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Abstract

Stochastic optimization of continuous objectives is at the heart of modern ma-
chine learning. However, many important problems are of discrete nature and
often involve submodular objectives. We seek to unleash the power of stochastic
continuous optimization, namely stochastic gradient descent and its variants, to
such discrete problems. We first introduce the problem of stochastic submodular
optimization, where one needs to optimize a submodular objective which is given
as an expectation. Our model captures situations where the discrete objective
arises as an empirical risk (e.g., in the case of exemplar-based clustering), or is
given as an explicit stochastic model (e.g., in the case of influence maximization
in social networks). By exploiting that common extensions act linearly on the
class of submodular functions, we employ projected stochastic gradient ascent
and its variants in the continuous domain, and perform rounding to obtain discrete
solutions. We focus on the rich and widely used family of weighted coverage
functions. We show that our approach yields solutions that are guaranteed to match
the optimal approximation guarantees, while reducing the computational cost by
several orders of magnitude, as we demonstrate empirically.

1 Introduction

Submodular functions are discrete analogs of convex functions. They arise naturally in many
areas, such as the study of graphs, matroids, covering problems, and facility location problems.
These functions are extensively studied in operations research and combinatorial optimization [22].
Recently, submodular functions have proven to be key concepts in other areas such as machine
learning, algorithmic game theory, and social sciences. As such, they have been applied to a host
of important problems such as modeling valuation functions in combinatorial auctions, feature and
variable selection [23], data summarization [27], and influence maximization [20].

Classical results in submodular optimization consider the oracle model whereby the access to the
optimization objective is provided through a black box — an oracle. However, in many applications,
the objective has to be estimated from data and is subject to stochastic fluctuations. In other cases
the value of the objective may only be obtained through simulation. As such, the exact computation
might not be feasible due to statistical or computational constraints. As a concrete example, consider
the problem of influence maximization in social networks [20]. The objective function is defined
as the expectation of a stochastic process, quantifying the size of the (random) subset of nodes
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influenced from a selected seed set. This expectation cannot be computed efficiently, and is typically
approximated via random sampling, which introduces an error in the estimate of the value of a seed
set. Another practical example is the exemplar-based clustering problem, which is an instance of the
facility location problem. Here, the objective is the sum of similarities of all the points inside a (large)
collection of data points to a selected set of centers. Given a distribution over point locations, the
true objective is defined as the expected value w.r.t. this distribution, and can only be approximated
as a sample average. Moreover, evaluating the function on a sample involves computation of many
pairwise similarities, which is computationally prohibitive in the context of massive data sets.

In this work, we provide a formalization of such stochastic submodular maximization tasks. More
precisely, we consider set functions f : 2V → R+, defined as f(S) = Eγ∼Γ[fγ(S)] for S ⊆ V ,
where Γ is an arbitrary distribution and for each realization γ ∼ Γ, the set function fγ : 2V → R+ is
monotone and submodular (hence f is monotone submodular). The goal is to maximize f subject to
some constraints (e.g. the k-cardinality constraint) having access only to i.i.d. samples fγ∼Γ(·).

Methods for submodular maximization fall into two major categories: (i) The classic approach is to
directly optimize the objective using discrete optimization methods (e.g. the GREEDY algorithm and
its accelerated variants), which are state-of-the-art algorithms (both in practice and theory), at least in
the case of simple constraints, and are most widely considered in the literature; (ii) The alternative is
to lift the problem into a continuous domain and exploit continuous optimization techniques available
therein [7]. While the continuous approaches may lead to provably good results, even for more
complex constraints, their high computational complexity inhibits their practicality.

In this paper we demonstrate how modern stochastic optimization techniques (such as SGD, ADA-
GRAD [8] and ADAM [21]), can be used to solve an important class of discrete optimization problems
which can be modeled using weighted coverage functions. In particular, we show how to efficiently
maximize them under matroid constraints by (i) lifting the problem into the continuous domain
using the multilinear extension [37], (ii) efficiently computing a concave relaxation of the multilinear
extension [32], (iii) efficiently computing an unbiased estimate of the gradient for the concave relax-
ation thus enabling (projected) stochastic gradient ascent-style algorithms to maximize the concave
relaxation, and (iv) rounding the resulting fractional solution without loss of approximation quality
[7]. In addition to providing convergence and approximation guarantees, we demonstrate that our
algorithms enjoy strong empirical performance, often achieving an order of magnitude speedup
with less than 1% error with respect to GREEDY. As a result, the presented approach unleashes the
powerful toolkit of stochastic gradient based approaches to discrete optimization problems.

Our contributions. In this paper we (i) introduce a framework for stochastic submodular opti-
mization, (ii) provide a general methodology for constrained maximization of stochastic submodular
objectives, (iii) prove that the proposed approach guarantees a (1 − 1/e)−approximation in ex-
pectation for the class of weighted coverage functions, which is the best approximation guarantee
achievable in polynomial time unless P = NP, (iv) highlight the practical benefit and efficiency
of using continuous-based stochastic optimization techniques for submodular maximization, (v)
demonstrate the practical utility of the proposed framework in an extensive experimental evaluation.
We show for the first time that continuous optimization is a highly practical, scalable avenue for
maximizing submodular set functions.

