
A New Alternating Direction Method for Linear
Programming: Supplementary Material

Sinong Wang
Department of ECE

The Ohio State University
wang.7691@osu.edu

Ness Shroff
Department of ECE and CSE

The Ohio State University
shroff.11@osu.edu

Abstract

It is well known that, for a linear program (LP) with constraint matrix A ∈ Rm×n,
the Alternating Direction Method of Multiplier converges globally and linearly at a
rate O((‖A‖2F + mn) log(1/ε)). However, such a rate is related to the problem
dimension and the algorithm exhibits a slow and fluctuating “tail convergence” in
practice. In this paper, we propose a new variable splitting method of LP and prove
that our method has a convergence rate of O(‖A‖2 log(1/ε)). The proof is based
on simultaneously estimating the distance from a pair of primal dual iterates to the
optimal primal and dual solution set by certain residuals. In practice, we result
in a new first-order LP solver that can exploit both the sparsity and the specific
structure of matrix A and a significant speedup for important problems such as
basis pursuit, inverse covariance matrix estimation, L1 SVM and nonnegative
matrix factorization problem compared with current fastest LP solvers.

1 Introduction

We are interested in applying the Alternating Direction Method of Multiplier (ADMM) to solve a
linear program (LP) of the form

min
x∈Rn

cTx s.t. Ax = b, xi ≥ 0, i ∈ [nb]. (1)

where c ∈ Rn, A ∈ Rm×n is the constraint matrix, b ∈ Rm and [nb] = {1, 2, . . . , nb}. This problem
plays a major role in numerical optimization, and has been used in a large variety of application
areas. For example, several important machine learning problems including the nonnegative matrix
factorization (NMF) [1], l1−regularized SVM [2], sparse inverse covariance matrix estimation
(SICE) [3], the basis pursuit (BP) [4], and the MAP inference [5] problem can be cast into an LP
setting.

The complexity of the traditional LP solver is still at least quadratic in the problem dimension, i.e., the
Interior Point method (IPM) with a weighted path finding strategy. However, many recent problems
in machine learning have extremely large-scale targeting data but exhibit a sparse structure, i.e.,
nnz(A)� mn, where nnz(A) is the number of non-zero elements in the constraint matrix A. This
characteristic severely limits the ability of the IPM or Simplex technique to solve these problems. On
the other hand, first-order methods have received extensive attention recently due to their ability to
deal with large data sets. These methods require a matrix vector multiplication Ax in each iteration
with complexity linear in nnz(A). However, the key challenge in designing a first-order algorithm is
that LPs are usually non-smooth and non-strongly convex optimization problems (may not have a
unique solution). Utilizing the standard primal and dual stochastic sub-gradient descent method will
result in an extremely slow convergence rate, i.e., O(1/ε2) [6].

The ADMM was first developed in 1975 [7], and since then there have been several LP solvers
based on this technique. Compared with the traditional Augmented Lagrangian Method (ALM), this

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



method splits the variable into several blocks, and optimizes the augmented Lagrangian (AL) function
in a Gauss-Seidel fashion, which often results in relatively easier subproblems to solve. However,
this method suffers from a slow convergence when the number of blocks increases. Moreover, the
challenge of applying the ADMM to the LP is that the LP problem does not exhibit an explicit
separable structure among variables, which are difficult to split in the traditional sense. The notable
work [8] first applies the ADMM to solve the LP by augmenting the original n−dimensional variables
into nm−dimensions, and the resultant Augmented Lagrangian function is separable among n blocks
of variables. They prove that this method converges globally and linearly. However, the rate of this
method is dependent on the problem dimension m,n, and converges quite slowly when m,n are
large. Thus, they leave an open question on whether other efficient splitting methods exist, resulting
in convergence analysis in the space with lower dimension m or n.

In this paper, we propose a new splitting method for LP, which splits the equality and inequality
constraints into two blocks. The resultant subproblems in each iteration are a linear system with a
positive definite matrix, and n one-dimensional truncation operations. We prove our new method
converges globally and linearly at a faster rate compared with the method in [8]. Specifically, the main
contributions of this paper can be summarized as follows: (i) We show that the existing ADMM in [8]
exhibits a slow and fluctuating “tail convergence”, and provide a theoretical understanding of why
this phenomenon occurs. (ii) We propose a new ADMM method for LP and provide a new analysis
of the linear convergence rate of this new method, which only involves O(m + n)−dimensional
iterates. This result answers the open question proposed in [8]. (iii) We show that when the matrix A
possesses some specific structure, the resultant subproblem can be solved in closed form. For the
general constraint matrix A, we design an efficiently implemented Accelerated Coordinate Descent
Method (ACDM) to solve the subproblem inO(log(1/ε)nnz(A)) time. (iv) Practically, we show that
our proposed algorithm significantly speeds up solving the basis pursuit, l1−regularized SVM, sparse
inverse covariance matrix estimation, and the nonnegative matrix factorization problem compared
with existing splitting method [8] and the current fastest first-order LP solver in [9].

2 Preliminaries

In this section, we first review several definitions that will be used in the sequel. We also include
several LP-based machine problems that can be cast into the LP setting. Finally we illustrate some
observations from the existing method.

2.1 Notation

The proximal operator with parameter ρ of a closed and convex function f : Rn → R is defined as

proxρf (x) = arg min
u
f(u) +

1

2ρ
‖u− x‖2. (2)

A twice differentiable function f : Rn → R has strong convexity parameter ρ if and only if its Hessian
satisfies ∇2f(x) � ρI,∀x. We use ‖ · ‖ to denote standard l2 norm for vector or spectral norm for
matrix, ‖ · ‖1 to denote the l1 norm and ‖ · ‖F to denote the Frobenius norm. A twice differentiable
function f : Rn → R has the component-wise Lipschitz continuous gradient with constant Li if
and only if ‖∇if(x) − ∇if(y)‖ ≤ Li‖x − y‖,∀x,y. For example, for the quadratic function
F (x) = 1

2‖Ax − b‖2, the gradient ∇F (x) = AT (Ax − b) and the Hessian ∇2F (x) = ATA.
Hence the parameter ρ and Li satisfies (choose y = x+ tei, where t ∈ R, ei ∈ Rn is the unit vector),
xATAx ≥ ρ‖x‖2 and tAT

i Aei ≤ Li|t|,∀x, t. Thus, the ρ is the smallest eigenvalue of ATA and
Li = ‖Ai‖2, where Ai is ith column of the matrix A. The projection operator of point x into convex
set S is defined as [x]S = arg minu∈S ‖x− u‖. If S is the non-negative cone, let [x]+ , [x]S . Let
Vi = [0,∞) for i ∈ [nb] and Vi = R for i ∈ [n]\[nb].

2.2 Applications

Basis pursuit problem: The problem of basis pursuit [4] is a fundamental decoding model in
the compressive sensing. It aims at recovering the original signal from the compressed one with
preserving the sparsity.

min
x∈Rn

‖x‖1

2



s.t. Ax = b, (3)

where A ∈ Rm×n is the sensing matrix and b is the compressed measurement. In practice, the
dimension m� n and matrix A are formed by randomly taking a subset of rows from orthonormal
transform matrices, such as DCT (discrete cosine transform), DFT (discrete Fourier transform) or
DWHT (discrete Walsh-Hadamard transform) matrices.

l1−regularized SVM: The problem of l1−regularized support vector machine [2] aims at finding a
classifier in the 2-class SVM,

min
β

n∑
i=1

[
1− yi(βTxi)

]
+

+ λ‖β‖1, (4)

where (xi, yi) are the ith training data and label, β ∈ Rp is the linear classifier, and λ is the tuning
parameter. It can be generalized to the scenario of multi-classes by replacing the hinge loss term in
the objective function of maximizing the distances among different class, i.e., βT1 xi − βT2 xi.

Sparse Inverse Covariance Matrix Estimation: This problem aims to find a sparse matrix to
approximate the inverse of the covariance matrix S ∈ Rp×p. One popular approach [3] is to solve p
independent problems of the following form

min
β∈Rp−1

‖β‖1 s.t. ‖S−i,j − S−i,−iβ‖∞ ≤ δ, (5)

where S−i,j is the jth column of S with its ith entry removed, S−i,−i is the submatrix of S with its
ith row and column removed, and δ is predefined approximation threshold. In practice, the covariance
matrix S is dense, but it can be decomposed into the product of two sparse matrices, i.e., S = XXT ,
which can be exploited by introducing the auxiliary variables in LP.

Nonnegative Matrix Factorization: Given n nonnegative m−dimensional vectors collected in
matrix M ∈ Rm×n+ , the NMF determines two nonnegative matrix W ∈ Rm×r+ and H ∈ Rr×n+
such that M ≈ WH. It is a powerful technique in dimensionality reduction and can be solved
in polynomial time when the matrix M satisfies a separability condition. One of most popular
approaches [1, 10] to solve this problem is

min
X∈Rn×n

+

pT diag(X)

s.t. ‖M̃− M̃X‖1 ≤ λε,Xii ≤ 1, Xij ≤ Xii,∀i, j,

where p is any n−dimensional vector with distinct entries, M̃ is a normalized noisy matrix, λ is
predefined approximation threshold.

2.3 Tail Convergence of the Existing ADMM Method

The existing ADMM in [8] solves the LP (1) by following procedure: in each iteration k, go through
the following two steps:

1. Primal update: xk+1
i =

[
xki + 1

‖Ai‖2

(
AT
i (b−Axk)

q − ci−AT
i z

k

λ

)]
Vi

, i = 1, . . . , n.

2. Dual update: zk+1 = zk − λ
q (Axk − b).

In the Fig. 1, we plot the solving accuracy versus the number of iterations for solving three kinds
of problems: l1−regularized SVM, sparse inverse covariance matrix estimation and nonnegative
matrix factorization problem. Here the solving accuracy is defined as the relative accuracy (cTxk −
cTx∗)/(cTx∗), where x∗ is obtained approximately by running our method with a specific topping
criterion. The detailed information of date set and LP is listed in TABLE 1.

