasi-convex
optimization. In Advances in Neural Information Processing Systems, pages 1594–1602, 2015.

[12] Kfir Y Levy. The power of normalization: Faster evasion of saddle points. arXiv preprint
arXiv:1611.04831, 2016.

[13] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online
prediction using mini-batches. Journal of Machine Learning Research, 13(Jan):165–202, 2012.

[14] Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. Better mini-batch algorithms
via accelerated gradient methods. In Advances in neural information processing systems, pages
1647–1655, 2011.

[15] Shai Shalev-Shwartz and Tong Zhang. Accelerated mini-batch stochastic dual coordinate ascent.
In Advances in Neural Information Processing Systems, pages 378–385, 2013.

[16] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J Smola. Efficient mini-batch training for
stochastic optimization. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 661–670. ACM, 2014.

[17] Martin Takáč, Peter Richtárik, and Nathan Srebro. Distributed mini-batch sdca. arXiv preprint
arXiv:1507.08322, 2015.

9



[18] Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Par-
allelizing stochastic approximation through mini-batching and tail-averaging. arXiv preprint
arXiv:1610.03774, 2016.

[19] Peter S Bullen, Dragoslav S Mitrinovic, and M Vasic. Means and their Inequalities, volume 31.
Springer Science & Business Media, 2013.

[20] Arkadii Nemirovskii, David Borisovich Yudin, and ER Dawson. Problem complexity and
method efficiency in optimization. 1983.

[21] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69(2-3):169–192, 2007.

[22] Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A universal catalyst for first-order optimiza-
tion. In Advances in Neural Information Processing Systems, pages 3384–3392, 2015.

[23] Elad Hazan and Tomer Koren. Linear regression with limited observation. In Proceedings of
the 29th International Conference on Machine Learning (ICML-12), pages 807–814, 2012.

[24] Kenneth L Clarkson, Elad Hazan, and David P Woodruff. Sublinear optimization for machine
learning. Journal of the ACM (JACM), 59(5):23, 2012.

[25] Sham Kakade. Lecture notes in multivariate analysis, dimensionality reduction, and spectral
methods. http://stat.wharton.upenn.edu/~skakade/courses/stat991_
mult/lectures/MatrixConcen.pdf, April 2010.

[26] Anatoli B Juditsky and Arkadi S Nemirovski. Large deviations of vector-valued martingales in
2-smooth normed spaces. arXiv preprint arXiv:0809.0813, 2008.

[27] David Asher Levin, Yuval Peres, and Elizabeth Lee Wilmer. Markov chains and mixing times.
American Mathematical Soc., 2009.

10

http://stat.wharton.upenn.edu/~skakade/courses/stat991_mult/lectures/MatrixConcen.pdf
http://stat.wharton.upenn.edu/~skakade/courses/stat991_mult/lectures/MatrixConcen.pdf


A Extensions

Acceleration: The catalyst approach, [22], enables to take any first order method that ensures linear
convergence rates in the strongly-convex and smooth case and transform it into an accelerated method
obtaining O(exp(−√γT )) rate in the strongly-convex and smooth case, and O(1/T 2) rate in the
smooth case. In particular, this acceleration applies to our SC-AdaNGD2 Algorithm. Unfortunately,
the catalyst approach requires the smoothness parameter, and the resulting accelerated SC-AdaNGD2

is no longer universal.

Other adaptive online schemes: The adaptive methods that we have presented so far lean on
AdaGrad (Alg. 1). Nevertheless, we may base our methods on other online algorithms with adaptive
regret guarantees, and obtain convergence rates of the form,

f(x̄T )−min
x∈K

f(x) ≤
RA

(
g1/‖g1‖k, . . . , gT /‖gT ‖k

)∑T
t=1 ‖gt‖k

,

where RA(θ1, . . . , θT ) is the regret bound of algorithm A with respect to the linear loss sequence
{θ>t x}Tt=1. For example we can use the very popular version of AdaGrad, which employs a separate
learning rate to different directions. Also noteworthy is the Multiplicative Weights (MW) online
algorithm, which over the simplex ensures a regret bound of the form (see [23], [24]),

RMW ≤

√√√√ T∑
t=1

‖gt‖2∞ log(d) .

Using AdaNGDk with the appropriate modifications: AdaGrad↔MW, and `2 ↔ `∞, yields similar
adaptive guarantees as in Theorems 2.1, 2.2, with the difference that, D ↔ log d, and `2 ↔
`∞.

B Experiments

As a preliminary experimental investigation we compare our SC-AdaNGDk to GD accelerated-GD,
and line-search for two strongly-convex objectives4. Concretely, we compare the above methods for
the following quadratic (smooth) minimization problem,

min
x∈Rd

R(x) :=
1

2

d∑
i=1

i · x2i .

,and also for the following non-smooth problem,

min
‖x‖≤1

F (x) :=
1

2

d∑
i=1

i · x2i + ‖x‖1 .

where xi is the i’th component of x, and ‖x‖1 is the `1 norm. Note that both R and F are 1-
strongly-convex, however R is d-smooth while F is non-smooth. Also, for both R and F the unique
global minimum is in x = 0. We initialize all of the methods at the same random point, and take
d = 100.

