
Non-Stationary Spectral Kernels

Sami Remes
sami.remes@aalto.fi

Markus Heinonen
markus.o.heinonen@aalto.fi

Samuel Kaski
samuel.kaski@aalto.fi

Helsinki Institute for Information Technology HIIT
Department of Computer Science, Aalto University

Abstract

We propose non-stationary spectral kernels for Gaussian process regression by
modelling the spectral density of a non-stationary kernel function as a mixture of
input-dependent Gaussian process frequency density surfaces. We solve the gener-
alised Fourier transform with such a model, and present a family of non-stationary
and non-monotonic kernels that can learn input-dependent and potentially long-
range, non-monotonic covariances between inputs. We derive efficient inference
using model whitening and marginalized posterior, and show with case studies that
these kernels are necessary when modelling even rather simple time series, image
or geospatial data with non-stationary characteristics.

1 Introduction

Gaussian processes are a flexible method for non-linear regression [18]. They define a distribution
over functions, and their performance depends heavily on the covariance function that constrains the
function values. Gaussian processes interpolate function values by considering the value of functions
at other similar points, as defined by the kernel function. Standard kernels, such as the Gaussian
kernel, lead to smooth neighborhood-dominated interpolation that is oblivious of any periodic or
long-range connections within the input space, and can not adapt the similarity metric to different
parts of the input space.

Two key properties of covariance functions are stationarity and monotony. A stationary kernel
K(x, x′) = K(x+ a, x′ + a) is a function only of the distance x− x′ and not directly the value of
x. Hence it encodes an identical similarity notion across the input space, while a monotonic kernel
decreases over distance. Kernels that are both stationary and monotonic, such as the Gaussian and
Matérn kernels, can encode neither input-dependent function dynamics nor long-range correlations
within the input space. Non-monotonic and non-stationary functions are commonly encountered in
realistic signal processing [19], time series analysis [9], bioinformatics [5, 20], and in geostatistics
applications [7, 8].

Recently, several authors have explored kernels that are either non-monotonic or non-stationary. A
non-monotonic kernel can reveal informative manifolds over the input space by coupling distant
points due to periodic or other effects. Non-monotonic kernels have been derived from the Fourier
decomposition of kernels [13, 24, 30], which renders them inherently stationary. Non-stationary
kernels, on the other hand, are based on generalising monotonic base kernels, such as the Matérn
family of kernels [6, 15], by partitioning the input space [4], or by input transformations [25].

We propose an expressive and efficient kernel family that is – in contrast to earlier methods –
both non-stationary and non-monotonic, and hence can infer long-range or periodic relations in an
input-dependent manner. We derive the kernel from first principles by solving the more expressive
generalised Fourier decomposition of non-stationary functions, than the more limited standard Fourier
decomposition exploited by earlier works. We propose and solve the generalised spectral density as a
mixture of Gaussian process density surfaces that model flexible input-dependent frequency patterns.
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The kernel reduces to a stationary kernel with appropriate parameterisation. We show the expressivity
of the kernel with experiments on time series data, image-based pattern recognition and extrapolation,
and on climate data modelling.

2 Related Work

Bochner’s theorem for stationary signals, whose covariance can be written as k(τ) = k(x− x′) =
k(x, x′), implies a Fourier dual [30]

k(τ) =

∫
S(s)e2πisτds

S(s) =

∫
k(τ)e−2πisτdτ.

The dual is a special case of the more general Fourier transform (1), and has been exploited to
design rich, yet stationary kernel representations [24, 32] and used for large-scale inference [17].
Lazaro-Gredilla et al. [13] proposed to directly learn the spectral density as a mixture of Dirac delta
functions leading to a sparse spectrum (SS) kernel kSS(τ) = 1

Q

∑Q
i=1 cos(2πsTi τ).

Wilson et al. [30] derived a stationary spectral mixture (SM) kernel by modelling the univariate
spectral density using a mixture of normals SSM(s) =

∑
i wi[N (s|µi, σ2

i ) + N (s| − µi, σ2
i )]/2,

corresponding to the kernel function kSM(τ) =
∑
i wi exp(−2π2σ2

i τ) cos(2πµiτ), which we gen-
eralize to the non-stationary case. The SM kernel was also extended for multidimensional inputs
using Kronecker structure for scalability [27]. Kernels derived from the spectral representation are
particularly well suited to encoding long-range, non-monotonic or periodic kernels; however, they
have so far been unable to handle non-stationarity, although [29] presented a partly non-stationary
SM kernel that has input-dependent mixture weights. Kom Samo and Roberts also derived a kernel
similar to our bivariate spectral mixture kernel in a recent technical report [11].

Non-stationary kernels, on the other hand, have been constructed by non-stationary extensions of
Matérn and Gaussian kernels with input-dependent length-scales [3, 6, 15, 16], input space warpings
[22, 25], and with local stationarity with products of stationary and non-stationary kernels [2, 23].
The simplest non-stationary kernel is arguably the dot product kernel [18], which has been used as
a way to assign input-dependent signal variances [26]. Non-stationary kernels are a good match
for functions with transitions in their dynamics, yet are unsuitable for modelling non-monotonic
properties.

Our work can also be seen as a generalisation of wavelets, or time-dependent frequency components,
into general and smooth input-dependent components. In signal processing, Hilbert-Huang transforms
and Hilbert spectral analysis explore input-dependent frequencies, but with deterministic transform
functions on the inputs [8, 9].

3 Non-stationary spectral mixture kernels

This section introduces the main contributions. We employ the generalised spectral decomposition of
non-stationary functions and derive a practical and efficient family of kernels based on non-stationary
spectral components. Our approach relies on associating input-dependent frequencies for data inputs,
and solving a kernel through the generalised spectral transform.