We can observe that it converges fast in the initial phase, but exhibits a slow and fluctuating conver-
gence when the iterates approach the optimal set. This method originates from a specific splitting
method in the standard 2−block ADMM [11]. To provide some understanding of this phenomenon,
we show that this method can be actually recovered by an inexact Uzawa method [12]. The Aug-
mented Lagrangian function of the problem (1) is denoted by L(x, z) = cTx + ρ

2‖Ax− b− z/ρ‖2.

3



0 500 1000 1500 2000
Number of iterations

10-1

100

101

102

R
el

at
iv

e 
du

al
ity

 g
ap

L1 SVM
Sparse Inverse Covariance Matrix Estimation
Nonnegative Matrix Factorization

0 50 100

100

101

102

Figure 1: The relative duality gap versus the number of iterations. Here one iteration represents one
dual updating step in existing ADMM.

Table 1: Data Statistics for Testing Existing ADMM (w8a is used for L1 SVM, rcv1 is used for SICE
and a1a is used for NMF problem)

Data Set #Samples #Features m n nnz(A)
w8a 49749 300 50095 30097 1161572
rcv1 15564 47236 256417 161947 7339063
a1a 1605 123 3150615 2958015 42006060

In each iteration k, the inexact Uzawa method first minimizes a local second-order approximation of
the quadratic term in L(x, zk) with respect to primal variables x, specifically,

xk+1 = arg min
xi∈Vi

cTx + 〈ρAT (Axk − b− zk/ρ),x− xk〉+
1

2
‖x− xk‖D, (6)

then update the dual variables by zk+1 = zk− ρ(Axk+1−b). Let the proximity parameter ρ = λ/q
and matrix D equal to the diagonal matrix diag{. . . , 1/q‖Ai‖2, . . .}, then we can recover the above
algorithm by the first-order optimality condition of (6). This equivalence allows us to illustrate the
main reason for the slow and fluctuating “tail convergence” comes from the inefficiency of such a
local approximation of the Augmented Lagrangian function when the iterates approach the optimal
set.

One straightforward idea to resolve this issue is to minimize the Augmented Lagrangian function
exactly instead of its local approximation, which leads to the classic ALM. There exists a line of
works focusing on analyzing the convergence of applying ALM to LP [9, 13, 14]. This method will
produce a sequence of constrained quadratic programs (QP) that are difficult to solve. The work [9]
prove that the proximal Coordinate Descent method can solve each QPs at a linear rate even when
matrix A is not full column rank. However, there exists several drawbacks in this approach: (i) the
practical solving time of each subproblem is quite long when A is rank-deficient; (ii) the theoretical
performance and complexity of using recent accelerated techniques in proximal optimization [15]
with the ALM is unknown; (iii) it cannot exploit the specific structure of matrix A when solving
each constrained QP. Therefore, it motivates us to investigate the new and efficient variable splitting
method for such a problem.

3 New Splitting Method in ADMM

We first separate the equality and inequality constraints of the above LP (1) by adding another group
of variables y ∈ Rn.

min cTx (7)
s.t. Ax = b,x = y,

yi ≥ 0, i ∈ [nb].

4



Algorithm 1 Alternating Direction Method of Multiplier with Inexact Subproblem Solver
Initialize z0 ∈ Rm+n, choose parameter ρ > 0.
repeat

1. Primal update: find xk+1 such that Fk(xk+1)−minx∈Rn Fk(x) ≤ εk.
2. Primal update: for each i, let yk+1

i =
[
xk+1
i + zky,i/ρ

]
Vi

.
3. Dual update: zk+1

x = zkx + ρ(Axk+1 − b), zk+1
y = zky + ρ(xk+1 − yk+1).

until ‖Axk+1 − b‖∞ ≤ ε and ‖xk+1 − yk+1‖∞ ≤ ε

The dual of problem (7) takes the following form.

min bT zx (8)

s.t. −AT zx − zy = c,
zy,i ≤ 0, i ∈ [nb], zy,i = 0, i ∈ [n]\[nb].

Let zx, zy be the Lagrange multipliers for constraints Ax = b, x = y,respectively. Define the
indicator function g(y) of the non-negative cone: g(y) = 0 if yi ≥ 0,∀i ∈ [nb]; otherwise
g(y) = +∞. Then the augmented Lagrangian function of the primal problem (7) is defined as

L(x,y, z) = cTx + g(y) + zT (A1x + A2y − b) +
ρ

2
‖A1x + A2y − b‖2, (9)

where z = [zx; zy]. The matrix A1, A2 and vector b are denoted by

A1 =

[
A
I

]
,A2 =

[
0
−I

]
, and b =

[
b
0

]
. (10)

In each iteration k, the standard ADMM go through following three steps:
1. Primal update: xk+1 = arg min

x∈Rn
L(x,yk, zk).

2. Primal update: yk+1 = arg min
y∈Rn

L(xk+1,y, zk).

3. Dual update: zk+1 = zk + ρ(A1x
k+1 + A2y

k+1 − b).

The first step is an unconstrained quadratic program, which can be simplified as

xk+1 = arg min
x
Fk(x) , cTx + (zk)TA1x +

ρ

2
‖A1x + A2y

k − b‖2. (11)

The gradient of the function Fk(x) can be expressed as

∇Fk(x) = ρ(ATA + I)x + AT
1 [zk + ρ(A2y

k − b)] + c, (12)

and the Hessian of function Fk(x) is

∇2Fk(x) = ρ(ATA + I). (13)

Further, based on the first-order optimality condition, the first step is equivalent to solve a linear
system, which requires inverting the Hessian matrix (13). In practice, the complexity is quite high to
be exactly solved unless the Hessian exhibits some specific structures. Thus, we relax the first step
into the inexact minimization: find xk+1 such that

Fk(xk+1)− min
x∈Rn

Fk(x) ≤ εk, (14)

where εk is the given accuracy. Transforming the indicator function g(y) back to the constraints, the
second step can be separated into n one−dimensional optimization problems: for each i,

yk+1
i = arg min

yi∈Vi
−zky,iyi +

ρ

2
(yi − xk+1

i )2 =
[
xk+1
i + zky,i/ρ

]
Vi
.

The resultant algorithm is sketched in Algorithm 1. In some applications such as BP, L1 SVM and
SICE, the objective function contains the l1 norm of the variables, and the optimization problem has
the form of

min cTx + ‖x‖1 (15)

5



s.t. Ax = b. (16)

Transforming to the canonical form (1) will add additional n variables and 2n constraints. One
important feature in our method is that we can split the objective function by adding group of variable
y.

min cTx + ‖y‖1 (17)
s.t. Ax = b,x = y. (18)

Similarly, applying the ADMM to problem (17), we can obtain the following two subproblems: the
first step is an unconstrained QP,

xk+1 = arg min
x

cTx + (zk)TA1x +
ρ

2
‖A1x + A2y

k − b‖2.

The second step is n one−dimensional shrinkage operations: for each i,

yk+1
i =

 xk+1
i + (zki − 1)/ρ, if xk+1

i + zki /ρ ≥ 1/ρ
xk+1
i + (zki + 1)/ρ, if xk+1

i + zki /ρ ≤ −1/ρ
0, otherwise

.

4 Convergence Analysis of New ADMM

In this section, we prove that the Algorithm 1 converges at a global and linear rate, and provide
a roadmap of the main technical development. We can first write the primal problem (7) as the
following standard 2−block form.

min
x,y

f(x) + g(y) s.t. A1x + A2y = b, (19)

where f(x) = cTx and g(y) is the indicator function as defined before. Most works in the literature
prove that the 2-block ADMM converges globally and linearly via assuming that one of the functions
f and g is strongly convex [16, 17, 18]. Unfortunately, both the linear function f and the indicator
function g in the LP do not satisfy this property, which poses a significant challenge on the current
analytical framework. There exists several recent works trying to address this problem in some sense.
In work [19], they have demonstrated that when the dual step size ρ is sufficiently small (impractical),
the ADMM converges globally linearly, while no implicit rate is given. The work [14] shows that
the ADMM is locally linearly converged when applying to LP. They utilize a unique combination of
iterates and conduct a spectral analysis. However, they still leave an open question whether ADMM
converges globally and linearly when applying to the LP in the above form.

In the sequel, we will answer this question positively and provide an accurate analysis of such a
splitting method. The main technical development is based on a geometric argument: we first prove
that the set formed by optimal primal and dual solutions of LP (7) is a (3n + m)−dimensional
polyhedron S∗; then we utilize certain global error bound to simultaneously estimate the distance
from iterates xk+1,yk, zk to S∗. All detailed proofs are given in the Appendix.
Lemma 1. (Convergence of 2-block ADMM [11]) Let pk = zk − ρA2y

k, we have

‖pk+1 − [pk+1]G∗‖2 ≤ ‖pk − [pk]G∗‖2 − ‖pk+1 − pk‖2,

where G∗ , {p∗ ∈ Rm+n|T (p∗) = p∗}, and the definition of operator T is given in (55) in
Appendix. Moreover, if the LP (7) has a pair of optimal primal and dual solution, the iterates xk,yk
and zk converges to an optimal solution; Otherwise, at least one of the iterates is unbounded.

Lemma 1 is tailored from applying the classic Douglas-Rachford splitting method to the LP. This result
guarantees that the sequence pk produced by ADMM globally converges under a mild assumption.
However, to establish the linear convergence rate, the key lies in estimating the other side inequality,

‖pk − [pk]G∗‖ ≤ γ‖pk+1 − pk‖, γ > 0. (20)

Then one can combine these two results together to prove that sequence pk converges globally and
linearly with ‖pk+1− [pk+1]G∗‖2 ≤ (1−1/γ2) ·‖pk− [pk]G∗‖2, which further can be used to show
the R−linear convergence of iterates xk,yk and zk. To estimate the constant γ, we first describe the
geometry formed by the optimal primal solutions x∗,y∗ and dual solutions z∗ of the LP (7).

6



Lemma 2. (Geometry of the optimal solution set of LP) The variables (x∗,y∗) are the optimal
primal solutions and z∗ are optimal dual solutions of LP (7) if and only if (i) Ax∗ = b, x∗ = y∗; (ii)
−AT z∗x − z∗y = c; (iii) y∗i ≥ 0, z∗y,i ≤ 0, i ∈ [nb]; z∗y,i = 0, i ∈ [n]\[nb]; (iv) cTx∗ + bT z∗x = 0.

