
APPENDIX

Proof of Theorem 3.2

We prove Theorem 3.2 via induction. First, for l=1, (8) holds as a special case of (2). Then suppose
that Theorem 3.2 holds up to layer l:

ε̃l ≤
l−1∑
h=1

(

l∏
k=h+1

‖Θ̂k‖F
√
δEh) +

√
δEl (10)

In order to show that (10) holds for layer l+1 as well, we refer to Ŷl+1 =σ(Ŵ>
l+1Y

l) as ‘layer-wise
pruned output’, where the input Yl is fixed as the same as the originally well-trained network not an
accumulated input Ỹl, and have the following theorem.
Theorem 5.1. Consider layer l+1 in a pruned deep network, the difference between its accumulated
pruned output, Ỹl+1, and layer-wise pruned output, Ŷl+1, is bounded by:

‖Ỹl+1 − Ŷl+1‖F ≤
√
n‖Θ̂l+1‖F ε̃l. (11)

Proof sketch: Consider one arbitrary element of the layer-wise pruned output Ŷl+1:

ŷl+1
ij = σ(ŵ>i ỹlj + ŵ>i (ylj − ỹlj))

≤ ỹl+1
ij + σ(ŵ>i (ylj − ỹlj))

≤ ỹl+1
ij + |ŵ>i (ylj − ỹlj)|,

where ŵi is the i-th column of Ŵl+1. The first inequality is obtained because we suppose the
activation function σ(·) is ReLU. Similarly, it holds for accumulated pruned output:

ỹl+1
ij ≤ ŷl+1

ij + |ŵ>i (ylj − ỹlj)|.
By combining the above two inequalities, we have

|ỹl+1
ij − ŷl+1

ij | ≤ |ŵ>i (ylj − ỹlj)|,
and thus have the following inequality in a form of matrix,

‖Ỹl+1 − Ŷl+1‖F ≤ ‖Ŵl+1(Yl − Ỹl)‖F ≤ ‖Θ̂l+1‖F ‖Yl − Ỹl‖F
As ε̃l is defined as ε̃l = 1√

n
‖Yl − Ỹl‖F , we have

‖Ỹl+1 − Ŷl+1‖F ≤
√
n‖Θ̂l+1‖F ε̃l.

This completes the proof of Theorem 11.

By using (2) ,(11) and the triangle inequality, we are now able to extend (10) to layer l + 1:

ε̃l+1 =
1√
n
‖Ỹl+1 −Y(l+1)‖F ≤ 1√

n
‖Ỹl+1 − Ŷ(l+1)‖F +

1√
n
‖Ŷl+1 −Y(l+1)‖F

≤
l∑

h=1

(
l+1∏

k=h+1

‖Θ̂k+1‖F ·
√
δEh

)
+
√
δEl+1.

Finally, we prove that (10) holds up for all layers, and Theorem 3.2 is a special case when l=L.

Extensive Experiments and Details

Redundancy of Networks

LeNet-300-100 is a classical feed-forward network, which has three fully connected layers, with
267K learnable parameters. LeNet-5 is a convolutional neural network that has two convolutional

12

0 10 20 30 40 50 60 70 80 90 100
Pruning Ratio (%)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Random Pruning
LWC
ApoZ
Ours

Figure 2: Test accuracy on MNIST using LeNet-300-100 when continually pruning the first layer
until pruning ratio is 100%. Comparison on ability to preserve prediction between LWC, ApoZ and
our proposed L-OBS.

0 1 2 3 4 5 6

Lq (10−3)

101

102

103

104

105

N
um

be
r

Figure 3: Distribution of sensitivity of parameters in LeNet-300-100’s first layer. More than 90% of
parameters’ sensitivity scores are smaller than 0.001.

layers and two fully connected layers, with 431K learnable parameters. CIFAR-Net is a revised
AlexNet for CIFAR-10 containing three convolutional layers and two fully connected layers.

We first validate the redundancy of networks and the ability of our proposed Layer-wise OBS to find
parameters with the smallest sensitivity scores with LeNet-300-100 on MINIST. In all cases, we
first get a well-trained network without dropout or regularization terms. Then, we use four kinds of
pruning criteria: Random, LWC [9], ApoZW, and Layer-wise OBS to prune parameters, and evaluate
performance of the whole network after performing every 100 pruning operations. Here, LWC is
a magnitude-based criterion proposed in [9], which prunes parameters based on smallest absolute
values. ApoZW is a revised version of ApoZ [16], which measures the importance of each parameter
Wlij in layer l via τ lij = | 1n

∑n
p=1(yl−1ip ×Wlij)|. In this way, both magnitude of the parameter

and its inputs are taken into consideration.

Originally well-trained model LeNet-300-100 achieves 1.8% error rate on MNIST without dropout.
Four pruning criteria are respectively conducted on the well-trained model’s first layer which has
235K parameters by fixing the other two layers’ parameters, and test accuracy of the whole network
is recorded every 100 pruning operations without any retraining. Overall comparison results are
summarized in Figure 2.

We also visualize the distribution of parameters’ sensitivity scores Lq’s estimated by Layer-wise OBS
in Figure 3, and find that parameters of little impact on the layer output dominate. This further verifies
our hypothesis that deep neural networks usually contain a lot of redundant parameters. As shown
in the figure, the distribution of parameters’ sensitivity scores in Layer-wise OBS are heavy-tailed.
This means that a lot of parameters can be pruned with minor impact on the prediction outcome.