The results are depicted in Fig. 1. In Fig. 1(a) we present our results for the smooth quadratic
objective R. We compare three SC-AdaNGDk variants k ∈ {1, 1.1, 2}, to GD which uses a constant
learning rate ηt = 1/β (recall β = d = 100), and to Nesterov’s accelerated method. While this is not
surprising that the latter demonstrates the best performance, it is surprising that all SC-AdaNGDk
variants are performing better than GD/lines-search, and the k = 1.1 variant substantially outperforms
GD. Also, in contrast to GD, SC-AdaNGDk are not descent methods, in the sense that the losses are
not necessarily monotonically decreasing from one iteration to another.

Fig. 1(b) shows the results for the non-smooth objective F , where we compare two SC-AdaNGDk
variants k ∈ {1, 2}, with two variants of GD, (i) const learning rate ηt = 1/β, and (ii) decaying

4Line-search may invoke the gradient oracle several times in each iteration. To make a fair comparison, we
present performance vs. #calls to the gradient oracle

11



500 1000 1500 2000 2500 3000
#Gradient Calculations

-100

-80

-60

-40

-20

0

lo
g

10
(L

o
ss

)

B-Armijo LineSearch
Accelerated GD
GD-const
SC-AdaNGD2
SC-AdaNGD1
SC-AdaNGD1.1

(a)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
#Gradient Calculations

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

lo
g

10
(L

o
ss

)

B-Armijo LineSearch
GD-const
GD-SC(decay)
SC-AdaNGD2
SC-AdaNGD1
SC-AdaNGD1.1

(b)

0 1 2 3 4 5 6 7

x1

-4

-3

-2

-1

0

1

2

3

4

5

x2

Accelerated GD
GD-const
SC-AdaNGD2
SC-AdaNGD1
SC-AdaNGD1.1

(c)

Figure 1: SC-AdaNGDk compared to GD, accelerated-GD and line-search. Left: strongly-convex
and smooth objective, R(·). Middle: strongly-convex and non-smooth objective, F (·). Right: iterates
of these methods for a 2D quadratic objective, Z(·).

0 2000 4000 6000 8000 10000
#Gradient Calculations

-14

-12

-10

-8

-6

-4

-2

0

2

4

lo
g

10
(L

o
ss

)

B-Armijo LineSearch
Accelerated GD
GD-const
SC-AdaNGD2
SC-AdaNGD1
SC-AdaNGD1.1

(a)

Figure 2: Robustness experiments comparing SC-AdaNGDk with GD and accelerated-GD for the
strongly-convex and smooth objective, R(·). Gradient oracle is perturbed with ∝ 10−6 noise
magnitude.

learning rate ηt = 1/Ht. We have also compared to accelerated-GD and found its performance to
be similar to GD-const (and therefore omitted). As can be seen, GD with a constant learning rate
is doing very poorly, SC-AdaNGD2 demonstrates the best performance, and GD-SC (decay) lags
behind only by little. Note that for GD-SC (decay) we present results for a moving average over the
GD iterates (which improve its performance).

The universality of SC-AdaNGDk for k ∈ {1, 2} is clearly evident from Figures 1(a) ,1(b). In order
to learn more about the character of SC-AdaNGD, we have applied the above methods to a simple
2D quadratic objective,

Z(x) = x21 + 10x22 .

The progress (iterates) of these methods is presented in Fig. 1(c). It can be seen that GD and
accelerated-GD converge quickly to the x1 axis and progress along it towards (0, 0). Conversely,
SC-AdaNGD methods progress diagonally, however take larger steps in the x1 directions compared
to GD and accelerated-GD.

Robustness: We have also examined the robustness of SC-AdaNGD compared to GD, accelerated-
GD and line-search. We applied these methods to the quadratic objective R, however instead of the
exact gradients we provided them with a slightly noisy and (unbiased) gradient feedback. The results
when using noise perturbation magnitude of 10−6 appear in Fig. 2. This behaviour persisted when
we employed other noise magnitudes.

Stochastic setting: We made a few experiments in the stochastic setting. While examining LazySGD,
we have found out that using the ns output of the AE procedure (Alg. 5) is a too crude estimate for
1/‖gs‖2 (due to the doubling procedure), which lead to unsatisfactory performance. Instead, we
found that using 1/‖g̃s‖2 is a much better approximation, that works very well in practice.

12



An initial experimental study on several simple stochastic problems shows that LazySGD (with the
above modification) compares with minibatch SGD, for various values of minibatch sizes. A more
elaborate examination of LazySGD is left for future work.