In Lemma 2, one interesting element is to utilize the strong duality condition (iv) to eliminate the
complementary slackness in the standard KKT condition. Then, the set of optimal primal and dual
solutions is described only by affine constraints, which further implies that the optimal solution set is
an (m+ 3n)−dimensional polyhedron. We use S∗ to denote such a polyhedron.

Lemma 3. (Hoffman bound [20, 21]) Consider a polyhedron set S = {x ∈ Rd|Ex = t,Cx ≤ d}.
For any point x ∈ Rd, we have

‖x− [x]S‖ ≤ θS
∥∥∥∥[ Ex− t

[Cx− d]+

]∥∥∥∥ , (21)

where θS is the Hoffman constant that depends on the structure of polyhedron S.

According to the result in Lemma 2, it seems that we can use the Hoffman bound to estimate the
distance between the current iterates (xk,yk, zk) and the solution set S∗ via the their primal and
dual residual. However, to obtain the form of inequality (20), we need to bound such a residual in
terms of ‖pk − pk+1‖. Indeed, we have these results.

Lemma 4. (Estimation of residual) The sequence (xk+1,yk, zk) produced by Algorithm 1 satisfies
A1x

k+1 + A2y
k − b = (pk+1 − pk)/ρ,

c + AT
1 z

k = AT
1 (pk − pk+1),

cTxk+1 + bT zkx = (A1x
k+1 − zk/ρ)T (pk − pk+1),

yki ≥ 0, zky,i ≤ 0, i ∈ [nb]; z
k
y,i = 0, i ∈ [n]\[nb].

One observation from Lemma 4 is that Algorithm 1 automatically preserves the boundness and the
complementary slackness of both primal and dual iterates. Instead, in the previous algorithm in [8],
the complementary slackness is not preserved during the iteration. Combining the results in Lemma 2,
Lemma 3 and Lemma 4, we are readily to estimate the constant γ.

Lemma 5. (Estimation of linear rate) The sequence pk = zk − ρA2yk produced by Algorithm 1
satisfies ‖pk − [pk]G∗‖ ≤ γ‖pk+1 − pk‖, where the rate γ is given by

γ = (1 + ρ)

[
Rz + 1

ρ
+ (Rx + 1)‖AT

1 ‖
]
θS∗ . (22)

Rx = supk ‖xk‖ < +∞, Rz = supk ‖zk‖ < +∞ are the maximum radius of iterates xk and zk.

Then we can establish the global and linear convergence of Algorithm 1.

Theorem 1. (Linear convergence of Algorithm 1) Denote zk as the primal iterates produced by
Algorithm 1. To guarantee that there exists an optimal dual solution z∗ such that ‖zk − z∗‖ ≤ ε, it
suffices to run Algorithm 1 for number of iterations K = 2γ2 log(2D0/ε) with the solving accuracy
εk satisfying εk ≤ ε2/8K2, where D0 = ‖p0 − [p0]G∗‖.

The proof of Theorem 1 consists of two steps: first, we establish the global and linear convergence
rate of Algorithm 1 when εk = 0,∀k (exact subproblem solver); then we relax this condition and
prove that when εk is less than a specified threshold, the algorithm still shares a convergence rate of
the same order. The results of primal iterates xk and yk are similar.

5 Efficient Subproblem Solver

In this section, we will show that, due to our specific splitting method, each subproblem in line 1 of
Algorithm 1 can be either solved in closed-form expression or efficiently solved by the Accelerated
Coordinate Descent Method.

7



Algorithm 2 Efficiently Subproblem Solver
Initialize u0,v0, u0 = Au0, v0 = Av0, parameter τ , η, S, matrix M by (26) and distribution
p = [. . . ,

√
1 + ‖Ai‖2/S, . . . ] and let dk = AT

1 [zk + ρ(A2y
k − b)] + c.

repeat
[ut,vt]

T = Mt−1 · [u,v]T and [ut,vt]
T = Mt−1 · [u,v]T .

Sample i from [n] based on probability distribution p.
∇iFk(ut) = ρ(Ai)

Tut + ρut,i + dki , and calculate sit by (26).

Mt = M ·Mt−1. Update
[
uT

vT

]
=

[
uT

vT

]
−M−1

t sit,
[
uT

vT

]
=

[
uT

vT

]
−M−1

t sitA
T ,

until Converge
Output xk+1 = (uT − τvT )/(1− τ).

5.1 Well-structured Constraint Matrix

Let the gradient (12) vanishes, then the primal iterates xk+1 can be exactly determined by

xk+1 = ρ−1(I + ATA)−1dk, with dk = −AT
1 [zk + ρ(A2y

k − b)]− c, (23)

which requires inverting an n× n positive definite matrix I + ATA, or equivalently, inverting an
m×m positive definite matrix I + AAT via the following Sherman–Morrison–Woodbury identity,

(I + ATA)−1 = I−AT (I + AAT )−1A. (24)

One basic fact is that we only need to invert such a matrix once and then use this cached factorization
in subsequent iterations. Therefore, there are several cases for which the above factorization can
be efficiently calculated: (i) Factorization has a closed-form expression. For example, in the LP-
based MAP inference [5], the matrix I + ATA is block diagonal, and each block has been shown
to possess a closed-form factorization. Another important application is that, in the basis pursuit
problem, the encoding matrices such as DFT (discrete Fourier transform) and DWHT (discrete
Walsh-Hadamard transform) matrices have orthonormal rows and satisfy AAT = I. Based on
(23), each xk+1 = ρ−1(I − 1

2A
TA)dk and can be calculated in O(n log(n)) time by certain

fast transforms. (ii) Factorization has a low-complexity: the dimension m (or n) is small, i.e.,
m = 104. Such a factorization can be calculated in O(m3) and the complexity of each iteration is
only O(nnz(A) +m2).
Remark 1. In the traditional Augmented Lagrangian method, the resultant subproblem is a con-
strained and non-strongly convex QP (Hessian is not invertible), which does not allow the above
close-form expression. Besides, in the ALCD [9], the coordinate descent (CD) step only picks one
column in each iteration and cannot exploit the nice structure of matrix A. One idea is to modify the
CD step in [9] to the proximal gradient descent. However, it will greatly increase the computation
time due to the large number of inner gradient descent steps.

5.2 General Constraint Matrix

However, in other applications, the constraint matrix A only exhibits the sparsity, which is difficult
to invert. To resolve this issue, we resort to the current fastest accelerated coordinate descent
method [22]. This method has an order improvement up to O(

√
n) of iteration complexity compared

with previous accelerated coordinate descent methods [23]. However, the naive evaluation of partial
derivative of function Fk(x) in ACDM takes O(nnz(A)) time; second, the time cost of full vector
operation in each iteration of ACDM is O(n). We will show that these difficulties can be tackled by a
carefully designed implementation technique1 and the main procedure is listed in Algorithm 2.

The main three steps of the ACDM is, in each iteration t,

1. ut = τvt + (1− τ)xk+1
t .

2. Sample coordinate i with probability proportional to
√
Li and update xk+1

t+1 = ut −
1
Li
∇iFk(ut)ei, where Li is the Lipschitz constant of∇iFk(·).

1This technique is motivated by [23].

8



3. vt+1 = 1
1+ηρ

(
vt + ηρut − η

pi
∇iFk(ut)ei

)
.

Here we drop the superscript k+ 1 of intermediate variables u,v in each inner iteration. In the above
procedure, η = 1

τS2 , τ = 2

1+
√

4S2/ρ+1
, S =

∑n
i=1

√
‖Ai‖2 + 1. This choice of parameter is based

on letting β = 0 in the original ACDM [22] and the estimation of component-wise Lipschitz constant
Li = ‖Ai‖2 + 1 and strongly convexity parameter σ ≥ ρ of problem (11). The above procedure can
be further written as

ut+1 = τvt+1 + (1− τ)xk+1
t+1

=
1 + ηρ− τ

1 + ηρ
ut +

τ

1 + ηρ
vt −

[
ητ

pi(1 + ηρ)
+

1− τ
Li

]
∇iFk(ut)ei.

Combining this formula with the third step of ACDM, we can write each iteration as following matrix
iteration: [

uTt+1

vTt+1

]
= M

[
uTt
vTt

]
− sit. (25)

The matrix M and vector sit are defined as

M =

[
1− αv αv
βu 1− βu

]
with

[
αv
βu

]
=

[ τ
1+ηρ
ηρ

1+ηρ

]
and sit =

[(
ητ

pi(1+ηρ) + 1−τ
Li

)
∇iFk(ut)e

T
i

η
pi(1+ηρ)∇iFk(ut)e

T
i

]
,

(26)
Therefore, we can implement ACDM in each iteration as[

uTt+1

vTt+1

]
= Mt+1

[
uT

vT

]
, (27)

and update u, v and matrix Mt by

Mt+1 = M ·Mt and
[
uT

vT

]
:=

[
uT

vT

]
−M−1

t+1s
i
t. (28)

The rest is to calculate the partial derivative

∇iFk(ut) = ρ(Ai)
TAut + ρut,i + AT

1,i[z
k + ρ(A2y

k − b)] + ci,

where A1,i is ith column of matrix A1. Utilizing auxillary variable ut and vt to represent Aut and
Avt and multiplying (25) by matrix A, we have[

(Aut+1)T

(Avt+1)T

]
= M

[
(Aut)

T

(Avt)
T

]
+ sitA

T (29)

⇐⇒
[
uTt+1

vTt+1

]
= M

[
uTt
vTt

]
+ sitA

T . (30)

Therefore, to implement ACDM in each iteration, we can just maintain vectors u and v such that[
uTt+1

vTt+1

]
= M

[
uT

vT .