2 Background and problem formulation

Let V be a ground set of n elements. A set function f : 2V −→ R+ is submodular if for every
A,B ⊆ V , it holds f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B). Function f is said to be monotone if
f(A) ≤ f(B) for all A ⊆ B ⊆ V . We focus on maximizing f subject to some constraints on S ⊆ V .
The prototypical example is maximization under the cardinality constraint, i.e., for a given integer
k, find S ⊆ V , |S| ≤ k, which maximizes f . Finding an exact solution for monotone submodular
functions is NP-hard [10], but a (1− 1/e)-approximation can be efficiently determined [30]. Going
beyond the (1− 1/e)-approximation is NP-hard for many classes of submodular functions [30, 24].
More generally, one may consider matroid constraints, whereby (V, I) is a matroid with the family
of independent sets I, and maximize f such that S ∈ I. The GREEDY algorithm achieves a 1/2-
approximation [13], but CONTINUOUS GREEDY introduced by Vondrák [37], Calinescu et al. [6]
can achieve a (1− 1/e)-optimal solution in expectation. Their approach is based on the multilinear
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extension of f , F : [0, 1]V → R+, defined as

F (x) =
∑
S⊆V

f(S)
∏
i∈S

xi
∏
j /∈S

(1− xj), (1)

for all x = (x1, · · · , xn) ∈ [0, 1]V . In other words, F (x) is the expected value of of f over
sets wherein each element i is included with probability xi independently. Then, instead of opti-
mizing f(S) over I, we can optimize F over the matroid base polytope corresponding to (V, I):
P = {x ∈ Rn+ | x(S) ≤ r(S),∀S ⊆ V,x(V ) = r(V )}, where r(·) is the matroid’s rank
function. The CONTINUOUS GREEDY algorithm then finds a solution x ∈ P which provides a
(1− 1/e)−approximation. Finally, the continuous solution x is then efficiently rounded to a feasible
discrete solution without loss in objective value, using PIPAGE ROUNDING [1, 6]. The idea of
converting a discrete optimization problem into a continuous one was first exploited by Lovász [28]
in the context of submodular minimization and this approach was recently applied to a variety of
problems [36, 19, 3].

Problem formulation. The aforementioned results are based on the oracle model, whereby the
exact value of f(S) for any S ⊆ V is given by an oracle. In absence of such an oracle, we face the
additional challenges of evaluating f , both statistical and computational. In particular, consider set
functions that are defined as expectations, i.e. for S ⊆ V we have

f(S) = Eγ∼Γ[fγ(S)], (2)

where Γ is an arbitrary distribution and for each realization γ ∼ Γ, the set function fγ : 2V → R is
submodular. The goal is to efficiently maximize f subject to constraints such as the k-cardinality
constraint, or more generally, a matroid constraint.

As a motivating example, consider the problem of propagation of contagions through a network. The
objective is to identify the most influential seed set of a given size. A propagation instance (concrete
realization of a contagion) is specified by a graph G = (V,E). The influence fG(S) of a set of nodes
S in instance G is the fraction of nodes reachable from S using the edges E. To handle uncertainties
in the concrete realization, it is natural to introduce a probabilistic model such as the Independent
Cascade [20] model which defines a distribution G over instances G ∼ G that share a set V of nodes.
The influence of a seed set S is then the expectation f(S) = EG∼G [fG(S)], which is a monotone
submodular function. Hence, estimating the expected influence is computationally demanding, as it
requires summing over exponentially many functions fG. Assuming f as in (2), one can easily obtain
an unbiased estimate of f for a fixed set S by random sampling according to Γ. The critical question
is, given that the underlying function is an expectation, can we optimize it more efficiently?

Our approach is based on continuous extensions that are linear operators on the class of set functions,
namely, linear continuous extensions. As a specific example, considering the multilinear extension,
we can write F (x) = Eγ∼Γ[Fγ(x)], where Fγ denotes the extension of fγ . As a consequence, the
value of Fγ(x), when γ ∼ Γ, is an unbiased estimator for F (x) and unbiased estimates of the
(sub)gradients may be obtained analogously. We explore this avenue to develop efficient algorithms
for maximizing an important subclass of submodular functions that can be expressed as weighted
coverage functions. Our approach harnesses a concave relaxation detailed in Section 3.

Further related work. The emergence of new applications, combined with a massive increase in
the amount of data has created a demand for fast algorithms for submodular optimization. A variety
of approximation algorithms have been presented, ranging from submodular maximization subject
to a cardinality constraint [29, 39, 4], submodular maximization subject to a matroid constraint
[6], non-monotone submodular maximization [11], approximately submodular functions [17], and
algorithms for submodular maximization subject to a wide variety of constraints [25, 12, 38, 18, 9].
A closely related setting to ours is online submodular maximization [35], where functions come one
at a time and the goal is to provide time-dependent solutions (sets) such that a cumulative regret
is minimized. In contrast, our goal is to find a single (time-independent) set that maximizes the
objective (2). Another relevant setting is noisy submodular maximization, where the evaluations
returned by the oracle are noisy [16, 34]. Specifically, [34] assumes a noisy but unbiased oracle (with
an independent sub-Gaussian noise) which allows one to sufficiently estimate the marginal gains of
items by averaging. In the context of cardinality constraints, some of these ideas can be carried to our
setting by introducing additional assumptions on how the values fγ(S) vary w.r.t. to their expectation
f(S). However, we provide a different approach that does not rely on uniform convergence and
compare sample and running time complexity comparison with variants of GREEDY in Section 3.
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3 Stochastic Submodular Optimization