C Proofs for Section 2 (AdaNGD)

C.1 Proof of Theorem 1.1 (AdaGrad)

Proof. Let x ∈ K and Consider the update rule xt+1 = ΠK(xt − ηtgt). We can write:

‖xt+1 − x‖2 ≤ ‖xt − x‖2 − 2ηtgt(xt − x) + η2t ‖gt‖2

Re-arranging the above we get:

gt(xt − x) ≤ 1

2ηt

(
‖xt − x‖2 − ‖xt+1 − x‖2

)
+
ηt
2
‖gt‖2 .

Combined with the convexity of ft and summing over all rounds we conclude that ∀x ∈ K,

T∑
t=1

ft(xt)−
T∑
t=1

ft(x) ≤
T∑
t=1

‖xt − x‖2

2

(
1

ηt
− 1

ηt−1

)
+

T∑
t=1

ηt
2
‖gt‖2

≤ D2

2

T∑
t=1

(
1

ηt
− 1

ηt−1

)
+

D

2
√

2

T∑
t=1

‖gt‖2√∑t
τ=1 ‖gτ‖2

≤ D

2

√√√√2

T∑
t=1

‖gt‖2 +
D√

2

√√√√ T∑
t=1

‖gt‖2

=

√√√√2D2

T∑
t=1

‖gt‖2

here in the first inequality we denote η0 =∞, the second inequality uses diamK = D and ηt ≤ ηt−1,
the third inequality uses the following lemma from [6]:

Lemma C.1. For any non-negative numbers a1, . . . , an the following holds:

n∑
i=1

ai√∑i
j=1 aj

≤ 2

√√√√ n∑
i=1

ai

C.2 Proof of Lemma 2.1

Proof. Notice that AdaNGDk described in Algorithm 2, is equivalent to applying AdaGrad (Algo-
rithm 1) to the following sequence of linear loss functions:{

f̃t(x) :=
1

‖gt‖k
g>t x

}T
t=1

.

The regret bound of AdaGrad appearing in Theorem 1.1 implies the following for any x ∈ K:

T∑
t=1

1

‖gt‖k
g>t (xt − x) ≤

√√√√2D2

T∑
t=1

1/‖gt‖2(k−1) . (1)

13



Using the above bound together with Jensen’s inequality, enables to bound the excess loss of
AdaNGDk:

f(x̄T )− f(x∗) ≤
T∑
t=1

‖gt‖−k∑T
τ=1 ‖gτ‖−k

(
f(xt)− f(x∗)

)
≤

T∑
t=1

‖gt‖−k∑T
τ=1 ‖gτ‖−k

g>t (xt − x∗)

=
1∑T

τ=1 ‖gτ‖−k

T∑
t=1

1

‖gt‖k
g>t (xt − x∗)

≤

√
2D2

∑T
t=1 1/‖gt‖2(k−1)∑T

τ=1 1/‖gτ‖k
,

where the second line uses the gradient inequality.

C.3 Proof of Theorem 2.1

Proof. The data dependent bound,

f(x̄T )− f(x∗) ≤
√

2D2T∑T
t=1 1/‖gt‖

, (2)

is a direct corollary of Lemma 2.1 with k = 1. Note that the above bound holds for both smooth/non-
smooth cases. The general case bound holds directly by using ‖gt‖ ≤ G.

Next we focus on the second part of the theorem regarding the smooth case. We will first require the
following lemma regarding smooth objectives,

Lemma C.2. Let F : Rd 7→ R be a β-smooth function, and let x∗ = arg minx∈Rd F (x), then,

‖∇F (x)‖2 ≤ 2β (F (x)− F (x∗)) , ∀x ∈ Rd .

The above lemma enables to upper bound sum of gradient norms in the query points of AdaNGD1,

T∑
t=1

‖gt‖ =

T∑
t=1

‖gt‖2

‖gt‖

≤
T∑
t=1

2β

‖gt‖
(
f(xt)− f(x∗)

)
≤

T∑
t=1

2β

‖gt‖
g>t (xt − x∗)

= 2β

T∑
t=1

ĝ>t (xt − x∗)

≤ 2
√

2βD
√
T , (3)

where the last line follows by the regret guarantee of AdaGrad for the following sequence (see
Equation (1)), {

f̃t(x) :=
1

‖gt‖
g>t x

}T
t=1

.

The second line is a consequence of Lemma C.2 regarding smooth objectives. Now utilizing the
convexity of the function H(z) = 1/z for z > 0, and applying Equation (3), we may bound the sum

14



of inverse gradients:
T∑
τ=1

1

‖gτ‖
= T

1

T

T∑
τ=1

1

‖gτ‖
≥ T

1
1
T

∑T
τ=1 ‖gτ‖

≥ T
1

2
√

2βD/
√
T
.

Rearranging the latter equation, and using Equation (2) concludes the proof,

f(x̄T )−min
x∈K

f(x) ≤ D
√

2T∑T
τ=1 1/‖gτ‖

≤ 4βD2

T
.

C.4 Proof of Theorem 2.2

Proof. The data dependent bound,

f(x̄T )− f(x∗) ≤
√

2D2√∑T
t=1 1/‖gt‖2

, (4)

is a direct corollary of Lemma 2.1 with k = 2. Note that the above bound holds for both smooth/non-
smooth cases. The general case bound holds directly by using ‖gt‖ ≤ G.

