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1 A tutorial on Gaussian processes
We summarise here Gaussian process regression for completeness. For an interested reader, we refer to the
excellent and comprehensive book by Rasmussen and Williams [5].

Gaussian processes (GP) are a Bayesian nonparameteric machine learning framework for regression,
classification and unsupervised learning [5]. A Gaussian process is a collection of random variables, any
finite combination of which has a Multivariate normal distribution. A GP prior defines a distribution over
functions, denoted as

f(x) ∼ GP(m(x), k(x, x′)), (1)

where the mean functionm(x) and a positive semi-definite kernel functionK(x, x′) for inputs x ∈ R determine
the function expectation and covariance,

E[f(x)] = m(x) (2)
cov[f(x), f(x′)] = k(x, x′). (3)

Furthermore, the GP prior determines that for any finite collection of input points x1, . . . , xN , the corre-
sponding function values follow a Multivariate normal distribution

p(f(x1), . . . , f(xN )) ∼ N (m,K), (4)

where m = (m(x1), . . . ,m(xN ))T ∈ RN , and K ∈ RN×N with Kij = k(xi, xj). A Gaussian process models
functions where for similar points x, x′ their corresponding function values f(x), f(x′) are also similar. A
common kernel choice is the Gaussian kernel

k(x, x′) = σ2
f exp

(
−1

2

(x− x′)2

`2

)
, (5)

which encodes monotonic neighborhood similarity. The kernel parameters are the signal variance σ2
f and the

kernel lengthscale `.
Assume a dataset D = (xi, yi)

N
i=1 and an additive Gaussian likelihood

y = f(x) + ε(x), ε(x) ∼ N (0, σ2
n) (6)

with a data likelihood

p(y|f) = N (y|f , σ2
nI), (7)
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where y = (y1, . . . , yN )T ∈ RN collects the observed outputs corresponding to inputs (x1, . . . , xN ), and
f = (f(x1), . . . , f(xN ))T ∈ RN collects the function values, and σ2

n is the noise variance. The predictive
distribution of f(x∗)|y for a new point x∗ conditioned on the data y at training inputs X is again a Gaussian

f(x∗)|y ∼ N (µ∗, σ
2
∗) (8)

µ∗ = K(x∗, X)(K + σ2
n)−1(y −m) + m (9)

σ2
∗ = K(x∗, x∗)−K(x∗, X)(K + σ2

n)−1K(X,x∗), (10)

where K(x∗, X) = K(X,x∗)
T is a row kernel.

Since the full predictive distribution is in closed form, the inference task is shifted to learning the hyper-
parameters θ = (σf , `, σn). The log marginalized likelihood

log p(y|θ) = log

∫
p(y|f)p(f |θ)df (11)

= log

∫
N (y|f , σ2

nI)N (f |m,K)df (12)

= logN (y|m,K + σ2
nI) (13)

∝ −1

2
(y −m)T (K + σ2

n)−1(y −m)− 1

2
log |K + σ2

n| (14)

has a closed form as well. The marginal log likelihood is related to the amount of functions compatible with
the prior and matching the data. Hence, the marginal log likelihood automatically promotes priors that
induce functions matching the data while penalising model complexity. The marginal log likelihood can be
directly maximised using standard gradient ascent techniques to infer optimal hyperparameters θ.

2 Deriving the bivariate spectral mixture kernel
A non-stationary kernel k(x, x′) ∈ R for scalar inputs x, x′ ∈ R can characterized by its spectral density
S(s, s′) over frequencies s, s′ ∈ R, and the two are related via a generalised Fourier transform [10, 4]

k(x, x′) =

∫
R

∫
R
e2πi(xs−x′s′)µS(ds, ds′) (15)

where µS is a Lebesgue-Stieltjes measure associated to some positive semi-definite (PSD) spectral density
function S(s, s′) with bounded variations, which we denote as the spectral surface since it considers the
amplitude of frequency pairs.

We define a spectral density S(s, s′) as a mixture of Q bivariate Gaussian components

Si(s, s
′) =

∑
µi∈±{µi,µ′

i}2
N
((

s
s′

)
|µi,Σi

)
(16)

Σi =

[
σ2
i ρiσiσ

′
i

ρiσiσ
′
i σ′i

2

]
with parameterization using the correlation ρi, means µi, µ′i and variances σ2

i , σ
′
i
2. To ensure the PSD

property of spectral density Si(s, s′) it must hold that Si(s, s′) = Si(s
′, s) and sufficient diagonal components

Si(s, s), Si(s′, s′) exist. In addition to retrieve a real-valued kernel we require symmetry with respect to
the negative frequencies as well, i.e. Si(s, s