We follow the general framework of [37] whereby the problem is lifted into the continuous domain,
a continuous optimization algorithm is designed to maximize the transferred objective, and the
resulting solution is rounded. Maximizing f subject to a matroid constraint can then be done by
first maximizing its multilinear extension F over the matroid base polytope and then rounding the
solution. Methods such as the projected stochastic gradient ascent can be used to maximize F over
this polytope.

Critically, we have to assure that the computed local optima are good in expectation. Unfortunately,
the multilinear extension F lacks concavity and therefore may have bad local optima. Hence, we
consider concave continuous extensions of F that are efficiently computable, and at most a constant
factor away from F to ensure solution quality. As a result, such a concave extension F̄ could then be
efficiently maximized over a polytope using projected stochastic gradient ascent which would enable
the application of modern continuous optimization techniques. One class of important functions for
which such an extension can be efficiently computed is the class of weighted coverage functions.

The class of weighted coverage functions (WCF). Let U be a set and let g be a nonnegative
modular function on U , i.e. g(S) =

∑
u∈S w(u), S ⊆ U . Let V = {B1, . . . , Bn} be a collection of

subsets of U . The weighted coverage function f : 2V −→ R+ defined as

∀S ⊆ V : f(S) = g
(⋃

Bi∈S Bi
)

is monotone submodular. For all u ∈ U , let us denote by Pu := {Bi ∈ V | u ∈ Bi} and by I(·) the
indicator function. The multilinear extension of f can be expressed in a more compact way:

F (x) = ES [f(S)] = ES
∑
u∈U

I(u ∈ Bi for some Bi ∈ S) · w(u)

=
∑
u∈U

w(u) · P(u ∈ Bi for some Bi ∈ S) =
∑
u∈U

w(u)

(
1−

∏
Bi∈Pu

(1− xi)
)

(3)

where we used the fact that each element Bi ∈ V was chosen with probability xi.

Concave upper bound for weighted coverage functions. To efficiently compute a concave upper
bound on the multilinear extension we use the framework of Seeman and Singer [32]. Given that all
the weights w(u), u ∈ U in (3) are non-negative, we can construct a concave upper bound for the
multilinear extension F (x) using the following Lemma. Proofs can be found in the Appendix A.

Lemma 1. For x ∈ [0, 1]` define α(x) := 1−
∏`
i=1(1−xi). Then the Fenchel concave biconjugate

of α(·) is β(x) := min
{

1,
∑`
i=1 xi

}
. Also

(1− 1/e) β(x) ≤ α(x) ≤ β(x) ∀x ∈ [0, 1]`.

Furthermore, β is an extension of α, i.e. ∀x ∈ {0, 1}`: α(x) = β(x).

Consequently, given a weighted coverage function f with F (x) represented as in (3), we can define

F̄ (x) :=
∑
u∈U

w(u) min

{
1,
∑

Bv∈Pu

xv

}
(4)

and conclude using Lemma 1 that (1− 1/e)F̄ (x) ≤ F (x) ≤ F̄ (x), as desired. Furthermore, F̄ has
three interesting properties: (1) It is a concave function over [0, 1]V , (2) it is equal to f on vertices
of the hypercube, i.e. for x ∈ {0, 1}n one has F̄ (x) = f({i : xi = 1}), and (3) it can be computed
efficiently and deterministically given access to the sets Pu, u ∈ U . In other words, we can compute
the value of F̄ (x) using at most O(|U | × |V |) operations. Note that F̄ is not the tightest concave
upper bound of F , even though we use the tightest concave upper bounds for each term of F .

Optimizing the concave upper bound by stochastic gradient ascent. Instead of maximizing F
over a polytope P , one can now attempt to maximize F̄ over P . Critically, this task can be done
efficiently, as F̄ is concave, by using projected stochastic gradient ascent. In particular, one can
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Algorithm 1 Stochastic Submodular Maximization via concave relaxation

Require: matroidM with base polytope P , ηt (step size), T (maximum # of iterations)
1: x(0) ← starting point in P
2: for t← 0 to T − 1 do
3: Choose gt at random from a distribution such that E[gt|x(0), . . . ,x(t)] ∈ ∂F̄ (x(t))
4: x(t+1/2) ← x(t) + ηt gt
5: x(t+1) ← ProjectP(x(t+1/2))
6: end for
7: x̄T ← 1

T

∑T
t=1 x

(t)

8: S ← RANDOMIZED-PIPAGE-ROUND(x̄T )
9: return S such that S ∈M, E[f(S)] ≥ (1− 1/e)f(OPT )− ε(T ).

control the convergence speed by choosing from the toolbox of modern continuous optimization
algorithms, such as SGD, ADAGRAD and ADAM. Let us denote a maximizer of F̄ over P by x̄∗, and
also a maximizer of F over P by x∗. We can thus write

F (x̄∗) ≥ (1− 1/e)F̄ (x̄∗) ≥ (1− 1/e)F̄ (x∗) ≥ (1− 1/e)F (x∗),

which is the exact guarantee that previous methods give, and in general is the best near-optimality ratio
that one can give in poly-time. Finally, to round the continuous solution we may apply RANDOMIZED-
PIPAGE-ROUNDING [7] as the quality of the approximation is preserved in expectation.