We will now focus on the second part of the theorem regarding the smooth case. Let us lower bound∑T
t=1 1/‖gt‖2 for AdaNGD2:

T =

T∑
t=1

‖gt‖2

‖gt‖2

≤
T∑
t=1

2β

‖gt‖2
(
f(xt)− f(x∗)

)
≤

T∑
t=1

2β

‖gt‖2
g>t (xt − x∗)

= 2β

T∑
t=1

(
f̃t(xt)− f̃t(x∗)

)

≤ 2
√

2βD

√√√√ T∑
t=1

1

‖gt‖2
, (5)

where the last line follows by the regret guarantee of AdaGrad for the following sequence (see
Equation (1)), {

f̃t(x) =
1

‖gt‖2
g>t x

}T
t=1

.

The second line is a consequence of Lemma C.2. Combining Equation (5) together with Equation (4)
concludes the proof.

C.5 Proof of Lemma C.2

Proof. The β smoothness of F means the following to hold ∀x, u ∈ Rd,

F (x+ u) ≤ F (x) +∇F (x)>u+
β

2
‖u‖2 .

Taking u = − 1
β∇F (x) we get,

F (x+ u) ≤ F (x)− 1

β
‖∇F (x)‖2 +

1

2β
‖∇F (x)‖2 .

15



Algorithm 6 Strongly-Convex Adaptive Gradient Descent (SC-AdaGrad)
Input: #Iterations T , x1 ∈ Rd, set K
Set: Q0 = 0
for t = 1 . . . T do

Calculate: gt = ∇ft(xt)
Let: Ht be the strong-convexity parameter of ft(·)
Update:

Qt = Qt−1 +Ht

Set ηt = 1/Qt
Update:

xt+1 = ΠK (xt − ηtgt)
end for

Thus:

‖∇F (x)‖ ≤
√

2β
(
F (x)− F (x+ u)

)
≤
√

2β
(
F (x)− F (x∗)

)
,

where in the last inequality we used F (x∗) ≤ F (x+ u) which holds since x∗ is the global minimum.

D Proofs for Section 3 (SC-AdaNGD)

D.1 Proof of Lemma 3.1

Proof. We will require the following extension of Theorem 1 from [21]. Its proof is provided in
Section D.4.

Lemma D.1 (SC-AdaGrad, Alg 6). Assume that we receive a sequence of convex loss functions
ft : K 7→ R, t ∈ [T ], and suppose that each function ft is Ht-strongly-convex. Using the update
rule xt+1 = ΠK(xt− ηtgt) where gt = ∇ft(xt) and ηt = (

∑t
τ=1Hτ )−1 yields the following regret

bound:

T∑
t=1

ft(xt)−
T∑
t=1

ft(x) ≤ 1

2

T∑
t=1

ηt‖gt‖2 .

We are now ready to go on with the proof. Note that SC-AdaNGDk depicted in Algorithm 3 is
equivalent to performing SC-AdaGrad updates xt+1 = ΠK(xt − ηt∇f̃t(xt)) over the following loss
sequence: {

f̃t(x) =
1

‖gt‖k
g>t x+

H

2‖gt‖k
‖x− xt‖2

}T
t=1

where gt = ∇ft(xt). Note that each f̃t(x) is H
‖gt‖k -strongly-convex, and that the learning rate is

inversely proportional to the cumulative sum of strong-convexities. Thus Lemma D.1 implies the
following to hold for any x ∈ K:

T∑
t=1

f̃t(xt)−
T∑
t=1

f̃t(x) ≤ 1

2H

T∑
t=1

‖gt‖−2(k−1)∑t
τ=1 ‖gτ‖−k

.

16



Combining the latter bound with the definition of x̄T , and applying Jensen’s inequality we conclude:

f(x̄T )− f(x∗) ≤
T∑
t=1

‖gt‖−k∑T
τ=1 ‖gτ‖−k

(
f(xt)− f(x∗)

)
≤ 1∑T

t=1 ‖gt‖−k

T∑
t=1

‖gt‖−k
(
g>t (xt − x∗)−

H

2
‖xt − x∗‖2

)

=
1∑T

t=1 ‖gt‖−k

T∑
t=1

(
f̃t(xt)− f̃t(x∗)

)
≤ 1

2H
∑T
t=1 ‖gt‖−k

T∑
t=1

‖gt‖−2(k−1)∑t
τ=1 ‖gτ‖−k

,

where we used the H-strong-convexity of f in the second line.

D.2 Proof of Theorem 3.1

Proof. We will require the following lemma, its proof is provided in Section D.5.

Lemma D.2. For any non-negative real numbers a1, . . . , an ≥ 1,

n∑
i=1

ai∑i
j=1 aj

≤ 1 + log

(
n∑
i=1

ai

)
.