′) = Si(−s,−s′). The sum
∑

µi∈±{µi,µ′
i}2

satisfies all three
requirements by iterating over four permutations of {µi, µ′i}2 and the opposite signs (−µi,−µ′i), resulting in
eight components

±{µ, µ′}2 = {(µ, µ), (µ, µ′), (µ′, µ), (µ′, µ′), (−µ,−µ), (−µ,−µ′), (−µ′,−µ), (−µ′,−µ′)}.
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The full Q-component spectral density is

S(s, s′) =

Q∑
i=1

∑
µi∈±{µi,µ′

i}2
N
((

s
s′

)
|µi,Σi

)
. (17)

Next, we compute the generalised Fourier transform in closed form by exploiting Gaussian integral iden-
tities

k(x, x′) =

∫
R

∫
R
S(s, s′)e2πi(xs−x′s′)dsds′ (18)

=

∫
R×R

Q∑
i=1

∑
µi∈±{µi,µ′

i}2
N
((

s
s′

)
|µi,Σi

)
e2πix̃T sds (19)

=

Q∑
i=1

∑
µi∈±{µi,µ′

i}2

∫
R×R
N (s|µi,Σi)e2πix̃T sds (20)

=

Q∑
i=1

∑
µi∈±{µi,µ′

i}2

1

(2π)2|Σi|

∫
exp

(
−1

2
(s− µi)TΣ−1

i (s− µi) + bT s

)
ds (21)

=

Q∑
i=1

∑
µi∈±{µi,µ′

i}2

w2

(2π)2|Σi|

∫
exp

(
−1

2
sTΣ−1

i s + (b + Σ−1
i µi)

T s− 1

2
µTi Σ−1

i µi

)
ds (22)

=

Q∑
i=1

∑
µi∈±{µi,µ′

i}2
exp

(
1

2
(b + Σ−1

i µi)
TΣi(b + Σ−1

i µi)

)
exp

(
−1

2
µTi Σ−1

i µi

)
(23)

=

Q∑
i=1

∑
µi∈±{µi,µ′

i}2
exp

(
1

2
bTΣib + µTi b

)
(24)

where we defined x̃ = (x,−x′)T and s = (s, s′)T , and b = (2πix,−2πix′)T .
The i’th component of the kernel mixture is then

ki(x, x
′) = e−2π2x̃T Σx̃[ e2πiµxe−2πiµ′x′

+ e2πiµ′xe−2πiµx′
+ e2πiµxe−2πiµx′

+ e2πiµ′xe−2πiµ′x′
(25)

+e−2πiµxe2πiµ′x′
+ e−2πiµ′xe2πiµx′

+ e−2πiµxe2πiµx′
+ e−2πiµ′xe2πiµ′x′

]

which can be simplified by noting that

e2πiµxe−2πiµ′x′
+ e−2πiµxe2πiµ′x′

= (cos(2πµx) + i sin(2πµx))(cos(2πµ′x′)− i sin(2πµ′x′))

+ (cos(2πµx)− i sin(2πµx))(cos(2πµ′x′) + i sin(2πµ′x′))

= 2 cos(2πµx) cos(2πµ′x′) + 2 sin(2πµx) sin(2πµ′x′)

where the complex part cancels out. Now by defining a function

Ψµ,µ′(x) =

(
cos 2πµx+ cos 2πµ′x
sin 2πµx+ sin 2πµ′x

)
(26)

we can express the sum of the 8 exponentials in (25) as Ψµ,µ′(x)TΨµ,µ′(x′). The final kernel thus takes the
form

k(x, x′) =

Q∑
i=1

w2
i e
−2π2x̃T Σix̃Ψµi,µ′

i
(x)TΨµi,µ′

i
(x′), (27)
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where we introduced mixture weights wi for each component.
Now, we immediately notice that the kernel vanishes rapidly outside the origin (x, x′) = (0, 0); we would

require a huge number of components centered at different points xi to cover a reasonably-sized input space.
One simple fix would be to change the exponential part to e.g. a Gaussian kernel exp(− 1

2σ
2||x − x′||2)

to prevent the component from vanishing but this still would not allow us to account for non-stationary
frequencies, which is what we address next.

3 Deriving the generalised spectral mixture (GSM) kernel
The generalised spectral mixture kernel defines Gaussian process frequencies, lengthscales and mixture
weights:

logwi(x) ∼ GP(0, kw(x, x′)), (28)
log `i(x) ∼ GP(0, k`(x, x

′)), (29)
logitµi(x) ∼ GP(0, kµ(x, x′)), (30)

where we use the log transform to ensure weights w(x) and lengthscales `(x) are positive, and we use the
logit transformed. The transform µ̂ and the inverse transform µ is given by

logit(µ) = µ̂ = log
µ

FN − µ
(31)

µ =
FN

1 + exp(−µ̂)
. (32)

Frequency parameter logitµ(x) to limit the learned frequencies between zero and the Nyquist frequency FN ,
which can be defined as half of the sampling rate of the signal (or for non-equispaced signals as the inverse
of the smallest time interval between the samples).

