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1 Proofs of the theoretical bound for accuracy and compression
factor

In this section, we derive a theoretical bound on the accuracy of LiFESD compared to the
original LiFE model (Proposition 3.1) and we theoretically analyze the compression factor
associated to the factorized tensor approximation (Proposition 3.2). Hereafter, we assume
a given connectome having Nf fascicles, each fascicle having a fixed number of Nn nodes,
and where diffusion weighted measurements were taken on Nθ gradient directions with a
gradient strength b.

Proof of Proposition 3.1: The error in modeling the diffusion signal for a particular voxel v,
fascicle f and gradient direction θ is given by:

∆O(θ) = |Of (θ)−D(θ, a)|, (S1)
where Of (θ) is the orientation distribution function as defined in equation (2.3) (we avoided
making reference to the voxel v for clearity) and D(θ, a) is the diffusion signal of atom a
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at gradient direction θ = [θx, θy, θz]T . By defining v = [vx, vy, vz]T and va = v + ∆v =
[vx + ∆vx

, vy + ∆vy
, vz + ∆vz

]T as the vectors pointing out at the directions of the fascicle f
and its closest dictionary atom a, respectively (see Fig. 3c), we arrive at:

∆O(θ) = |∆g(θ)− 1
Nθ

∑
θ′

∆g(θ′)|, (S2)

where ∆g = |g(v1 + ∆v,θ)− g(v,θ)| with g(v,θ) = e−b(θ
T v)2 . For a sufficiently small error

vector ∆v = [∆vx
,∆vy

,∆vz
]T , we can approximate ∆g(θ) as follows:

∆g(θ) ≈
∣∣∣∣∂g(v,θ)

∂vx

∣∣∣∣∆vx +
∣∣∣∣∂g(v,θ)

∂vy

∣∣∣∣∆vy +
∣∣∣∣∂g(v,θ)

∂vz

∣∣∣∣∆vz , (S3)

and, by using the fact that |θTv| ≤ 1, e−b(θT v)2 ≤ 1, ∆vx
,∆vy

,∆vz
≤ ‖∆v‖ ≤ π√

2L , and
‖θ‖1 ≤

√
3‖θ‖ in equation (S3), we obtain: ∆g(v,θ) ≤ bπ

√
6

L . Thus, by using this result in
equation (S2), we obtain an upper bound for the error of modeling the diffusion signal of
one fascicle and at one gradient direction in a voxel: ∆O(θ) ≤ 2bπ

√
6

L . Finally, by summing
up all over the nodes in the connectome, it implies that

‖M− M̂‖2
F ≤ NfNnNθ

(
2bπ
√

6
L

)2

. (S4)

Proof of Proposition 3.2: The memory load necessary to store each fascicle in a sparse matrix
M is 3NθNn, because using a sparse matrix structure, three numbers are required for each
node, i.e., the row-column indices plus the entry value. Thus the storage cost of M is:

C(M) = O(3NnNθNf ). (S5)

Conversely, storing fascicles in the LiFESD model requires 4Nn values per fascicle plus the
dictionary matrix (i.e., the set of the non-zero entries and their locations within the tensor
Φ plus matrix D). Thus, the amount of memory required in the LiFESD model is:

C(M̂) = O(4NnNf +NθNa), (S6)

where NθNa is the storage associated with the dictionary matrix D ∈ RNθ×Na . Finally, by
taking the ratio of equations (S5) and (S6), we arrive at the expression of the compression
factor as shown in equation (3.7).
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