Combining the above lemma together with Lemma 3.1 and using k = 1, we obtain,

f(x̄T )− f(x∗) ≤ 1

2H
∑T
t=1 ‖gt‖−1

T∑
t=1

1∑t
τ=1 ‖gτ‖−1

≤ 1

2H
∑T
t=1 ‖gt‖−1

T∑
t=1

G‖gt‖−1∑t
τ=1 ‖gτ‖−1

≤ G

2H
∑T
t=1 ‖gt‖−1

T∑
t=1

G‖gt‖−1∑t
τ=1G‖gτ‖−1

≤ G

2H
∑T
t=1 ‖gt‖−1

(
1 + log

(
T∑
t=1

G

‖gt‖

))

where the second line uses ‖gt‖ ≤ G, and the last line uses Lemma D.2. Note that the above bound
holds for both smooth/non-smooth cases.

17



We now turn to prove the second part of the theorem regarding the smooth case. First let us bound
the sum of gradient norms in the query points of SC-AdaNGD1:

T∑
t=1

‖gt‖ =

T∑
t=1

‖gt‖2

‖gt‖

≤
T∑
t=1

2β

‖gt‖
(
f(xt)− f(x∗)

)
≤

T∑
t=1

2β

‖gt‖

(
g>t (xt − x∗)−

H

2
‖xt − x∗‖2

)

= 2β

T∑
t=1

(
f̃t(xt)− f̃t(x∗)

)
≤ β

H

T∑
t=1

1∑t
τ=1 ‖gτ‖−1

≤ β

H
G

(
1 + log

(
T∑
t=1

G

‖gt‖

))
,

where the second line uses Lemma C.2, the third line uses the strong-convexity of f , the fourth line
uses the regret bound of the SC-AdaGrad algorithm over the following sequence (see Equation (??)),{

f̃t(x) =
1

‖gt‖
g>t x+

H

2‖gt‖
‖x− xt‖2

}T
t=1

,

and the last line uses Lemma D.2. Combining the convexity of the function H(z) = 1/z for z > 0,
together with the above inequality, we may bound the sum of inverse gradient norms,

T∑
τ=1

1

‖gτ‖
= T

1

T

T∑
τ=1

1

‖gτ‖
≥ T

1
1
T

∑T
τ=1 ‖gτ‖

≥ T 2 1

(β/H)G
(

1 + log
(∑T

t=1
G
‖gt‖

)) .
Rearranging the latter equation, and using the data dependent bound for SC-AdaNGD1 concludes the
proof,

f(x̄T )−min
x∈K

f(x) ≤ (β/H)G2 (1 + log T )
2

HT 2
.

D.3 Proof of Theorem 3.2

Proof. The data dependent bound,

f(x̄T )−min
x∈K

f(x) ≤
1 + log(G2

∑T
t=1 ‖gt‖−2)

2H
∑T
t=1 ‖gt‖−2

(6)

is a direct corollary of Lemma 3.1 with k = 2, combined with Lemma D.2. Note that the above
bound holds for both smooth/non-smooth cases.

18



We now turn to prove the second part of the theorem regarding the smooth case. Let us lower bound∑T
t=1 1/‖gt‖2, for SC-AdaNGD2:

T =

T∑
t=1

‖gt‖2

‖gt‖2

≤
T∑
t=1

2β

‖gt‖2
(
f(xt)− f(x∗)

)
≤

T∑
t=1

2β

‖gt‖2

(
g>t (xt − x∗)−

H

2
‖xt − x∗‖2

)

= 2β

T∑
t=1

(
f̃t(xt)− f̃t(x∗)

)
≤ β

H

T∑
t=1

‖gt‖−2∑t
τ=1 ‖gτ‖−2

≤ β

H

(
1 + log(G2

T∑
t=1

‖gt‖−2)

)
, (7)

where the second line uses Lemma C.2, the third line uses the strong-convexity of f , the fifth line
uses the regret bound of the SC-AdaGrad algorithm for the following sequence (see Equation (??)),{

f̃t(x) =
1

‖gt‖2
g>t x+

H

2‖gt‖2
‖x− xt‖2

}T
t=1

,

and the last line uses Lemma D.2. Now Equation (7) implies,

G2
T∑
t=1

‖gt‖−2 ≥
1

3
e
H
β T . (8)

Now let z ∈ R and note that the function A(z) := 1+log(z)
z is monotonically decreasing for z ≥ 1.

Let z = G2
∑
t ‖gt‖−2 and assume 1

3e
H
β T ≥ 1; combining this with Equation (6),(8), concludes the

proof. Note that the case where 1
3e

H
β T ≤ 1 is not too interesting.

D.4 Proof of Lemma D.1

Proof. Let x ∈ K and Consider the update rule xt+1 = ΠK(xt − ηtgt). We can write:

‖xt+1 − x‖2 ≤ ‖xt − x‖2 − 2ηtgt(xt − x) + η2t ‖gt‖2 .

Re-arranging the above we get:

gt(xt − x) ≤ 1

2ηt

(
‖xt − x‖2 − ‖xt+1 − x‖2

)
+
ηt
2
‖gt‖2 .