To accommodate lengthscale functions we replace the exponential part of the BSM kernel by the Gibbs
kernel

kgibbs,i(x, x
′) =

√
2`i(x)`i(x′)

`i(x)2 + `i(x′)2
exp

(
− (x− x′)2

`i(x)2 + `i(x′)2

)
.

The cosine part (26) is replaced by a function

Ψi(x) =

(
cos(2πµi(x)x)
sin(2πµi(x)x)

)
.

The non-stationary generalised spectral mixture (GSM) kernel has a closed form

kgsm(x, x′) =

Q∑
i=1

wi(x)wi(x
′)kgibbs(x, x

′)Ψi(x)TΨi(x
′) (33)

=

Q∑
i=1

wi(x)wi(x
′)kgibbs,i(x, x

′) cos(2π(µi(x)x− µi(x′)x′)) (34)

due to identity cosα cosβ+sinα sinβ = cos(α−β). The kernel is a product of three kernels, namely a linear
kernel, a Gibbs kernel and a novel cosine kernel with a feature mapping Ψi(x). The full kernel is PSD due
to all of its product kernels being PSD. The cosine kernel is PSD due to a dot product.
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3.1 Relationship between Spectral Mixture kernel and the Generalised Spectral
Mixture kernel

We show that the proposed non-stationary GSM kernel reduces to the stationary SM kernel with appropriate
parameterisation. We show this identity for univariate inputs for simplicity, with the same result being
straightforward to derive for multivariate kernel variants as well.

The proposed generalised spectral mixture (GSM) kernel for univariate inputs is

kGSM(x, x′) =

Q∑
i=1

wi(x)wi(x
′)

√
2`i(x)`i(x′)

`i(x)2 + `i(x′)2
exp

(
− (x− x′)2

`i(x)2 + `i(x′)2

)
cos (2π(µi(x)x− µi(x′)x′)) (35)

with Gaussian process functions wi(x), µi(x), `i(x). The Spectral Mixture (SM) kernel by Wilson et al [9] is

kSM(x, x′) =

Q∑
i=1

w2
i exp(−2π2(x− x′)2σ2

i ) cos(2πµi(x− x′)) (36)

SSM(s) =

Q∑
i=1

w2
i

[
N (s|µi, σ2

i ) +N (s| − µi, σ2
i )
]
, (37)

where the parameters are the weights wi, mean frequencies µi and variances σ2
i . Now if we assign the

following constant functions for the GSM kernel to match the parameters of the SM kernel on the right-hand
side,

wi(x) = wi (38)
µi(x) = µi (39)

`i(x) =
1

2πσi
, (40)

we retrieve the SM kernel

kGSM(x, x′) =

Q∑
i=1

wi(x)wi(x
′)

√
2`i(x)`i(x′)

`i(x)2 + `i(x′)2
exp

(
− (x− x′)2

`i(x)2 + `i(x′)2

)
cos(2π(µi(x)x− µi(x′)x′)) (41)

=

Q∑
i=1

w2
i exp

(
− (x− x′)2

2(1/(2πσi))2

)
cos(2πµ(x− x′)) (42)

=

Q∑
i=1

w2
i exp

(
−1

2
(2πσi)

2(x− x′)2

)
cos(2πµ(x− x′)) (43)

=

Q∑
i=1

w2
i exp

(
−2π2σ2

i (x− x′)2
)

cos(2πµ(x− x′)) (44)

= kSM(x, x′). (45)

This indicates that the GSM kernel can reproduce any kernel that is reproducable by the SM kernel, which
is known to be a highly flexible kernel [9, 8]. In practise we can simulate stationary kernels by setting the
spectral function priors kw, kµ, k` to enforce very smooth, or in practise constant, functions.

4 Inference
In many applications multivariate inputs have a grid-like structure, for instance in geostatistics, image
analysis and temporal models. We exploit this assumption and propose a multivariate extension that assumes
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the inputs to decompose across input dimensions [1, 9]:

kGSM(x,x′|θ) =

P∏
p=1

kGSM(xp, x
′
p|θp) . (46)

Here x,x′ ∈ RP , θ = (θ1, . . . ,θP ) collects the dimension-wise kernel parameters θp = (wip, `ip,µip)
Q
i=1 of

the N -dimensional realisations wip, `ip,µip ∈ RN per dimension p. Then, the kernel matrix can be expressed
using Kronecker products as Kθ = Kθ1

⊗· · ·⊗KθP
, while missing values and data not on a regular grid can

be handled with standard techniques [1, 6, 8, 7].
We use the Gaussian process regression framework and assume a Gaussian likelihood over NP data points

(xj , yj)
NP

j=1 with all outputs collected into a vector y ∈ RNP

,

yj = f(xj) + εj , εj ∼ N (0, σ2
n)

f(x) ∼ GP(0, kGSM(x,x′|θ)), (47)

with a standard predictive GP posterior f(x?|y) for a new input point x? [5]. The posterior can be efficiently
computed using Kronecker identities [6].