13

0 7.5 15 22.5 30

Retraining Iterations (103)

0.01

0.0127

0.1

1

E
rr

or

Before Pruning
LWC
L-OBS

Figure 4: Retraining pattern of LWC and L-OBS. L-OBS has a better start point and totally resume
original performance after 740 iterations for LeNet-5.

Random pruning gets the poorest result as expected but can still preserve prediction accuracy when
the pruning ratio is smaller than 30%. This also indicates the high redundancy of the network.

Compared with LWC and ApoZW, L-OBS is able to preserve original accuracy until pruning ratio
reaches about 96% which we call as “pruning inflection point”. As mentioned in Section 3.4, the
reason on this “pruning inflection point” is that the distribution of parameters’ sensitivity scores is
heavy-tailed and sensitivity scores after “pruning inflection point” would be considerable all at once.
The percentage of parameters with sensitivity smaller than 0.001 is about 92% which matches well
with pruning ratio at inflection point.

L-OBS can not only preserve models’ performance when pruning one single layer, but also ensures
tiny drop of performance when pruning all layers in a model. This claim holds because of the
theoretical guarantee on the overall prediction performance of the pruned deep neural network in
terms of reconstructed errors for each layer in Section 3.3. As shown in Figure 4, L-OBS is able to
resume original performance after 740 iterations for LeNet-5 with compression ratio of 7%.

How To Set Tolerable Error Threshold

One of the most important bounds we proved is that there is a theoretical guarantee on the overall
prediction performance of the pruned deep neural network in terms of reconstructed errors for each
pruning operation in each layer. This bound enables us to prune a whole model layer by layer without
concerns because the accumulated error of ultimate network output is bounded by the weighted sum
of layer-wise errors. As long as we control layer-wise errors, we can control the accumulated error.

Although L-OBS allows users to control the accumulated error of ultimate network output ε̃L =
1√
n
‖Ỹl −Yl‖F , this error is used to measure difference between network outputs before and after

pruning, and is not strictly inversely proportional to the final accuracy. In practice, one can increase
tolerable error threshold ε from a relative small initial value to incrementally prune more and more
parameters to monitor model performance, and make a trade-off between compression ratio and
performance drop. The corresponding relation (in the first layer of LeNet-300-100) between the
tolerable error threshold and the pruning ratio is shown in Figure 5.

Iterative Layer-wise OBS

As mentioned in Section 4.1, to achieve better compression ratio, L-OBS can be quite flexibly adopted
to its iterative version, which performs pruning and light retraining alternatively. Specifically, the
two-stage iterative L-OBS applied to LeNet-300-100, LeNet-5 and VGG-16 in this work follows the
following work flow: pre-train a well-trained model→ prune model→ retrain the model and reboot
performance in a degree→ prune again→ lightly retrain model. In practice, if required compression
ratio is beyond the “pruning inflection point”, users have to deploy iterative L-OBS though ultimate
compression ratio is not of too much importance. Experimental results are shown in Tabel 3, 4 and 5,

14

0 20 40 60 80 100
Sparsity (%)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

E
rr

or
T

hr
es

ho
ld

Figure 5: The corresponding relation between tolerable error threshold and pruning ratio.

where CR(n) means ratio of the number of preserved parameters to the number of original parameters
after the n-th pruning.

Table 3: For LeNet-300-100, iterative L-OBS(two-stage) achieves compression ratio of 1.5%
Layer Weights CR1 CR2

fc1 235K 7% 1%
fc2 30K 20% 4%
fc3 1K 70% 54%

Total 266K 8.7% 1.5%

Table 4: For LeNet-5, iterative L-OBS(two-stage) achieves compression ratio of 0.9%
Layer Weights CR1 CR2

conv1 0.5K 60% 20%
conv2 25K 60% 1%
fc1 400K 6% 0.9%
fc2 5K 30% 8%

Total 431K 9.5% 0.9%

Table 5: For VGG-16, iterative L-OBS(two-stage) achieves compression ratio of 7.5%
Layer conv1_1 conv1_2 conv2_1 conv2_2 conv3_1 conv3_2 conv3_3 conv4_1

Weights 2K 37K 74K 148K 295K 590K 590K 1M

CR1 70% 50% 70% 70% 60% 60% 60% 50%

CR2 58% 36% 42% 32% 53% 34% 39% 43%

Layer conv4_2 conv4_3 conv5_1 conv5_2 conv5_3 fc6 fc7 fc8

Weights 2M 2M 2M 2M 2M 103M 17M 4M

CR1 50% 50% 70% 70% 60% 8% 10% 30%

CR2 24% 30% 35% 43% 32% 2% 5% 17%

15

	Introduction
	Related Works and Preliminary
	Layer-wise Optimal Brain Surgeon
	Problem Statement
	Layer-Wise Error
	Layer-Wise Error Propagation and Accumulation
	The Proposed Algorithm
	Pruning on Fully-Connected Layers
	Pruning on Convolutional Layers

	Experiments
	Overall Comparison Results
	Comparison between L-OBS and Net-Trim

	Conclusion