Matroid constraints. Constrained optimization can be efficiently performed by projected gradient
ascent whereby after each step of the stochastic ascent, we need to project the solution back onto
the feasible set. For the case of matroid constraints, it is sufficient to consider projection onto the
matroid base polytope. This problem of projecting on the base polytope has been widely studied
and fast algorithms exist in many cases [2, 5, 31]. While these projection algorithms were used as a
key subprocedure in constrained submodular minimization, here we consider them for submodular
maximization. Details of a fast projection algorithm for the problems considered in this work are
presented the Appendix D. Algorithm 1 summarizes all steps required to maximize f subject to
matroid constraints.

Convergence rate. Since we are maximizing a concave function F̄ (·) over a matroid base polytope
P , convergence rate (and hence running time) depends on B := maxx∈P ||x||, as well as maximum
gradient norm ρ (i.e. ||gt|| ≤ ρ with probability 1). 1 In the case of the base polytope for a matroid of
rank r, B is

√
r, since each vertex of the polytope has exactly r ones. Also, from (4), one can build a

rough upper bound for the norm of the gradient:

||g|| ≤ ||
∑
u∈U w(u)1Pu

|| ≤
(
max
u∈U
|Pu|

)1/2∑
u∈U

w(u),

which depends on the weights w(u) as well as |Pu| and is hence problem-dependent. We will
provide tighter upper bounds for gradient norm in our specific examples in the later sections. With
ηt = B/ρ

√
t, and classic results for SGD [33], we have that

F̄ (x∗)− E[F̄ (x̄T )] ≤ Bρ/
√
T ,

where T is the total number of SGD iterations and x̄T is the final outcome of SGD (see Algorithm 1).
Therefore, for a given ε > 0, after T ≥ B2ρ2/ε2 iterations, we have

F̄ (x∗)− E[F̄ (x̄T )] ≤ ε.

Summing up, we will have the following theorem:

Theorem 2. Let f be a weighted coverage function, P be the base polytope of a matroidM, and ρ
and B be as above. Then for each ε > 0, Algorithm 1 after T = B2ρ2/ε2 iterations, produces a set
S∗ ∈M such that E[f(S∗)] ≥ (1− 1/e) maxS∈M f(S)− ε.

1Note that the function F̄ is neither smooth nor strongly concave as functions such as min{1, x} are not
smooth or strongly concave.
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Remark. Indeed this approximation ratio is the best ratio one can achieve, unless P=NP [10]. A
key point to make here is that our approach also works for more general constraints (in particular
is efficient for simple matroids such as partition matroids). In the latter case, GREEDY only gives
1
2 -approximation and fast discrete methods like STOCHASTIC-GREEDY [29] do not apply, whereas
our method still yields an (1− 1/e)-optimal solution.

Time Complexity. One can compute an upper bound for the running time of Algorithm 1 by
estimating the time required to perform gradient computations, projection on P , and rounding. For
the case of uniform matroids, projection and rounding take O(n log n) and O(n) time, respectively
(see Appendix D). Furthermore, for the applications considered in this work, namely expected
influence maximization and exemplar-based clustering, we provide linear time algorithms to compute
the gradients. Also when our matroid is the k-uniform matroid (i.e. k-cardinality constraint), we have
B =

√
k. By Theorem 2, the total computational complexity of our algorithm is O(ρ2kn(log n)/ε2).

Comparison to GREEDY. Let us relate our results to the classical approach. When running the
GREEDY algorithm in the stochastic setting, one estimates f̂(S) := 1

s

∑s
i=1 fγi(S) where γ1, . . . , γs

are i.i.d. samples from Γ. The following proposition bounds the sample and computational complexity
of GREEDY. The proof is detailed in the Appendix B.
Proposition 3. Let f be a submodular function defined as (2). Suppose 0 ≤ fγ(S) ≤ H for all
S ⊆ V and all γ ∼ Γ. Assume S∗ denotes the optimal solution for f subject to k-cardinality
constraint and Sk denotes the solution computed by the greedy algorithm on f̂ after k steps. Then, in
order to guarantee

P[f(Sk) ≥ (1− 1/e)f(S∗)− ε] ≥ 1− δ,
it is enough to have

s ∈ Ω

(
H2(k log n+ log(1/δ))/ε2

)
,

i.i.d. samples from Γ. The running time of GREEDY is then bounded by

O
(
τH2nk(k log n+ log(1/δ))/ε2

)
,

where τ is an upper bound on the computation time for a single evaluation of fγ(S).