]
(31)

With this representation, each update step can be implemented by

Mt+1 = M ·Mt and
[
uT

vT

]
:=

[
uT

vT

]
−M−1

t+1s
i
tA

T . (32)

Lemma 6. (Inner complexity) In each iteration of Algorithm 2, if the current picked coordinate
is i, the update can be finished in O(nnz(Ai)) time, moreover, to guarantee that Fk(xk+1) −
minx Fk(x) ≤ εk with probability 1− p, it suffices to run Algorithm 2 for number of iterations

Tk ≥ O(1) ·
n∑
i=1

‖Ai‖ log

(
Dk

0

εkp

)
, Dk

0 = ‖F k(u0)−min
x
F k(x)‖. (33)

9



Table 2: Data Statistics for Experiments in Basis Pursuit Problem

Data Set Signal dimension Measurements dimension
bp1 8192 1024
bp2 16384 2048
bp3 32768 4096

Table 3: Data Statistics for Experiments in L1 SVM, SICE and NMF Problem

Data Set #Samples #Features nnz
news20 15935 62061 1272569
real-sim 72309 20958 3709083
arcene 900 10000 540941
colon 62 2000 124000
sonar 208 60 12479
w2a 3470 300 40373

The above iteration complexity is obtained by choosing parameter β = 0 in [22] and utilizing the
Theorem 1 in [24] to transform the convergence in expectation to the form of probability.

Theorem 2. (Overall complexity) Denote zk as the dual iterates produced by Algorithm 1. To
guarantee that there exists an optimal solution z∗ such that ‖zk − z∗‖ ≤ ε with probability 1− p, it
suffices to run Algorithm 1 for

k ≥ 2γ2 log(2D0/ε) (34)

outer iterations and solve each sub-problem (11) for the number of inner iterations

T ≥ O(1) ·
n∑
i=1

‖Ai‖ log

(
ρ(Dk

0 )
1
3 γ2

ε
2
3 p

1
3

log

(
2D0

ε

))
. (35)

The results for the primal iterates xk and yk are similar. In the existing ADMM [8], each primal and
dual update only requires O(nnz(A)) time to solve. The complexity of this method is

O(amµ
2(amRx + dmRz)

2(
√
mn+ ‖A‖F )2nnz(A) log(1/ε)),

where am = maxi ‖Ai‖, dm is the largest number of non-zero elements of each row of matrix A,
and µ is the Hoffman constant depends on the optimal solution set of LP. Based on Theorem 2, an
estimation of the worst-case complexity of Algorithm 1 is

O(amθ
2
S∗(Rx‖A‖+Rz)

2nnz(A) log2(1/ε)).

Remark that our method has a weak dependence on the problem dimension compared with the
existing ADMM. Since the Frobenius norm of a matrix satisfies ‖A‖2 ≤ ‖A‖F , our method is faster
than the one in [8].

6 Numerical Results

In this section, we examine the performance of our algorithm and compare it with the state-of-art
of algorithms developed for solving the LP. The first is the existing ADMM in [8]. The second is
the ALCD method in [9], which is reported to be the current fastest first-order LP solver. They have
shown that this algorithm can significantly speed up solving several important machine learning
problems compared with the Simplex and IPM. We name our Algorithm 1 as LPADMM. In the
experiments, we require that the accuracy of subproblem solver εk = 10−3 and the stopping criteria
is that both primal residual ‖A1x

k + A2y
k − b‖∞ and dual residual ‖AT

1 z
k + c‖∞ is less than

10−3. All the LP instances are generated from the basis pursuit, L1 SVM, SICE and NMF problems.
The data source and statistics are listed in TABLE 2 and TABLE 3.

For the basis pursuit problem, we adopt the following popular signal generation model [4]. In
particular, the target signal x ∈ Rn is set to

xi = 1{i ∈ Λ}Θ(1)
i 102Θ

(2)
i , (36)

10



0 5000 10000 15000
Number of iterations

10-3

10-2

10-1

100

101

102

D
ua

lit
y 

ga
p ADMM

LPADMM 
ALCD

1000 2000 3000 4000 5000
Number of iterations

10-3

10-2

10-1

100

101

D
ua

lit
y 

ga
p

ADMM 
LPADMM 
ALCD

0 1000 2000 3000 4000 5000 6000 7000
Number of iterations

10-3

10-2

10-1

100

101

D
ua

lit
y 

ga
p

ADMM 
LPADMM 
ALCD

0 50 100 150 200
Number of iterations

10-3

10-2

10-1

100

101

102

D
ua

lit
y 

ga
p

ADMM 
LPADMM 
ALCD

Figure 2: The duality gap versus the number of iterations. From left to right figures are the BP, NMF,
the L1 SVM and and the SICE problem.

Table 4: Timing Results for BP, SICE, NMF and L1 SVM Problem (in sec. long means > 60 hours)

Data m n nnz(A) LPADMM ALCD ADMM
Time Iterations Time Iterations Time Iterations

bp1 17408 16384 8421376 22 3155 864 14534 long long
bp2 34816 32768 33619968 79 4657 2846 19036 long long
bp3 69632 65536 134348800 217 6287 12862 24760 long long

arcene 50095 30097 1151775 801 15198 1978 176060 21329 2035415
real-sim 176986 135072 7609186 955 4274 1906 18262 19697 249363

sonar 80912 68224 2756832 258 5446 659 13789 3828 151972
colon 217580 161040 8439626 395 216 455 1288 7423 83680
w2a 12048256 12146960 167299110 19630 2525 45388 8492 long long

news20 2785205 2498375 53625267 7765 2205 9173 6174 long long

where Λ is constructed by selecting randomly s indices of set [1, 2, . . . , n], Θ
(1)
i , i ∈ Λ is the

Bernoulli random with values {+1,−1} in equal probability, Θ
(2)
i , i ∈ Λ is a uniformly distributed

random variable in [0, 1]. The sparsity level is set to 0.20. The dynamic range of signal is 40dB. The
measurement matrix A ∈ Rm×n is generated by randomly selecting rows from the classic Walsh-
Hadamard transform matrix of order 2j . For the L1 SVM problem, we set the penalty parameter
η = 1. For the SICE problem, we adopt the technique introduced in [3] and provide the result on
only one of p independent problems. For NMF problem, we set the approximation tolerance to be
0.01 times number of samples.

We first compare the convergence rate of different algorithms in solving the above problems. We
use the bp1 for BP problem, data set colon cancer for NMF problem, news20 for L1 SVM problem
and real-sim for SICE problem. We set proximity parameter ρ = 1. We adopt the relative duality
gap as the comparison metric, which is defined as ‖cTxk + bT zkx‖/‖cTx∗‖, where x∗ is obtained
approximately by running our method with a strict stopping condition. In our simulation, one iteration
represents n coordinate descent steps for ALCD and LPADMM, and one dual updating step for
ADMM. As can be seen in the Fig. 2, our new method exhibits a global and linear convergence rate
and matches our theoretical performance bound. Besides, it converges faster than both the ALCD
and existing ADMM method, especially in solving the BP and NMF problem.

We next examine the performance of our algorithm from the perspective of time efficiency (both
clocking time and number of iterations). We adopt the dynamic step size rule for ALCD to optimize
its performance. Note that, exchanging the role of the primal and dual problem in (7), we can obtain
the dual version of both ADMM and ACLD, which can be used to tackle the primal or dual sparse
problem. We run both methods and adopt the minimum time. The stopping criterion requires that the
primal and dual residual and the relative duality gap is less than 10−3. The data set bp1,bp2,bp3 is
used for basis pursuit problem, news20 is used for L1 SVM problem; arcene, real-sim are used for
SICE problem; sonar, colon and w2a are used for NMF problem. Among all experiments, we can
observe that our proposed algorithm requires approximately 10%− 40% iterations and 10%− 85%
time of the ALCD method, and become particularly advantageous for basis pursuit problem (50×
speed up) or ill posed problems such as SICE and NMF problem. The main reason is that, due to
our splitting method, each subproblem is a well-conditioned linear system that can be efficiently
solved. In particular, for the basis pursuit problem, the primal iterates xk is updated by closed-form
expression (23), which can be calculated in O(n log(n)) time by Fast Walsh–Hadamard transform.

Under the same stopping criterion, we vary the Augmented Lagrangian parameter ρ and see how it
influences the required number of iterations to obtain a given accuracy solution. We also run 100
times with the same ρ for each data set to avoid random noise. We observe that, when the parameter
ρ increases 100 times (from 1 to 100), the number of iterations decreases or increases roughly 20%
compared with the existing results in TABLE 1 (section of numerical results). Moreover, even

11



when the ρ is drastically increased from 1 to 100, the largest number of iterations and clocking time
produced by our algorithm are still much less than the smallest one produced by other algorithms.

7 Conclusions

In this paper, we proposed a new variable splitting method to solve the linear programming problem.
The theoretical contribution of this work is that we prove that 2−block ADMM converges globally and
linearly when applying to the linear program. The obtained convergence rate has a weak dependence
of the problem dimension and is less than the best known result. Compared with the existing LP
solvers, our algorithms not only provides a flexibility to exploit the specific structure of constraint
matrix A, but also can be naturally combined with the existing acceleration techniques to significantly
speed up solving the large-scale machine learning problems. The future work focuses on generalizing
our theoretical framework and exhibiting the global linear convergence rate when applying ADMM
to solve a convex quadratic program.

Acknowledgments: This work is supported by ONR N00014-17-1-2417, N00014-15-1-2166, NSF
CNS-1719371 and ARO W911NF-1-0277.

References
[1] Ben Recht, Christopher Re, Joel Tropp, and Victor Bittorf. Factoring nonnegative matrices with

linear programs. In Advances in Neural Information Processing Systems, pages 1214–1222,
2012.

[2] Ji Zhu, Saharon Rosset, Trevor Hastie, and Robert Tibshirani. 1-norm support vector machines.
In NIPS, volume 15, pages 49–56, 2003.

[3] Ming Yuan. High dimensional inverse covariance matrix estimation via linear programming.
Journal of Machine Learning Research, 11(Aug):2261–2286, 2010.

[4] Junfeng Yang and Yin Zhang. Alternating direction algorithms for l1-problems in compressive
sensing. SIAM journal on scientific computing, 33(1):250–278, 2011.

[5] Ofer Meshi and Amir Globerson. An alternating direction method for dual map lp relaxation.
Machine Learning and Knowledge Discovery in Databases, pages 470–483, 2011.

[6] Vânia Lúcia Dos Santos Eleutério. Finding approximate solutions for large scale linear
programs. PhD thesis, ETH Zurich, 2009.