Combining the above with the Ht-strong-convexity of ft and summing over all rounds we conclude
that,

T∑
t=1

ft(xt)−
T∑
t=1

ft(x) ≤
T∑
t=1

‖xt − x‖2

2

(
1

ηt
− 1

ηt−1
−Ht

)
+

T∑
t=1

ηt
2
‖gt‖2 ,

where we denote η0 =∞. Recalling ηt = (
∑t
τ=1Hτ )−1, the lemma follows.

19



D.5 Proof of Lemma D.2

Proof. We will prove the statement by induction over n. The base case n = 1 naturally holds. For
the induction step, let us assume that the guarantee holds for n − 1, which implies that for any
a1, . . . , an ≥ 1,

n∑
i=1

ai∑i
j=1 aj

≤ 1 + log(

n−1∑
i=1

ai) +
an∑n
i=1 ai

.

The above suggests that establishing following inequality concludes the proof,

1 + log(

n−1∑
i=1

ai) +
an∑n
i=1 ai

≤ 1 + log(

n∑
i=1

ai) . (9)

Using the notation x = an/
∑n−1
i=1 ai, Equation (9) is equivalent to the following,

log(x+ 1)− x

1 + x
≥ 0 .

However, it is immediate to validate that the function M(x) = log(x+ 1)− x
1+x , is non-negative for

any x ≥ 0, which establishes the lemma.

E Proofs for Section 4.1 (Lazy SGD)

E.1 Proof of Lemma 4.1

We first provide the exact statement rather than the informal one appearing in Lemma 4.1.
Lemma E.1. Let Tmax ≥ 1. Suppose an oracle G : K 7→ Rd that generates i.i.d. random
vectors with an (unknown) expected value g ∈ Rd. Assume that w.p. 1 the Euclidean norm of
the sampled vectors is bounded by G. Then w.p.≥ 1 − δ, invoking AE (Algorithm 5), with m0 =

6G
(

1 +
√

log(δ−1(1 + log2 Tmax))
)

, it is ensured that:

min
{
m2

0/‖g‖2, Tmax

}
≤ N ≤ min

{
32m2

0/‖g‖2, Tmax

}
. (1)

Moreover, w.p.≥ 1− δ, the following holds for the output of the algorithm:
√
N‖g̃N‖ ≤ 8m0 . (2)

and also,
E[N(g̃N − g)] = 0 . (3)

We will require the following Hoeffding type inequality regarding vector valued random variables, by
[25] (see also [26])
Theorem E.1. Suppose that X1, X2, . . . , Xn ∈ Rd are i.i.d. random vectors, and that ∀i ∈
[n]; ‖Xi‖ ≤M almost surely. Then w.p.≥ 1− δ∥∥∥∥∥ 1

n

n∑
i=1

Xi − E[X1]

∥∥∥∥∥ ≤ 6M√
n

(
1 +

√
log δ−1

)
.

We are now ready to prove Lemma E.1.

Proof of Lemma E.1. Define V =
{
{2i − 1}log2 Tmax

i=1 , Tmax

}
, and note that N is a discrete random

variable taking one of the 1 + log2 Tmax possible values among V . By Theorem E.1 combined with
the union bound, it follows that w.p.≥ 1− δ, for every n ∈ V we have ‖g̃n − g‖ ≤ m0√

n
. This means

the following to hold:

‖g̃n‖ ≤ ‖g‖+ ‖g̃n − g‖ ≤
2m0√
n
, ∀n ∈ V such that ‖g‖ ≤ m0/

√
n (10)

20



Furthermore,

‖g̃n‖ ≥ ‖g‖ − ‖g̃n − g‖ ≥
3m0√
n
, ∀n ∈ V such that ‖g‖ ≥ 4m0/

√
n (11)

The above together with the stopping criteria of Algorithm 5 directly implies the first part of the
lemma.

For the second part of the lemma, recall that N is the total number of samples, and let Nprev be the
number of samples up to the iteration before stopping. Then necessarily, Nprev ≥ (N − 1)/2. Since
the loop did not stop at the iteration before setting N , it follows that

√
Nprev‖g̃Nprev‖ ≤ 3m0 (i.e. the

stopping criteria of the loop at the round prior to setting N fails). Recalling that w.p.≥ 1 − δ, for
every n ∈ V we have ‖g̃n − g‖ ≤ m0√

n
, and combining this with the above implies:

√
N‖g̃N‖ ≤

√
N
(
‖g̃N − g‖+ ‖g − g̃Nprev‖

)
+
√
N‖g̃Nprev‖

≤
√
N

(
m0√
N

+
m0√
Nprev

)
+

√
N

Nprev

√
Nprev‖g̃Nprev‖

≤ m0 +
√

3m0 +
√

3 · 3m0

≤ 8m0

Where we have used N ≤ 3N−12 ≤ 3Nprev; which holds since Nprev ≥ (N − 1)/2 and also N ≥ 3.
The latter is ensured since for any n ≤ 3 then ‖g̃n‖ ≤ G < 3m0/

√
n.