As an example, let us compare the worst-case complexity bound obtained for SGD (i.e.
O(ρ2kn(log n)/ε2)) with that of GREEDY for the influence maximization problem. Each single
function evaluation for GREEDY amounts to computing the total influence of a set in a sample graph,
which makes τ = O(n) (here we assume our sample graphs satisfy |E| = O(|V |)). Also, a crude
upper bound for the size of the gradient for each sample function is H

√
n (see Appendix E.1). Hence,

we can deduce that SGD can have a factor k speedup w.r.t. to GREEDY.

4 Applications

We will now show how to instantiate the stochastic submodular maximization framework using
several prototypical discrete optimization problems.
Influence maximization. As discussed in Section 2, the Independent Cascade [20] model defines
a distribution G over instances G ∼ G that share a set V of nodes. The influence fG(S) of a set of
nodes S in instance G is the fraction of nodes reachable from S using the edges E(G). The following
Lemma shows that the influence belongs to the class of WCF.
Lemma 4. The influence function fG(·) is a WCF. Moreover,

FG(x) = ES [fG(S)] =
1

|V |
∑
v∈V

(1−
∏
u∈Pv

(1− xu)) (5)

F̄G(x) =
1

|V |
∑
v∈V

min{1,
∑
u∈Pv

xu}, (6)

where Pv is the set of all nodes having a (directed) path to v.
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We return to the problem of maximizing fG(S) = EG∼G [fG(S)] given a distribution over graphs G
sharing nodes V . Since fG is a weighted sum of submodular functions, it is submodular. Moreover,

F (x) = ES [fG(S)] = ES [EG[fG(S)]] = EG[ES [fG(S)]] = EG[FG(x)]

= EG

[
1

|V |
∑
v∈V

(1−
∏
u∈Pv

(1− xu))

]
.

Let U be the uniform distribution over vertices. Then,

F (x) = EG
[

1
|V |
∑
v∈V (1−

∏
u∈Pv

(1− xu))

]
= EG

[
Ev∼U [1−

∏
u∈Pv

(1− xu)]

]
, (7)

and the corresponding upper bound would be

F̄ (x) = EG
[
Ev∼U

[
min{1,

∑
u∈Pv

xu}
]]
. (8)

This formulation proves to be helpful in efficient calculation of subgradients, as one can obtain a
random subgradient in linear time. For more details see Appendix E.1. We also provide a more
efficient, biased estimator of the expectation in the Appendix.
Facility location. Let G = (X∪̇Y,E) be a complete weighted bipartite graph with parts X and Y
and nonnegative weights wx,y. The weights can be considered as utilities or some similarity metric.
We select a subset S ⊆ X and each y ∈ Y selects s ∈ S with the highest weight ws,y . Our goal is to
maximize the average weight of these selected edges, i.e. to maximize

f(S) =
1

|Y |
∑
y∈Y

max
s∈S

ws,y (9)

given some constraints on S. This problem is indeed the Facility Location problem, if one takes
X to be the set of facilities and Y to be the set of customers and wx,y to be the utility of facility x
for customer y. Another interesting instance is the Exemplar-based Clustering problem, in which
X = Y is a set of objects and wx,y is the similarity (or inverted distance) between objects x and y,
and one tries to find a subset S of exemplars (i.e. centroids) for these objects.

The stochastic nature of this problem is revealed when one writes (9) as the expectation f(S) =
Ey∼Γ[fy(S)], where Γ is the uniform distribution over Y and fy(S) := maxs∈S ws,y . One can also
consider this more general case, where y’s are drawn from an unknown distribution, and one tries to
maximize the aforementioned expectation.

First, we claim that fy(·) for each y ∈ Y is again a weighted coverage function. For simplicity, let
X = {1, . . . , n} and set mi

.
= wi,y , with m1 ≥ · · · ≥ mn and mn+1

.
= 0.

Lemma 5. The utility function fy(·) is a WCF. Moreover,

Fy(x) =
∑n
i=1(mi −mi+1)(1−

∏i
j=1(1− xj)), (10)

F̄y(x) =
∑n
i=1(mi −mi+1) min{1,

∑i
j=1 xj}. (11)

We remark that the gradient of both Fy and F̄y can be computed in linear time using a recursive
procedure. We refer to Appendix E.2 for more details.

5 Experimental Results

We demonstrate the practical utility of the proposed framework and compare it to standard baselines.
We compare the performance of the algorithms in terms of their wall-clock running time and the
obtained utility. We consider the following problems:

• Influence Maximization for the Epinions network2. The network consists of 75 879 nodes and
508 837 directed edges. We consider the subgraph induced by the top 10 000 nodes with the largest
out-degree and use the independent cascade model [20]. The diffusion model is specified by a
fixed probability for each node to influence its neighbors in the underlying graph. We set this
probability p to be 0.02, and chose the number of seeds k = 50.
2http://snap.stanford.edu/
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Figure 1: In the case of Facility location for Blog selection as well as on influence maximization
on Epinions, the proposed approach reaches the same utility significantly faster. On the exemplar-
based clustering of CIFAR, the proposed approach is outperformed by STOCHASTIC-GREEDY, but
nevertheless reaches 98.4% of the GREEDY utility in a few seconds (after less than 1000 iterations).
On Influence Maximization over partition matroids, the proposed approach significantly outperforms
GREEDY.