The most general family of kernels is the non-stationary kernels, which include stationary kernels
as special cases [2]. A non-stationary kernel k(x, x′) ∈ R for scalar inputs x, x′ ∈ R can be
characterized by its spectral density S(s, s′) over frequencies s, s′ ∈ R, and the two are related via a
generalised Fourier inverse transform1

k(x, x′) =

∫
R

∫
R
e2πi(xs−x

′s′)µS(ds, ds′) , (1)

1We focus on scalar inputs and frequencies for simplicity. An extension based on vector-valued inputs and
frequencies [2, 10] is straightforward.
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Figure 1: (a): Spectral density surface of a single component bivariate spectral mixture kernel with 8
permuted peaks. (b): The corresponding kernel on inputs x ∈ [−1, 1].

where µS is a Lebesgue-Stieltjes measure associated to some positive semi-definite (PSD) spectral
density function S(s, s′) with bounded variations [2, 14, 31], which we denote as the spectral surface
since it considers the amplitude of frequency pairs (See Figure 1a).

The generalised Fourier transform (1) specifies that a spectral surface S(s, s′) generates a PSD kernel
K(x, x′) that is non-stationary unless the spectral measure mass is concentrated only on the diagonal
s = s′. We design a practical, efficient and flexible parameterisation of spectral surfaces that, in turn,
specifies novel non-stationary kernels with input-dependent characteristics and potentially long-range
non-monotonic correlation structures.

3.1 Bivariate Spectral Mixture kernel

Next, we introduce spectral kernels that remove the restriction of stationarity of earlier works. We
start by modeling the spectral density as a mixture of Q bivariate Gaussian components

Si(s, s
′) =

∑
µi∈±{µi,µ′

i}2
N
((

s
s′

)
|µi,Σi

)
, Σi =

[
σ2
i ρiσiσ

′
i

ρiσiσ
′
i σ′i

2

]
, (2)

with parameterisation using the correlation ρi, means µi, µ′i and variances σ2
i , σ
′
i
2. To produce a PSD

spectral density Si as required by equation (1) we need to include symmetries Si(s, s′) = Si(s
′, s)

and sufficient diagonal components Si(s, s), Si(s′, s′). To additionally result in a real-valued kernel,
symmetry is required with respect to the negative frequencies as well, i.e., Si(s, s′) = Si(−s,−s′).
The sum

∑
µi∈±{µi,µ′

i}2
satisfies all three requirements by iterating over the four permutations of

{µi, µ′i}2 and the opposite signs (−µi,−µ′i), resulting in eight components (see Figure 1a).

The generalised Fourier inverse transform (1) can be solved in closed form for a weighted spectral
surface mixture S(s, s′) =

∑Q
i=1 w

2
i Si(s, s

′) using Gaussian integral identities (see the Supplement):

k(x, x′) =

Q∑
i=1

w2
i exp(−2π2x̃TΣix̃)Ψµi,µ′

i
(x)TΨµi,µ′

i
(x′) (3)

where

Ψµi,µ′
i
(x) =

(
cos 2πµix+ cos 2πµ′ix
sin 2πµix+ sin 2πµ′ix

)
,

and where we define x̃ = (x,−x′)T and introduce mixture weights wi for each component. We
denote the proposed kernel as the bivariate spectral mixture (BSM) kernel (see Figure 1b). The
positive definiteness of the kernel is guaranteed by the spectral transform, and is also easily verified
since the sinusoidal components form an inner product and the exponential component resembles an
unscaled Gaussian density. A similar formulation for non-stationary spectral kernels was presented
also in a technical report [11].
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Figure 2: (a)-(d): Examples of kernel matrices on inputs x ∈ [−1, 1] for a Gaussian kernel (a), sparse
spectrum kernel [13] (b), spectral mixture kernel [30] (c), and for the GSM kernel (d). (e)-(h): The
corresponding generalised spectral density surfaces of the four kernels. (i)-(l): The corresponding
spectrograms, that is, input-dependent frequency amplitudes. The GSM kernel is highlighted with a
spectrogram mixture of Q = 2 Gaussian process surface functions.

We immediately notice that the BSM kernel vanishes rapidly outside the origin (x, x′) = (0, 0). We
would require a huge number of components centered at different points xi to cover a reasonably-sized
input space.

3.2 Generalised Spectral Mixture (GSM) kernel

We extend the kernel derived in Section 3.1 further by parameterising the frequencies, length-scales
and mixture weights as a Gaussian processes2, that form a smooth spectrogram (See Figure 2(l)):

logwi(x) ∼ GP(0, kw(x, x′)), (4)

log `i(x) ∼ GP(0, k`(x, x
′)), (5)

logitµi(x) ∼ GP(0, kµ(x, x′)). (6)

Here the log transform is used to ensure the weights w(x) and lengthscales `(x) are non-negative,
and the logit transform logitµ(x) = log µ

FN−µ limits the learned frequencies between zero and the
Nyquist frequency FN , which is defined as half of the sampling rate of the signal.

A GP prior f(x) ∼ GP(0, k(x, x′)) defines a distribution over zero-mean functions, and denotes
the covariance between function values cov[f(x), f(x′)] = k(x, x′) equals their prior kernel. For
any collection of inputs, x1, . . . , xN , the function values follow a multivariate normal distribution
(f(x1), . . . , f(xN ))T ∼ N (0,K), where Kij = k(xi, xj). The key property of Gaussian processes
is that they can encode smooth functions by correlating function values of input points that are similar
according to the kernel k(x, x′). We use standard Gaussian kernels kw, k` and kµ.

2See the Supplement for a tutorial on Gaussian processes.
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