[7] Roland Glowinski and A Marroco. Sur l’approximation, par éléments finis d’ordre un, et
la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires.
Revue française d’automatique, informatique, recherche opérationnelle. Analyse numérique,
9(2):41–76, 1975.

[8] Jonathan Eckstein, Dimitri P Bertsekas, et al. An alternating direction method for linear
programming. 1990.

[9] Ian En-Hsu Yen, Kai Zhong, Cho-Jui Hsieh, Pradeep K Ravikumar, and Inderjit S Dhillon.
Sparse linear programming via primal and dual augmented coordinate descent. In Advances in
Neural Information Processing Systems, pages 2368–2376, 2015.

[10] Nicolas Gillis and Robert Luce. Robust near-separable nonnegative matrix factorization using
linear optimization. Journal of Machine Learning Research, 15(1):1249–1280, 2014.

[11] Jonathan Eckstein and Dimitri P Bertsekas. On the douglas-rachford splitting method and
the proximal point algorithm for maximal monotone operators. Mathematical Programming,
55(1):293–318, 1992.

[12] Wotao Yin. Analysis and generalizations of the linearized bregman method. SIAM Journal on
Imaging Sciences, 3(4):856–877, 2010.

[13] O Güler. Augmented lagrangian algorithms for linear programming. Journal of optimization
theory and applications, 75(3):445–470, 1992.

12



[14] Daniel Boley. Local linear convergence of the alternating direction method of multipliers on
quadratic or linear programs. SIAM Journal on Optimization, 23(4):2183–2207, 2013.

[15] Qihang Lin, Zhaosong Lu, and Lin Xiao. An accelerated proximal coordinate gradient method.
In Advances in Neural Information Processing Systems, pages 3059–3067, 2014.

[16] Robert Nishihara, Laurent Lessard, Benjamin Recht, Andrew Packard, and Michael I Jordan. A
general analysis of the convergence of admm. In ICML, pages 343–352, 2015.

[17] Tianyi Lin, Shiqian Ma, and Shuzhong Zhang. On the global linear convergence of the admm
with multiblock variables. SIAM Journal on Optimization, 25(3):1478–1497, 2015.

[18] Wei Deng and Wotao Yin. On the global and linear convergence of the generalized alternating
direction method of multipliers. Journal of Scientific Computing, 66(3):889–916, 2016.

[19] Mingyi Hong and Zhi-Quan Luo. On the linear convergence of the alternating direction method
of multipliers. Mathematical Programming, pages 1–35, 2012.

[20] Alan J Hoffman. On approximate solutions of systems of linear inequalities. Journal of Research
of the National Bureau of Standards, 49(4), 1952.

[21] Wu Li. Sharp lipschitz constants for basic optimal solutions and basic feasible solutions of
linear programs. SIAM journal on control and optimization, 32(1):140–153, 1994.

[22] Zeyuan Allen-Zhu, Zheng Qu, Peter Richtarik, and Yang Yuan. Even faster accelerated
coordinate descent using non-uniform sampling. In Proceedings of The 33rd International
Conference on Machine Learning, pages 1110–1119, 2016.

[23] Yin Tat Lee and Aaron Sidford. Efficient accelerated coordinate descent methods and faster
algorithms for solving linear systems. In Foundations of Computer Science (FOCS), 2013 IEEE
54th Annual Symposium on, pages 147–156. IEEE, 2013.

[24] Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming, 144(1-2):1–38,
2014.

A Proof of Lemma 1

The proof of Lemma 1 is tailored from [11]. Several intermediate results in this proof will be useful
in the derivation of other lemmas. Thus, we provide this modification for completeness. We first
write the three steps of ADMM as,

xk+1 = arg min
x
f(x) + (zk)TA1x +

ρ

2
‖A1x + A2y

k − b‖2, (37)

yk+1 = arg min
y
g(y) + (zk)TA2y +

ρ

2
‖A1x

k+1 + A2y − b‖2, (38)

zk+1 = zk + ρ(A1x
k+1 + A2y

k+1 − b). (39)

We will prove (37)-(39) are equivalent to the following proximal operations.

wk+1 = proxρf (zk + ρA2y
k), (40)

zk+1 = proxρg(w
k+1 − ρA2y

k), (41)

ρA2y
k+1 = ρA2y

k + zk+1 −wk+1, (42)

where wk+1 = zk + ρ(A1x
k+1 + A2y

k − b) are the dual variables in the optimization problem
(11). Functions f and g is defined as

f(u) , b
T
u + f∗(−AT

1 x) and g(u) , g∗(−AT
2 x), (43)

where f∗ and g∗ is the convex conjugate of function f and g, defined as f∗(y) = supx y
Tx− f(x)

and g∗(y) = supx y
Tx− g(x).

13



Claim 1: equivalence of first step (37) ⇐⇒ (40)

xk+1 = arg min
x
f(x) + (zk)TA1x +

ρ

2
‖A1x + A2y

k − b‖2

(a)⇐⇒ 0 ∈ ∂f(xk+1) + AT
1 z

k + ρAT
1 (A1x

k+1 + A2y
k − b) (44)

(b)⇐⇒ −AT
1 w

k+1 ∈ ∂f(xk+1)

(c)⇐⇒ xk+1 ∈ ∂f∗(−AT
1 w

k+1)

(d)⇐⇒ −A1x
k+1 ∈ −A1∂f

∗(−AT
1 w

k+1)

(e)⇐⇒ 0 ∈ b−A1∂f
∗(−AT

1 w
k+1) +

1

ρ
(wk+1 − zk − ρA2y

k)

(f)⇐⇒ wk+1 = proxρf (zk + ρA2y
k).

The above, (a) is based on the first-order optimality condition of unconstrained optimization, (b)
utilizes the definition of wk+1, (c) is based on the fact that function f is closed and convex, (d)
utilizes the fact that matrix A1 has full column rank, since A1 = [A; I] contains the identity matrix
in its column space. (e) utilizes the definition of wk+1 again. (f) is based on the first-order optimality
condition of proximal operator.

Claim 2: equivalence of second step (38) ⇐⇒ (41)

yk+1 = arg min
y
g(y) + (zk)TA2y +

ρ

2
‖A1x

k+1 + A2y − b‖2

(a)⇐⇒ 0 ∈ ∂g(yk+1) + AT
2 z

k + ρAT
2 (A1x

k+1 + A2y
k+1 − b)

(b)⇐⇒ −AT
2 z

k+1 ∈ ∂g(yk+1)

(c)⇐⇒ yk+1 ∈ ∂g∗(−AT
2 z

k+1) (45)
(d)⇐⇒ −A2y

k+1 ∈ −A2∂g
∗(−AT

2 z
k+1)

(e)⇐⇒ 0 ∈ −A2∂g
∗(−AT

2 z
k+1) +

1

ρ
(zk+1 −wk+1 + ρA2y

k)

(f)⇐⇒ zk+1 = proxρg(w
k+1 − ρA2y

k).

The above, (a) is based on the first-order optimality condition of unconstrained optimization, (b)
utilizes the definition of dual iterates zk+1, (c) is based on the fact that function g is closed and
convex. (d) utilizes the fact that matrix A2 has full column rank, since A1 = [0;−I] contains the
identity matrix in its column space. (e) utilizes the definition of zk+1 again. (f) is based on the
first-order optimality condition of proximal operator.

Claim 3: equivalence between (39) ⇐⇒ (42)

ρA2y
k + zk+1 −wk+1

(a)
= ρA2y

k + [zk + ρ(A1x
k+1 + A2y

k+1 − b)]− [zk + ρ(A1x
k+1 + A2y

k − b)]

= ρA2y
k+1.

The above, (a) is based on the definition of wk+1 and zk+1.

Combining claim 1-3, we arrive at the desired equivalence between ADMM and the proximal
operations. Based on the definition of iterates pk = zk − ρA2y

k, the proximal operations (40)-(42)
are equivalent to

wk+1 = proxρf (2zk − pk), (46)

zk+1 = proxρg(w
k+1 − zk + pk), (47)

pk+1 = pk + wk+1 − zk. (48)

14



It can be further simplified as

pk+1 = pk + proxρf (2zk − pk)− zk, (49)

zk+1 = proxρg(p
k+1). (50)

Start at p0 and renumber the iterates, we have

zk+1 = proxρg(p
k), (51)

pk+1 = pk + proxρf (2zk+1 − pk)− zk+1, (52)

which is the classic Douglas-Rachford splitting method [11]. We can further write it as following
iteration of proximal operator.

pk+1 = T (pk), (53)
where the operator T is defined as

T (x) = x + proxρf (2proxρg(x)− x)− proxρg(x). (54)

Claim 4: Let G(x) = x− T (x), then G is firmly non-expansive.

Based on the fact that proximal operator proxρf (·) and proxρg are firmly non-expansive, we have
∀p,p′ ∈ Rm+n,

〈proxρg(p)− proxρg(p
′),p− p′〉 ≥ ‖proxρg(p)− proxρg(p

′)‖2,
〈proxρf (2proxρg(p)− p)− proxρf (2proxρg(p

′)− p′), (2proxρg(p)− p)− (2proxρg(p
′)− p′)〉

≥ ‖proxρf (2proxρg(p)− p)− proxρf (2proxρg(p
′)− p′)‖2.

Summing the above two inequalities together and rearranging the terms in both sides, we have

〈G(p)−G(p′),p− p′〉 ≥ ‖G(p)−G(p′)‖2, (55)

which implies the desired result.

Let p∗ be any point satisfying T (p∗) = p∗, we have

‖pk+1 − p∗‖2 = ‖pk+1 − pk + pk − p∗‖2

= ‖pk − p∗‖2 + ‖pk+1 − pk‖2 + 2〈pk+1 − pk,pk − p∗〉
(a)
= ‖pk − p∗‖2 + ‖G(pk)‖2 − 2〈G(pk)−G(p∗),pk − p∗〉
(b)

≤ ‖pk − p∗‖2 + ‖G(pk)‖2 − 2‖G(pk)−G(p∗)‖2

= ‖pk − p∗‖2 − ‖pk − pk+1‖2. (56)

The above, (a) is based on the definition of G(·) and p∗ is the zero point of operator G(·), (b) is based
on the Claim 4 that the operator G(·) is non-firmly expansive. Since p∗ is any zero point of operator
G(·), let p∗ = [pk]G∗ , where G∗ = {p∗|T (p∗) = p∗}, we have

‖pk+1 − [pk+1]G∗‖2 ≤ ‖pk+1 − [pk]G∗‖2 ≤ ‖pk − [pk]G∗‖2 − ‖pk − pk+1‖2. (57)

The convergence and boundedness of xk,yk, zk can be obtained from the above inequality. More
details can be seen in Theorem 2 in [8]. Thus, the lemma follows.