• Facility Location for Blog Selection. We use the data set used in [14], consisting of 45 193
blogs, and 16 551 cascades. The goal is to detect information cascades/stories spreading over the
blogosphere. This dataset is heavy-tailed, hence a small random sample of the events has high
variance in terms of the cascade sizes. We set k = 100.

• Exemplar-based Clustering on CIFAR-10. The data set contains 60 000 color images with
resolution 32× 32. We use a single batch of 10 000 images and compare our algorithms to variants
of GREEDY over the full data set. We use the Euclidean norm as the distance function and set
k = 50. Further details about preprocessing of the data as well as formulation of the submodular
function can be found in Appendix E.3.

Baselines. In the case of cardinality constraints, we compare our stochastic continuous optimization
approach against the most efficient discrete approaches (LAZY-)GREEDY and (LAZY-)STOCHASTIC-
GREEDY, which both provide optimal approximation guarantees. For STOCHASTIC-GREEDY,
we vary the parameter ε in order to explore the running time/utility tradeoff. We also report the
performance of randomly selected sets. For the two facility location problems, when applying the
greedy variants we can evaluate the exact objective (true expectation). In the Influence Maximization
application, computing the exact expectation is intractable. Hence, we use an empirical average of s
samples (cascades) from the model. We note that the number of samples suggested by Proposition 3
is overly conservative, and instead we make a practical choice of s = 103 samples.

8



Results. The results are summarized in Figure 1. On the blog selection and influence maximization
applications, the proposed continuous optimization approach outperforms STOCHASTIC-GREEDY in
terms of the running time/utility tradeoff. In particular, for blog selection we can compute a solution
with the same utility 26× faster than STOCHASTIC-GREEDY with ε = 0.5. Similarly, for influence
maximization on Epinions we the solution 88× faster than STOCHASTIC-GREEDY with ε = 0.1.
On the exemplar-based clustering application STOCHASTIC-GREEDY outperforms the proposed
approach. We note that the proposed approach is still competitive as it recovers 98.4% of the value
after less than thousand iterations.

We also include an experiment on Influence Maximization over partition matroids for the Epinions
network. In this case, GREEDY only provides a 1/2 approximation guarantee and STOCHASTIC-
GREEDY does not apply. To create the partition, we first sorted all the vertices by their out-degree.
Using this order on the vertices, we divided the vertices into two partitions, one containing vertices
with even positions, other containing the rest. Figure 1 clearly demonstrates that the proposed
approach outperforms GREEDY in terms of utility (as well as running time).
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thank Yaron Singer for helpful comments and suggestions.
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A Proof of Lemma 1

Here we prove the inequality mentioned in the lemma. Proof of the fact of being Fenchel biconjugate
is in Appendix F.

We prove the left-hand-side inequality, since the right-hand-side inequality is a consequence of
Fenchel biconjugate-ness.

Let θ :=
∑`
i=1 xi. We note from the inequality 1− x ≤ exp (−x) that

∏`
i=1(1− xi) ≤ exp (−θ).

We thus obtain

1−
∏̀
i=1

(1− xi) ≥ 1− exp (−θ).

Now, if θ ≥ 1 then the result is clear. Also, if θ < 1, then we note that the function (1− exp (−θ))/θ
is decreasing for θ ∈ (0, 1), and hence, 1− exp (−θ) ≥ θ(1− 1/e). The left-hand-side inequality
thus follows immediately.

B Proof of Proposition 3

Note that the total number of subsets of cardinality less than k is bounded from above by k
(
n
k

)
.

For each such set S we want the estimate f̂(S) := 1
s

∑s
i=1 fγi(S) to be at most ε away from

f(S). Also, note that the function f̂ is itself a submodular function and maximizing it would give
a (1 − 1/e)-approximation to its optimum. Hence, it is enough to have enough samples such that
for all subsets S of cardinality at most k the two values f(S) and f̂(S) differ by at most epsilon. By
using Hoeffding’s inequality and a union bound over all the subsets of cardinality at most k (note that
log(n

(
n
k

)
) = O(k log(n))) we get the result.

C Proof of Lemmas 4 and 5

C.1 Lemma 4

Proof. Let A := {Cv | v ∈ V }, where Cv is the set of vertices reachable from v. By construction,
there is a one-to-one correspondence between elements of A and V , namely Cv ↔ v. For T ⊆ A,
let S ⊆ V be its corresponding subset in V , i.e. S = {v ∈ V | v ↔ Cv, Cv ∈ T}. It’s obvious
that

⋃
v∈S Cv =

⋃
Cv∈T Cv. Setting g(T ) = |T |

|V | , makes f ′G(T ) := g(
⋃
Cv∈T Cv) a WCF. But

f ′G(T ) = fG(S), so fG(·) is also a WCF.

Moreover, for each v ∈ V , the set Pv is the set of all elements of A that contain v, which are precisely
those vertices from which there is a (directed) path to v. We also relax our notation, and replace any
element of A by its correspondent in V . Hence,

FG(x) = ES [fG(S)] =
1

|V |
∑
v∈V

(1−
∏
u∈Pv

(1− xu))

F̄G(x) =
1

|V |
∑
v∈V

min{1,
∑
u∈Pv

xu},

which are poly-time computable since one can find Pv with a simple BFS algorithm in O(|V |+ |E|)
for each v ∈ V .