For the third part of the lemma, it is easy to notice that for any fixed n then n(g̃n − g) is a sum of
n i.i.d. random variables, and that E[n(g̃n − g)] = 0. Since N is a bounded stopping time, Doob’s
optional stopping theorem [27] implies that E[N(g̃N − g)] = 0.

E.2 Proof of Lemma 4.2

Proof. Let S be the total number of times that LazySGD invokes the AE procedure. We will first
upper bound the expectation of following sum (weighted regret):

S∑
s=1

ns (f(xs)− f(x∗)) ≤
S∑
s=1

nsg
>
s (xs − x∗)

≤
S∑
s=1

nsg̃
>
s (xs − x∗)︸ ︷︷ ︸
(a)

+

S∑
s=1

ns(gs − g̃s)>(xs − x∗)︸ ︷︷ ︸
(b)

(12)

where we have used the gradient inequality. The proof goes on by bounding the expectation of terms
(a), (b) appearing above.

Bounding term (a): Assume that LazySGD uses the AE procedure with some δ > 0. Since
LazySGD is equivalent to AdaNGD2 with ‖gs‖2 ← ns and gs ← nsgs, then a similar analysis to
AdaNGD2 may show that this sum is bounded by O(

√
T ). For completeness we provide the full

analysis here. Consider the update rule of LazySGD: xs+1 = ΠK(xs − ηsnsg̃s). We can write:

‖xs+1 − x∗‖2 ≤ ‖xs − x∗‖2 − 2ηsnsg̃
>
s (xt − x∗) + η2sn

2
s‖g̃s‖2

Re-arranging the above we get:

nsg̃
>
s (xs − x∗) ≤

1

2ηs
(‖xs − x∗‖2 − ‖xs+1 − x∗‖2) +

ηs
2
n2s‖g̃s‖2

21



Summing over all rounds we conclude that w.p.≥ 1− δT :

(a) =

S∑
s=1

nsg̃
>
s (xs − x∗)

≤
S∑
s=1

‖xs − x∗‖2

2
(

1

ηs
− 1

ηs−1
) +

S∑
s=1

ηs
2
n2s‖g̃s‖2

≤ D2

2

S∑
s=1

(
1

ηs
− 1

ηs−1
) + 64m2

0

S∑
s=1

ηsns

≤ DG

2

√
2T +

64m2
0D

G

S∑
s=1

ns√∑s
i=1 ni

=
DG

2

√
2T +

128m2
0D

G

√√√√ S∑
s=1

ns

≤ O(GD
√
T log(1/δ)) .

here in the first inequality we denote η0 =∞, the second inequality uses ns‖g̃s‖2 ≤ 64m2
0, which

follows by Theorem E.1, and it also uses ηs ≤ ηs−1; the fourth inequality uses Lemma C.1. We also
make use of

∑S
s=1 ns = T , and 1/ηs =

√∑s
i=1 ni.

Since (a) is bounded by 2GDT , then taking δ = 1/T 3/2 ensures that,

E[(a)] ≤ O(GD
√
T log(T )) . (13)

Bounding term (b): Here we show that E[(b)] = 0. Without loss of generality we will make the
following two assumptions which do not affect the output of LazySGD:

• We assume that LazySGD invokes the AE procedure exactly T times. Note that in practice
the algorithm invokes the AE procedure S times, where S ≤ T is a random variable, after
which T−t = 0. Nevertheless calling AE for any s ∈ {S+1, . . . , T} yields g̃s = 0, ns = 0,
which does not affect the output of LazySGD.

• We assume that at each time s ∈ [T ] that LazySGD calls the AE procedure, it samples
exactly T times from GradOracle(xs). We denote these samples by {g̃(i)s }Ti=1. Nevertheless
the output of the procedure only uses the first ns samples, where ns is set according to the
AE procedure. Thus the remaining T − ns samples do not affect the output of AE and
LazySGD. Note that ∀s ∈ [T ], ns ≤ T − t ≤ T ,

Thus, for any s ∈ [T ] let {g̃(i)s }Ti=1 be the samples drawn from the noisy first order oracle
GradOracle(xs) during the s’th call to AE at this iteration. This implies that nsg̃s =

∑ns
i=1 g̃

(i)
s .

Term (b) can be therefore written as follows:

(b) =

T∑
s=1

ns(gs − g̃s)>(xs − x∗) =

T∑
s=1

ns∑
i=1

(gs − g̃(i)s )>(xs − x∗)

Given s ∈ [T ] define the following filtration:

F (s)
0 = σ-field {xs, t}

F (s)
j = σ-field

{
xs, t, g

(1)
s , . . . , g(j)s

}
, ∀j ∈ [T ]

Also define the following sequence {B(s)
j }Tj=0:

B
(s)
0 = 0, B

(s)
j =

j∑
i=1

(gs − g̃(i)s )>(xs − x∗), ∀j ∈ [T ]

22



Since E[g̃
(i)
s |xs] = gs, ∀i, s ∈ [T ], then it immediately follows that {B(s)

j }Tt=0 is a martingale with
respect to the above filtration. Also it is immediate to see that ns is a bounded stopping time with
respect to the above filtration. Thus, Doob’s optional stopping theorem (see [27]) implies that

E[B(s)
ns |F0] = E

[
ns∑
i=1

(gs − g̃(i)s )>(xs − x∗)|F0

]
= 0 .

which directly implies,

E[(b)] = E

[
T∑
s=1

B(s)
ns

]
= 0 .