B Proof of Lemma 2

Let’s first prove the “if” direction. Suppose that (x∗,y∗, z∗) satisfy the condition (i)-(iv). The
condition (i)-(iii) implies that the (x∗,y∗, z∗) satisfies the primal feasibility: Ax∗ = b, x∗ = y∗,
y∗i ≥ 0, i ∈ [nb]; dual feasibility: −AT z∗x−z∗y = c, z∗y,i ≤ 0, i ∈ [nb], z

∗
y,i = 0, i ∈ [n]\[nb]. Based

on the weak duality theorem, for any other primal feasible variables x,y and dual feasible variables
zx, zy ,

cTx ≥ −bT z∗x and cTx∗ ≥ −bT zx.

15



Then, combining this result with the condition of (iv), we have
cTx ≥ cTx∗ and bT zx ≥ bT z∗x, (58)

which implies the (x∗,y∗, z∗) are optimal primal and dual solutions of the LP (7).

We then prove the “only if” direction. Suppose that the (x∗,y∗, z∗) are optimal primal and dual
solutions of the LP (7). By the strong duality theorem of LP, we arrive the last condition (iv). Based
on the KKT condition, the primal feasibility implies that Ax∗ = b,x∗ = y∗ and y∗i ≥ 0, i ∈
[nb]; the constraints on the dual variable implies that z∗y,i ≤ 0, i ∈ [nb]; the Lagrangian of LP:
cTx+g(y)+zTx (Ax−b)+zTy (x−y) with respect to x,y vanishes implies that−AT z∗x−z∗y = c
and z∗y,i = 0, i ∈ [n]\[nb].

C Proof of Lemma 4

We first show that pk+1−pk = ρ(A1x
k+1+A2y

k−b). Based on the definition of pk = zk−ρA2y
k,

we have
pk+1 − pk = (zk+1 − ρA2y

k+1)− (zk − ρA2y
k)

(a)
= ρ(A1x

k+1 + A2y
k − b). (59)

The above, (a) is based on the dual updating step of ADMM.

Second, we show c+AT
1 z

k = AT
1 (pk − pk+1). Based on the first-order optimality condition of the

first step of ADMM (44) and the fact that ∂f(xk+1) = {c}, we have

c + AT
1 z

k + ρAT
1 (A1x

k+1 + A2y
k − b) = 0. (60)

Utilizing the result of (59), we can obtain

c + AT
1 z

k + AT
1 (pk+1 − pk) = 0. (61)

Third, we show that cTxk+1 + bT zkx =
〈
A1x

k+1 − zk/ρ,pk − pk+1
〉
. Based on the result of (59)

and (61), we have
A1x

k+1 + A2y
k − b = (pk+1 − pk)/ρ, (62)

c + AT
1 z

k = AT
1 (pk − pk+1). (63)

Further, based on the second and third steps of ADMM, for those bounded variables, we have ,

yk+1
i =

[
xk+1
i + zky,i/ρ

]
+

= max
{

0, xk+1
i + zky,i/ρ

}
≥ 0, i ∈ [nb], (64)

zk+1
y,i = zky,i + ρ(xk+1

i − yk+1
i ) = min

{
zky,i + ρxk+1

i , 0
}
≤ 0, i ∈ [nb]. (65)

For the free variables, we have
yk+1
i = xk+1

i + zky,i/ρ and zk+1
y,i = zky,i + ρ(xk+1

i − yk+1
i ) = 0, i ∈ [n]\[nb]. (66)

Thus, we can obtain,
yk+1
i · zk+1

y,i = max
{

0, xk+1
i + zky,i/ρ

}
·min

{
zky,i + ρxk+1

i , 0
}

= 0, i ∈ [nb], (67)

yk+1
i · zk+1

y,i = (xk+1
i + zky,i/ρ) · 0 = 0, i ∈ [n]\[nb]. (68)

The equations (62)-(68) imply that the pair of iterates (xk+1,yk) and zk satisfies the complementary
slackness of the following perturbed primal and dual LPs. Thus the iterates (xk+1,yk) and zk

Approximate primal LP Approximate dual LP
min 〈c−AT

1 (pk − pk+1),x〉
s.t. A1x + A2y = b− (pk+1 − pk)/ρ

yi ≥ 0, i ∈ [nb].

min
〈
b− (pk+1 − pk)/ρ, z

〉
s.t. −AT

1 z = c−AT
1 (pk − pk+1),

zy,i ≤ 0, i ∈ [nb], zy,i = 0, i ∈ [n]\[nb].

constitute the optimal primal and dual solutions of the above LPs. According to the strong duality,
we have 〈

c−AT
1 (pk − pk+1),xk+1

〉
+
〈
b− (pk+1 − pk)/ρ, zk

〉
= 0. (69)

Rearranging the terms in the above equation, we have

cTxk+1 + bT zkx =
〈
A1x

k+1 − zk/ρ,pk − pk+1
〉
. (70)

Thus, the lemma follows.

16



D Proof of Lemma 5

Let S∗ denote the solution set described by Lemma 2. Since S∗ is a non-empty polyhedron, we can
utilize the Hoffman bound in Lemma 3 to bound the distance between the primal, dual iterates and
the optimal solution set S∗.

∥∥∥∥∥∥
xk+1

yk

zk

−
xk+1

yk

zk


S∗

∥∥∥∥∥∥ ≤ θS∗

∥∥∥∥∥∥∥∥∥∥


A1x

k+1 + A2y
k+1 − b

−AT
1 z

k − c
[−yk]+
[zky ]+

cTxk+1 + bT zkx


∥∥∥∥∥∥∥∥∥∥

(a)
= θS∗

∥∥∥∥∥∥
A1x

k+1 + A2y
k+1 − b

−AT
1 z

k − c
cTxk+1 + bT zkx

∥∥∥∥∥∥
(b)
= θS∗

∥∥∥∥∥∥
 (pk+1 − pk)/ρ

AT
1 (pk+1 − pk)〈

A1x
k+1 − zkx/ρ,p

k − pk+1
〉
∥∥∥∥∥∥

(c)

≤ θS∗
(
‖pk+1 − pk‖/ρ+ ‖AT

1 (pk+1 − pk)‖
)

+

θS∗
∥∥〈A1x

k+1 − zkx/ρ,p
k − pk+1

〉∥∥
(d)

≤ θS∗
[
(1 +Rz)/ρ+ (Rx + 1)‖AT

1 ‖
]
‖pk+1 − pk‖. (71)

The above, (a) is based on (64) and (65) such that [−yk]+ = 0 and [zky ]+ = 0 (Note that the
projection operator [·]+ is elementary wise and we omit the constraints that zy,i = 0, i ∈ [n]\[nb]
since it is always satisfied (Lemma 4), (b) is based on the estimation of residuals in Lemma 4, (c)
utilizes the triangle inequality, (d) utilizes the following spectrum inequality

‖AT
1 x‖ ≤ ‖AT

1 ‖‖x‖, (72)

where ‖AT
1 ‖ is the spectral norm of matrix AT

1 , defined as ‖AT
1 ‖2 = ρmax(A1A

T
1 ) (the maximum

eigenvalue of matrix A1A
T
1 ). Besides,∥∥∥∥〈A1x

k+1 − 1

ρ
zkx,p

k − pk+1

〉∥∥∥∥ =
∥∥〈xk+1,AT

1 (pk − pk+1)
〉
−
〈
zkx/ρ,p

k − pk+1
〉∥∥

(e)

≤
∥∥〈xk+1,AT

1 (pk − pk+1)
〉∥∥+

∥∥〈zkx/ρ,pk − pk+1
〉∥∥

(f)

≤ Rx‖AT
1 ‖‖pk − pk+1‖+

Rz
ρ
‖pk − pk+1‖. (73)

The above, (e) is based on the triangle inequality, (f) utilizes Cauchy-Schwarz inequality and spectrum
inequality. Here Rx and Rz is defined as

Rx = sup
k
‖xk‖ and Rz = sup

k
‖zkx‖. (74)

Based on the above results, we have the following two inequalities,

‖yk − [yk]S∗‖ ≤ γ′‖pk+1 − pk‖ and ‖zk − [zk]S∗‖ ≤ γ′‖pk+1 − pk‖, (75)

where [xk+1]S∗ , [yk]S∗ and [zk]S∗ are the sub-vector of the

xk+1

yk

zk


S∗

with corresponding

coordinates of x, y and z, and the estimation γ′ =
[
(Rz + 1)/ρ+ (Rx + 1)‖AT

1 ‖
]
θS∗ .

Claim: p∗ = [zk]S∗−ρA2[yk]S∗ belongs to the optimal solution setG∗, that isG(p∗) = 0 (defined
in Lemma 1).

Since ([xk+1]S∗ , [yk]S∗ , [zk]S∗) are the optimal primal and dual solutions of LPs (7) and (8), they
satisfy the following conditions.

17



1. Primal feasibility: A1[xk+1]S∗ + A2[yk]S∗ = b;

2. Dual feasibility: c +AT1 [zk]S∗ = 0;

3. Complementary slackness: 〈−AT
2 [zk]S∗ , [yk]S∗〉 = 0.

Then, we have

G(p∗) = proxρg(p
∗)− proxρf (2proxρg(p

∗)− p∗)

(a)
= [zk]S∗ − proxρf (2[zk]S∗ − p∗)

(b)
= [zk]S∗ − proxρf ([zk]S∗ + ρA2[yk]S∗)

(c)
= 0.