C.2 Lemma 5

Proof. Write f(·) instead of fy(·).

Let V = {Ci | 1 ≤ i ≤ n}, where Ci = {i, . . . , n}, and let w(i) = mi −mi+1 (set mn+1 = 0).
Note that there is a natural bijection between V and U , namely Ci ↔ i. Let g be the modular function
with weights w(i), defined on 2U , and define the WCF f ′ : 2V → R+ as

f ′(S) := g(
⋃
i∈S Ci) =

∑
j∈

⋃
i∈S Ci

w(j). (12)
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Since Ci’s are forming a decreasing chain,
⋃
i∈S Ci = CminS and (12) becomes

f ′(S) =
∑

j∈CminS

w(j) =

n∑
j=minS

w(j) = mminS −mn+1 = max
i∈S

mi,

which is exactly f(S).

Furthermore, Pi is simply the set {1, . . . , i}. Hence, we can write the multilinear extension and the
corresponding upper bound as

Fy(x) =
∑n
i=1(mi −mi+1)(1−

∏i
j=1(1− xj)),

F̄y(x) =
∑n
i=1(mi −mi+1) min{1,

∑i
j=1 xj}.

D Fast Algorithms for Projection and Rounding

In this section, we show how projection (w.r.t. Mahalanobis norm) can be done in time O(n log n)
and rounding in time O(n) for the uniform matroid. This projection algorithm also proves to be
useful in case of partition matroid polytope. We also discuss a projection method on general matroid
base polytopes, based on the method of Kumar and Bach [26], which needs to solve a total number
of n submodular function minimization (SFM) tasks (details below).

D.1 Efficient projection on the uniform matroid

Let G be a diagonal matrix with positive entries, G = diag(g1, . . . , gn). Our aim is to project a
vector y ∈ Rn+ on the uniform matroid base polytope defined as

Pk = {x ∈ Rn+ |
∑
xi = k, 0 ≤ xi ≤ 1}.

The polytope Pk is the convex hull of all the vectors that have precisely k ones and n − k zeros.
Projecting y onto Pk entails finding a point x in Pk, such that

x = argmin
x∈Pk

‖x− y‖2G := argmin
x∈Pk

(x− y)>G (x− y),

where ‖·‖G is the Mahalanobis norm (i.e. the Mahalanobis distance to 0). Note that in the special
case of G = I , this problem boils down to orthogonal projection of y onto Pk. We first transform
this problem into an orthogonal projection, and solve that projection in O(n log n).

x = argmin
x∈Pk

(x− y)>G (x− y)

= argmin
x∈Pk

‖u−w‖22, where u = G1/2x and w = G1/2y

= G−1/2 argmin
u∈G1/2Pk

‖u−w‖22, (13)

where (13) suggests an orthogonal projection on the polytope G1/2Pk. By defining the vector
c = (g

−1/2
1 , . . . , g

−1/2
n ), one has G1/2Pk = {x ∈ Rn+ | c>x = k, 0 ≤ xi ≤ 1

ci
}. Theorem 6 shows

that this projection can be done in O(n log n), and Algorithm 2 depicts the algorithm achieving the
solution.

Theorem 6. Let P = {x ∈ Rn+ | c>x = k, 0 ≤ xi ≤ 1
ci
}, where c ∈ Rn+ is given. Then for

any given point y ∈ Rn+ one can find the solution to argminx∈P
1
2‖x − y‖22 in O(n log n) time.

Moreover this solution is unique.

Proof. Let us begin by writing the KKT optimality conditions for the projected vector x. The
Lagrangian is defined by

L(x, α,β,γ) = 1
2‖x− y‖22 + α(c>x− k)− β>x + γ>(x− 1/c),
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Algorithm 2 Projection on the Scaled Uniform Matroid Polytope

1: Input: vectors y, c ∈ Rn+ and k ∈ N, s.t. k ≤ n.
2:

¯
αi ← yici−1

c2i
, ᾱi ← yi

ci
,∀i ∈ [n]

3: S ← {
¯
αi} ∪ {ᾱi}

4: Sort elements in S, so that S = {α1 < . . . < αs}
5: h← n, α← minS − 1, m← 0
6: for i ∈ [s] do
7: h′ ← h+ (αi − α)m {calculate function value at the new point using current slope m}

{check if α∗ is between αi and αi−1}
8: if h′ < k ≤ h then
9: α∗ ← (αi − α) h−kh−h′ + α

10: return the projected vector x as follows:

xj =

{
1/cj α∗ <

¯
αj

yj − α∗cj
¯
αj ≤ α∗ ≤ ᾱj

0 ᾱj < α∗

11: end if
12: m← m−

∑
j:

¯
αj=α c

2
j {for these j, x(α)j’s slope is changing from 0 to −cj}

13: m← m+
∑
j:ᾱj=α c

2
j {for these j, x(α)j’s slope is changing from −cj to 0}

14: h← h′, α← αi
15: end for

where α ∈ R and β,γ ∈ Rn+. Minimizing the Lagrangian w.r.t. x gives for each i ∈ [n]:

xi = yi − αci + βi − γi, (14)

and also considering complementary slackness, we should have βixi = 0 and γi(xi − 1/ci) = 0. If
one provides suitable x and α,β,γ that satisfy the equations above, then x would be the optimal
solution. In what follows, we construct x and provide suitable α,β,γ.