We aim to infer the noise variance σ2
n and the kernel parameters θ = (wip, `ip,µip)

Q,P
i=1,p=1 that reveal

the input-dependent frequency-based correlation structures in the data, while regularising the learned ker-
nel to penalise overfitting. We perform MAP inference over the log marginalized posterior log p(θ|y) ∝
log p(y|θ)p(θ) = L(θ), where the functions f(x) have been marginalised out,

L(θ) = log

N (y|0,Kθ + σ2
nI)

Q,P∏
i,p=1

N (wip|0,Kwp
)N (µip|0,Kµp

)N (`ip|0,K`p)

 (48)

∝ −yT (Kθ + σ2I)−1y − log |Kθ + σ2
nI|

−
P∑
p=1

Q∑
i=1

(
wT
ipK

−1
wp

wip − `TipK−1
`p
`ip − µTipK−1

µp
µip

)
−Q

P∑
p=1

(
log |Kwp

| − log |K`p | − log |Kµp
|
)

where Kwp
,Kµp

,K`p are N ×N prior matrices per dimensions p. The marginalized posterior automatically
balances between parameters θ that fit the data and a model that is not overly complex [5]. We can
efficiently evaluate both the marginalized posterior and its gradients in O(PN

P+1
P ) instead of the usual

O(NP 3
) complexity [6] (See Supplements).

Gradient-based optimisation of (48) is likely to converge very slowly due to parameters wip,µip, `ip being
highly self-correlated. We remove the correlations by whitening the variables as θ̃ = L−1θ where L is the
Cholesky decomposition of the prior covariances. We maximize L(θ) using gradient ascent with respect to
the whitened variables θ̃ by evaluating L(Lθ̃) and the gradient as [3, 2]

∂L(θ)

∂θ̃
=
∂L(θ)

∂θ

∂θ

∂θ̃
= LT

∂L(θ)

∂θ
. (49)

4.1 Kronecker inference
The marginal likelihood (48) can be evaluated using the eigen decomposition K = QV QT . Using known
results for Kronecker products we can compute the eigen decomposition as Q =

⊗
pQp, V =

⊗
p Vp and

QT =
⊗

pQ
T
p using the decompositions of the smaller kernels Kp = QpVpQ

T
p . Thus we can decompose the

computation of the first term in (48) as

(K + σ2
nI)
−1y = Q(V + σ2

nI)
−1QTy =

(⊗
p

Qp

)(
(V + σ2

nI)
−1

((⊗
p

QTp

)
y

))
, (50)
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where the inversion is taken only of the diagonal matrix of eigenvalues and matrix-vector products with
a Kronecker matrix can be computed efficiently. The second term of (48) can be computed using the
eigenvalues λ = diag(V ) =

⊗
p diag(Vp) as log |K + σ2

nI| =
∑
i log(λi + σ2

n).
The gradient of the marginal likelihood is given by

∂L
∂θp

=
1

2

(
αT

∂K

∂θp
α− tr

(
(K + σ2

nI)
−1 ∂K

∂θp

))
, (51)

where α = (K + σ2
nI)
−1y is computed as in (50). The gradient of the Kronecker product kernel can be

computed as

∂K

∂θp
= K1 ⊗ . . .⊗

∂Kp

∂θp
⊗ . . .⊗KP (52)

assuming that ∂Kp

∂θi
= 0 for i 6= p. As this is a Kronecker product, the first term in (51) can be com-

puted efficiently. The trace term in (51) can be computed by exploiting the cyclic property and the eigen
decomposition as

tr

(
(K + σ2

nI)
−1 ∂K

∂θp

)
= diag

(
(V + σ2

nI)
−1
)T

diag

(
QT ∂K

∂θp
Q

)
, (53)

where the latter term can be computed efficiently as

QT ∂K

∂θp
Q = QT1 K1Q1 ⊗ . . .⊗QTp

∂Kp

∂θp
Qp ⊗ . . .⊗QTPKPQP (54)

and its diagonal as a Kronecker product of the diagonals of each factor in the product. For the noise
parameter σn we get ∂(K+σ2

nI)
∂ log σn

= 2σ2
nI which makes both terms in (51) easy to compute.

Kronecker methods are also easily extensible for non-complete grids [7, 8] and non-Gaussian likelihoods
[1].
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