The above, (a) is based on the following argument

[zk]S∗ = proxρg(p
∗)

(d)⇐ 0 ∈ −A2∂g
∗(−AT

2 [zk]S∗) + ([zk]S∗ − p∗)/ρ

(e)⇐ A2[yk]S∗ ∈ A2∂g
∗(−AT

2 [zk]S∗)

(f)⇐ −AT
2 [zk]S∗ ∈ ∂g([yk]S∗)

(g)⇐ 〈−AT
2 [zk]S∗ , [yk]S∗〉 ≥ 〈−AT

2 [zk]S∗ ,y〉,∀yi ≥ 0, i ∈ [nb].

The above, (d) is based on the first-order optimality condition of the proximal operator, (e) utilizes
the definition of p∗, (f) is based on full column rank property of matrix A2, (g) is based on the
definition of the subgradients of the indicator function g(y). The last inequality always holds because
the left-hand-side is equal to 0 by complementary slackness (condition 3), and the right-hand-side is
negative by definition of S∗.
The step (b) utilizes the definition of p∗. The step (c) is based on the following argument

[zk]S∗ = proxρf ([zk]S∗ + ρA2[yk]S∗)
(h)⇐ 0 ∈ b−A1∂f

∗(−AT
1 [zk]S∗)+

([zk]S∗ − [zk]S∗ − ρA2[yk]S∗)/ρ

(i)⇐ −A1[xk+1]S∗ ∈ −A1∂f
∗(−AT

1 [zk]S∗)

(j)⇐ −AT
1 [zk]S∗ ∈ ∂f([xk+1]S∗).

The above, (h) is based on the first-order optimality condition of the proximal operator, (i) utilizes
the primal feasibility condition A1[xk+1]S∗ + A2[yk]S∗ = b, (j) is based on the similar argument
of (f). The last equality always holds by dual feasibility condition c + AT

1 [zk]S∗ = 0 and fact that
∂f(x) = {c}. Thus the claim follows.

Then, we have

‖pk − [pk]G∗‖
(a)

≤ ‖pk − p∗‖
= ‖zk − [zk]S∗ − ρA2(yk − [yk]S∗)‖
(b)

≤ ‖zk − [zk]S∗‖+ ρ‖yk − [yk]S∗‖
(c)

≤ (1 + ρ)γ′‖pk − pk+1‖. (76)

The above, (a) is based on definition of projection operator [·]G∗ and the claim that p∗ belongs to
G∗, (b) utilizes the triangle inequality and the definition of matrix A2, (c) utilizes results of (75).
Therefore, the lemma follows.

E Proof of Theorem 1

We first prove the following convergence result each subproblem is exactly solved (εk = 0).

18



Lemma 7. (Linear convergence of Algorithm 1 with exact subproblem solver) Denote zk as the dual
iterates produced by Algorithm 1. In each iteration k, if the accuracy εk = 0 and k ≥ 2γ2 log(D0/ε),
then there exists an optimal dual solution z∗ such that ‖zk+1−z∗‖ ≤ ε, where D0 = ‖p0− [p0]G∗‖.

Proof. We first show the accuracy of ‖zk − z∗‖. Combining the results of Lemma 1 and Lemma 5,
we have

‖pk+1 − [pk+1]G∗‖2 ≤
(

1− 1

γ2

)
‖pk − [pk]G∗‖2. (77)

Further,

‖pk+1 − [pk+1]G∗‖ ≤
√

1− 1

γ2
· ‖pk − [pk]G∗‖. (78)

Then, telescoping (78), we have

‖pk − [pk]G∗‖ ≤
(

1− 1

γ2

) k
2

· ‖p0 − [p0]G∗‖. (79)

Thus, let the number of iterations k satisfies

k ≥ 2γ2 log

(
D0

ε

)
, (80)

where the constant D0 is the distance between the initial point and optimal solution set, defined as
D0 = ‖p0 − [p0]G∗‖. Then we have

‖pk − [pk]G∗‖ ≤
(

1− 1

γ2

)γ2 log(D0
ε )
· ‖p0 − [p0]G∗‖

= exp

{
γ2 log

(
ε

D0

)
log

(
γ2

γ2 − 1

)
+ log(D0)

}
(a)

≤ exp

{
log

(
ε

D0

)
+ log(D0)

}
= ε, (81)

The above, (a) is based on the inequality: γ2 log
(

γ2

γ2−1

)
≥ 1,when γ > 1. Here the fact that γ > 1

derives from the result of Lemma 1.

We then show that the distance between the dual iterates zk and the optimal solution set is also
bounded by ε, when k satisfies the condition (80). Based on the first-order optimality condition, we
have

zk = proxρg(p
k)

(a)⇐⇒ −A2y
k ∈ −A2∂g

∗(−A2z
k)

(b)⇐⇒ yk ∈ ∂g∗(−A2z
k). (82)

The above, (a) is based on the definition of pk = zk − ρA2y
k, (b) utilizes the fact that matrix A2

has full column rank. The last equality is indeed the second step of the ADMM, as indicated in (45).
Based on the definition of optimal solution set G∗, there exists an optimal primal and dual solution
of LP y∗ and z∗ such that [pk]G∗ = z∗ − ρA2y

∗. Similarly, we have that z∗ = proxρg([pk]G∗).
According to the non-expansiveness of the proximal operator, we have there exists optimal multiplier
z∗ of ADMM such that

‖zk − z∗‖ = ‖proxρg(p
k)− proxρg([p

k]G∗)‖ ≤ ‖pk − [pk]G∗‖. (83)

Hence, if k ≥ 2γ2 log
(
D0

ε

)
, then ‖zk − z∗‖ ≤ ε.

Secondly, we show the accuracy of ‖xk − x∗‖ and ‖yk − y∗‖. From the result of (75), we have

‖xk+1 − [xk+1]S∗‖ ≤ γ′‖pk+1 − pk‖ and ‖yk − [yk]S∗‖ ≤ γ′‖pk+1 − pk‖. (84)

19



According to Lemma 1, we have

‖pk+1 − pk‖ ≤ ‖pk − [pk]G∗‖.

Thus, to guarantee that both ‖xk+1 − [xk+1]S∗‖ ≤ ε and ‖yk − [yk]S∗‖ ≤ ε, we requires

k ≥ 2γ2 log

(
D0γ

(1 + ρ)ε

)
.

The accuracy of the duality gap is related to the accuracy of both the primal and dual iterates by

‖cTxk+1 + bT zkx‖
(a)
= ‖cTxk+1 − cTx∗ − bT z∗x + bT zkx‖ ≤ ‖cTxk+1 − cTx∗‖+ ‖bT z∗ − bT zkx‖
(c)

≤ ‖c‖ · ‖xk+1 − x∗‖+ ‖b‖ · ‖zkx − z∗x‖.

The above, (a) is based on the strong duality theorem that cTx∗ + bT z∗x = 0, (c) follows from the
Cauchy-Schwarz inequality. Thus, the lemma follows.

We next generalize the convergence result to the inexact subproblem solver (εk > 0). Let the iterates
under the inexact update be denoted by xk,yk, zk, pk = zk−ρA2y

k and corresponding AL function

F k(x) = cTx + (zk)TA1x +
ρ

2
‖A1x + A2y

k − b‖2. (85)

We first construct the relation between the primal accuracy εk and the accuracy of the dual iterates in
the subproblem (11) by a standard primal dual argument; then we connect the accuracy of such dual
iterates with the pk.
Lemma 8. (Relation between primal and dual accuracy) Let wk+1 = zk + ρ(A1x

k+1 +A2y
k−b).

If the F k(xk+1)−minx F k(x) ≤ εk, then the dual iterates satisfy.

‖wk+1 − proxρf (zk+ρA2y
k)‖ ≤

√
2ρεk.

Proof. The quadratic function with inexact update in the step 1 of Algorithm 1 is

F k(x) , f(x) + (zk)T (A1x− b) +
ρ

2
‖A1x + A2y

k − b‖2. (86)

The proof of this lemma is based on the following two claims.

Claim 1: The following two problems are primal and dual optimization problems.

primal: min
x
F k(x)− ρ

2
‖A2y

k‖2 ⇐⇒ dual: max
w
−bTw−f∗(−AT

1 w)− 1

2ρ
‖w−zk−ρA2y

k‖2,
(87)

Let A1x + A2y
k − b = t, then the primal problem is equivalent to

min
x,t

f(x) + (zk)T (t−A2y
k) +

ρ

2
‖t‖2 − ρ

2
‖A2y

k‖2 (88)

s.t. A1x + A2y
k − b = t.

Then, the dual optimization problem can be written as minimizing the Lagrangian function w.r.t x
and t.

min
x,t

f(x) + (zk)T (t−A2y
k) +

ρ

2
‖t‖2 + wT (A1x + A2y

k − b− t)− ρ

2
‖A2y

k‖2

(a)
= min

x

[
f(x) + 〈AT

1 w,x〉
]

+ min
t

[
(zk)T (t−A2y

k) +
ρ

2
‖t‖2 + wT (A2y

k − b− t)− ρ

2
‖A2y

k‖2
]

(b)
= − b

T
w − f∗(−AT

1 w) + min
t

[
(zk)T (t−A2y

k) +
ρ

2
‖t‖2 + wT (A2y

k − t)− ρ

2
‖A2y

k‖2
]

(c)
= − b

T
w − f∗(−AT

1 w)− 1

2ρ
‖w − zk − ρA2y

k‖2. (89)

The above, (a) is based on the separability between variable x and t in the above optimization problem,
(b) utilizes the definition of the convex conjugate function, (c) is obtained by setting t = (w− zk)/ρ.

20



Claim 2: The following two problems are primal and dual optimization problems.

primal: min
x
F̃k(x) , f(x) + sT (A1x− b) +

ρ

2
‖A1x + A2y

k − b‖2 − ρ

2
‖A2y

k‖2

⇐⇒ dual: max
w
−bTw − f∗(−AT

1 w)− 1

2ρ
‖w − s− ρA2y

k‖2 (90)

Let A1x + A2y
k − b = t, then the primal problem is equivalent to

min
x,t

f(x) + sT (t−A2y
k) +

ρ

2
‖t‖2 − ρ

2
‖A2y

k‖2 (91)

s.t. A1x + A2y
k − b = t.