Using Jensen’s inequality and combining the above with Equations (12), (13), establishes the lemma:

E[f(x̄T )]− f(x∗) ≤ E

[
S∑
s=1

ns
T

(f(xs)− f(x∗))

]

≤ 1

T
O(GD

√
T log(T ))

≤ O(GD log(T )/
√
T ) .

E.3 Proof of Lemma 4.3

Proof. Let S be the total number of times that LazySGD invokes the AE procedure. We will first
upper bound the expectation of the following sum (weighted regret):

S∑
s=1

ns (f(xs)− f(x∗))

≤
S∑
s=1

ns(g
>
s (xs − x∗)−

H

2
‖xs − x∗‖2)

≤
S∑
s=1

ns(g̃
>
s (xs − x∗)−

H

2
‖xs − x∗‖2)︸ ︷︷ ︸

(a)

+

S∑
s=1

ns(gs − g̃s)>(xs − x∗)︸ ︷︷ ︸
(b)

(14)

where we have used the H-strong-convexity of f(·). The proof goes on by bounding the expectation
of terms (a), (b) appearing above.

Bounding term (a): Assume that LazySGD uses the AE procedure with some δ > 0. Since
LazySGD is equivalent to SC-AdaNGD2 with ‖gs‖2 ← ns and gs ← nsgs, then a similar analysis to
SC − AdaNGD2 may show that this sum is bounded by O(log T ). For completeness we provide the
full analysis here. Consider the update rule of LazySGD: xs+1 = ΠK(xs − ηsnsg̃s). We can write:

‖xs+1 − x∗‖2 ≤ ‖xs − x∗‖2 − 2ηsnsg̃
>
s (xt − x∗) + η2sn

2
s‖g̃s‖2

Re-arranging the above we get:

nsg̃
>
s (xs − x∗) ≤

1

2ηs
(‖xs − x∗‖2 − ‖xs+1 − x∗‖2) +

ηs
2
n2s‖g̃s‖2

23



Summing over all rounds we conclude that w.p.≥ 1− δT :

(a) =

S∑
s=1

nsg̃
>
s (xs − x∗)− ns

H

2
‖xs − x∗‖2

≤
S∑
s=1

‖xs − x∗‖2

2
(

1

ηs
− 1

ηs−1
− nsH) +

S∑
s=1

ηs
2
n2s‖g̃s‖2

≤ 0 + 32m2
0

S∑
s=1

ηsns

≤ 32m2
0

H

S∑
s=1

ns∑s
k=1 ns

=
32m2

0

H
(1 + log(

S∑
s=1

ns))

≤ Õ(
G2 log T

H
log(1/δ)) . (15)

here in the first inequality we denote η0 =∞, the second inequality uses 1/ηs = H
∑s
i=1 ni, and

also ns‖g̃s‖2 ≤ 64m2
0, which follows by Theorem E.1; the fourth inequality uses Lemma D.2. We

also make use of
∑S
s=1 ns = T .

Since (a) is bounded by 2GDT , then taking δ = O(1/T 2) ensures that,

E[(a)] ≤ O(G2 log2(T )/H) . (16)

Bounding term (b): Similarly the proof of Lemma 4.2 (see Section E.2) we can show that,

E[(b)] = 0 .

Using Jensen’s inequality and combining the above with Equations (14) ,(16), establishes the lemma:

E[f(x̄T )]− f(x∗) ≤ E[

S∑
s=1

ns
T

(f(xs)− f(x∗))]

≤ O

(
G2 log2(T )

HT

)
.

24


	Introduction
	Related Work
	Preliminaries
	AdaGrad


	Adaptive Normalized Gradient Descent (AdaNGD)
	AdaNGD1
	AdaNGD2

	Adaptive NGD for Strongly Convex Functions
	SC-AdaNGD1
	SC-AdaNGD2

	Adaptive NGD for Stochastic Optimization
	Lazy Stochastic Gradient Descent 

	Discussion
	Extensions
	Experiments
	Proofs for Section 2 (AdaNGD)
	Proof of Theorem 1.1 (AdaGrad)
	Proof of Lemma 2.1
	Proof of Theorem 2.1
	Proof of Theorem 2.2
	Proof of Lemma C.2

	Proofs for Section 3 (SC-AdaNGD)
	Proof of Lemma 3.1
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Lemma D.1
	Proof of Lemma D.2

	Proofs for Section 4.1 (Lazy SGD)
	Proof of Lemma 4.1
	Proof of Lemma 4.2
	Proof of Lemma 4.3