Then, the dual optimization problem can be written as minimizing the Lagrangian function w.r.t x
and t.

min
x,t

f(x) + sT (t−A2y
k) +

ρ

2
‖t‖2 + wT (A1x + A2y

k − b− t)− ρ

2
‖A2y

k‖2

(a)
= min

x

[
f(x) + 〈AT

1 w,x〉
]

+ min
t

[
sT (t−A2y

k) +
ρ

2
‖t‖2 + wT (A2y

k − b− t)
]
− ρ

2
‖A2y

k‖2

(b)
= − b

T
w − f∗(−AT

1 w) + min
t

[
sT (t−A2y

k) +
ρ

2
‖t‖2 + wT (A2y

k − t)
]
− ρ

2
‖A2y

k‖2

(c)
= − b

T
w − f∗(−AT

1 w)− 1

2ρ
‖w − s− ρA2y

k‖2. (92)

The above, (a) is based on the separability between variable x and t in the above optimization
problem, (b) utilizes the definition of the convex conjugate function, (c) utilizes the first-order
optimality condition of the second optimization problem such that t = (w − s)/ρ. Define the
following iterates,

x̃k+1 = arg min
x
F k(x)− ρ

2
‖A2y

k‖2 and w̃k+1 = proxρf (zk + ρA2y
k). (93)

Then the pair of sequences x̃k+1 and w̃k+1 are the optimal primal and dual solutions of (87).
According to the strong duality theorem of the convex optimization, we have

F k(x̃k+1)− ρ

2
‖A2y

k‖2 = −bT w̃k+1 − f∗(−AT
1 w̃

k+1)− 1

2ρ
‖w̃k+1 − zk − ρA2y

k‖2. (94)

The pair of sequences xk+1 and w̃k+1 is the primal and dual feasible solution of problem (90).
According to the weak duality theorem of the convex optimization, we have

F̃k(xk+1) ≥ −bT w̃k+1 − f∗(−AT
1 w̃

k+1)− 1

2ρ
‖w̃k+1 − s− ρA2y

k‖2

Further, based on the definition of F k(x) and F̃ k(x), we have

F k(xk+1)−ρ
2
‖A2y

k‖2 ≥ (zk − s)T (A1x
k+1 − b)− b

T
w̃k+1 − f∗(−AT

1 w̃
k+1)−

1

2ρ
‖w̃k+1 − s− ρA2y

k‖2 (95)

Combining the results of (94) and (95), we have

F k(xk+1)− F k(x̃k+1) ≥ 1

2ρ
‖w̃k+1 − zk − ρA2y

k‖2 − 1

2ρ
‖w̃k+1 − s− ρA2y

k‖2+

(zk − s)T (A1x
k+1 − b)

(a)

≥ 1

2ρ
‖wk+1 − proxρf (zk + ρA2y

k)‖2. (96)

The above, (a) utilizes the definition of wk+1 = zk + ρ(A1x
k+1 + A2y

k − b) to substitute
A1x

k+1 − b, and maximizing the righthand side w.r.t s. Thus, the lemma follows.

21



Utilizing the requirement that F k(xk+1) − min
x
F k(x) ≤ εk in the Algorithm 1 and the result in

Lemma 8, we have the following inexact version of proximal operations.

‖wk+1 − proxρf (2zk − pk)‖ ≤
√

2ρεk, (97)

zk+1 = proxρg(w
k+1 − zk + pk), (98)

pk+1 = pk + wk+1 − zk. (99)

The (97)-(99) can be simplified as

‖pk+1 − pk + zk − proxρf (2zk − pk)‖ ≤
√

2ρεk, (100)

zk+1 = proxρg(p
k+1). (101)

Start at p0 and renumber the iterates of (100) and (101), we have

zk+1 = proxρg(p
k),

‖pk+1 − pk + zk+1 − proxρf (2zk+1 − pk)‖ ≤
√

2ρεk,

which can be further simplified as

‖pk+1 − [pk − proxρg(p
k) + proxρf (2proxρg(p

k)− pk)]‖ ≤
√

2ρεk

⇐⇒ ‖pk+1 − T (pk)‖ ≤
√

2ρεk. (102)

Then, we have

‖pk+1 − pk+1‖ ≤ ‖pk+1 − T (pk)‖+ ‖T (pk)− pk+1‖
(a)
= ‖pk+1 − T (pk)‖+ ‖T (pk)− T (pk)‖
(b)

≤ ‖pk+1 − T (pk)‖+ ‖pk − pk‖
(c)

≤
√

2ρεk + ‖pk − pk‖
(d)

≤
k∑
i=0

√
2ρεi. (103)

The above, (a) is based on the definition that T (pk) = pk+1, (b) utilizes the non-expansiveness of
the operator T , which can be derived from the Claim 4 in the proof of Lemma 1, (c) is based on the
result in (102), (d) derives from telescoping the above inequality. Then, we can obtain

‖pk − [pk]G∗‖ ≤ ‖pk − [pk]G∗‖ ≤ ‖pk − pk‖+ ‖pk − [pk]G∗‖ ≤
k−1∑
i=0

√
2ρεi + ‖pk − [pk]G∗‖.

(104)

Let the solving accuracy εk of each iteration k satisfies

εk =
ε2

8ρK2
,K = 2γ2 log

(
2D0

ε

)
,∀k. (105)

Then, we have
‖pk − [pk]G∗‖ ≤ ε

2
+ ‖pk − [pk]G∗‖. (106)

Combining the result (81) in Lemma 7, we finally arrive

‖pk − [pk]G∗‖ ≤ ε

2
+
ε

2
= ε, if k ≥ 2γ2 log

(
2D0

ε

)
. (107)

Utilizing a similar argument in the proof of Lemma 7, we can obtain the accuracy of both x∗,y∗, z∗

and the duality gap. Therefore, the Theorem 1 follows.

22



F Proof of Lemma 6

Based on the analysis in [22], to obtain an ε accurate solution, it requires running ACDM by
O(1/τ log(1/ε)) iterations, where

τ = O

 √
ρ

n∑
i=1

√
Li

 . (108)

According to the form of subproblem (11), the component-wise Lipschitz constant Li is equal to

Li = ‖A1,i‖2 = ‖Ai‖2 + 1. (109)

Further,
n∑
i=1

√
Li =

n∑
i=1

√
‖Ai‖2 + 1 = O(‖A‖2,1), (110)

where ‖A‖p,q = (
∑n
j=1(

∑m
i=1 |Aij |p)q/p)1/q is the Lp,q norm of constraint matrix A. The ρ is

defined as the strongly convexity parameter of the function F k(x). Based on the form of Hessian of
function F k(x) in (13), we have

ρ = λmin(ρ(ATA + I)) ≥ λmin(ρATA) + λmin(ρI) ≥ ρ > 0. (111)

Therefore, the iteration complexity is obtained by choosing parameter β = 0 in [22] and utilizing the
Theorem 1 in [24] to transform the convergence in expectation to the form of probability.

In each iteration of Algorithm 2, the calculation of coordinate-wise gradient ∇iFk(ut) requires a
vector product between ith column of matrix A and ut, and the update of auxillary variables u,v
requires subtracting ith column of matrix A. These two steps can be calculated in O(nnz(Ai)) time.
Therefore, the complexity of each step of ACDM is O(nnz(Ai)).

Note that

det(Mt) = [det(M)]t =

(
1− τ
1 + ηρ

)t
(112)

In analysis in [22], we have

η = O

 1

√
ρ

n∑
i=1

√
Li

 , (113)

and the total number of iterations of ACDM is O(1/τ log(1/ε)). Thus we have,

det(Mt) =

(
1− τ
1 + ηρ

) 1
τ

= O

((
1− 2

1 + ‖A‖2,1

)‖A‖2,1 log(1/ε)
)

= O(log(1/ε)). (114)

Hence, O(log(1/ε)) bits of precision suffice to implement this method.

G Proof of Theorem 2

Based on the result of Lemma 6, we can obtain the iteration complexity to solve each subproblem
with a given accuracy εk and confidence level p. To guarantee that K subproblems are all solved to
precision εk with probability 1 − p, it suffices each of them to hold with probability 1 − p/K (by
union bound). Combining the above results and the iteration complexity of ACDM, we have the
required number of inner iterations in the each outer iteration is

O

(
n∑
i=1

‖Ai‖ log

(
Dk

0K

εkp

))
= O

(
n∑
i=1

‖Ai‖ log

(
ρ(Dk

0 )
1
3 γ2

ε
2
3 p

1
3

log

(
2D0

ε

)))
. (115)

23



Finally, we estimate the worst-case overall complexity of Algorithm 1. In each iteration of the ACDM,
the Algorithm 2 samples each coordinate i with probability distribution

pi =

√
‖Ai‖2 + 1

n∑
j=1

√
‖Aj‖2 + 1

,

and corresponding iteration cost isO(nnz(Ai)) (given in Lemma 6). Thus, the complexity of solving
each subproblem 1 is

O

(
n∑
i=1

‖Ai‖nnz(Ai) · log

(
ρ(Dk

0 )
1
3 γ2

ε
2
3 p

1
3

log

(
γD0

ε

)))
. (116)

Thus, the worst case complexity is

O

(
γ2

n∑
i=1

‖Ai‖nnz(Ai) · log(1/ε) log

(
ρ(Dk

0 )
1
3 γ2

ε
2
3 p

1
3

log

(
γD0

ε

)))
(a)
= O

(
γ2

n∑
i=1

amaxnnz(Ai) · log(1/ε) log

(
ρ(Dk

0 )
1
3 γ2

ε
2
3 p

1
3

log

(
γD0

ε

)))
(b)
= O(amθ

2
S∗(Rx‖A‖+Rz)

2nnz(A) log2(1/ε)). (117)

The above, (a) utilizes the definition of am = maxi ‖Ai‖, (b) is based on the estimation that
γ = O(θS∗(Rx‖A‖+Rz)). Thus, the theorem follows.

24


	Introduction
	Preliminaries
	Notation
	Applications
	Tail Convergence of the Existing ADMM Method

	New Splitting Method in ADMM
	Convergence Analysis of New ADMM
	Efficient Subproblem Solver
	Well-structured Constraint Matrix
	General Constraint Matrix

	Numerical Results
	Conclusions
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Theorem 1
	Proof of Lemma 6
	Proof of Theorem 2