For each α ∈ R, define x(α) := min{ 1
c ,max{0,y−αc}}, where min and max are applied element-

wise. By definition, one has 0 ≤ x(α) ≤ 1
c . Let h(α) := c>x(α). We claim that if for a value of

α, h(α) = k, we are done, since x(α) ∈ P , and it satisfies the KKT conditions: If x(α)i = 0, by
definition of x(α) it means that yi − αci ≤ 0, so we can set βi = −(yi − αci) ≥ 0 and γi = 0. If
x(α)i = 1

ci
, it means yi − αci ≥ 1

ci
, so we can set βi = 0 and γi = yi − αci − 1

ci
≥ 0. Otherwise,

0 < x(α)i <
1
ci

, which in that case we set βi = γi = 0.

So it suffices to provide an α such that h(α) = k. For each i ∈ [n], define
¯
αi := yici−1

c2i
and

ᾱi := yi
ci

. It’s obvious that if α ≤
¯
αi then x(α)i = 1

ci
, if α ≥ ᾱi then x(α)i = 0, and otherwise

x(α)i = yi − αci. So x(α)i is a continuous decreasing function, and so will be h(α). Note that if
α ≤ min{

¯
αi}, then h(α) = n and if α ≥ max{

¯
αi}, then h(α) = 0. So by continuity, there is some

α∗ such that h(α∗) = k. Now let α1 < . . . < αs be the set of all distinct values among
¯
αi and ᾱi.

It’s clear that for all α ∈ [αi, αi+1], h(·) is a linear function. By exploiting this fact, we can find α∗
by searching through these endpoints. Detailed procedure is explained in Algorithm 2.

D.2 Efficient projection on Partition matroid base polytope

Let V be a ground set and A1, . . . , Am be a partition of V . A partition matroid, includes all sets
S ⊆ V such that for all i ∈ [m] we have |Ai ∩ S| ≤ k. It’s easy to see that the base polytope would
be

P =

x ∈ [0, 1]V | ∀i ∈ [m] :
∑
j∈Ai

xj = k

 .

In order to project onto P , we first note that it becomes a separable objective, partitioned over Ai.
This means that it is sufficient to project y|Ai

onto the uniform matroid of Ai, for all i ∈ [m]. Since
each projection takes O(|Ai| log |Ai|) time, the total process would be O(n log n).
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D.3 Projection on general matroid base polytopes

Let us now ask whether there is an efficient projection algorithm for general matroid polytopes. Here,
we argue that the method proposed by Kumar and Bach [26] would be a reasonable candidate in the
case of general matroid polytopes.

Let g : 2V → R+ be a submodular function, such that g(∅) = 0, and let gL : Rn → R+ be its Lovasz
extension. We define the base polytope of g as the set

B = {s ∈ Rn | s(V ) = g(V ),∀A ⊂ V : s(A) ≤ g(A)}.
It can be shown [2] that the Lovasz extension is the support function of this polytope, i.e.

gL(x) = sup
s∈B

s>x. (15)

For any y ∈ Rn consider the task of minimizing the following objective with respect to x ∈ Rn:

gL(x)− y>x + 1
2‖x‖

2
2. (16)

By using (15), we can rewrite (16) in the following dual form

min
x∈Rn

gL(x)− y>x + 1
2‖x‖

2
2 = max

s∈B
− 1

2‖s− y‖22, (17)

in which the latter expression is precisely the projection of y on B. In Kumar and Bach [26], the
authors have exploited the structural properties of the Lovasz extension and the faces of the base
polytope to create the so-called “Active-set" algorithm. The Active-set algorithm iteratively solves
instances of isotonic regression as well as submodular function minimization tasks, whose overall
complexity is less than a single submodular function minimization call (recall that by submodular
function minimization, we mean the task of solving minx∈[0,1]n(gL(x)− y>x)). By knowing (17),
the algorithm can be viewed as a sequence of iterative projections on outer-approximations of the
base polytope.

For any matroid, its associated rank function is a monotone submodular function. Also, the base
polytope for a matroid’s rank function is exactly the matroid base polytope. As a result of (17), we
can use the Active-set algorithm to perform projections on the matroid base polytope. Interestingly,
in the case of uniform matroids, the main parts of our projection scheme has similar counterparts
as in the Active-set scheme. However, runtime complexity is significantly different due to several
differences such as optimality checks: In our approach, this check is done in O(1), but in Active-set
scheme, in each iteration, one should solve approximately O(n) submodular minimization tasks.
However, the Active-set approach is more general, as explained above.

D.4 The RANDOMIZED-PIPAGE-ROUNDING procedure

The randomized pipage rounding procedure was first proposed in [7] for any matroidM. Here, we
show how this procedure can be efficiently done (in linear time) for the uniform matroid. Suppose we
have a matroidM and a point y := (y1, · · · , yn) in its corresponding base polytope. We want to
round y to a vertex of the base polytope. In each step of the algorithm, one has a fractional solution y
and a tight set T containing at least two fractional variables (recall that if the matroid rank function
is r(·), a set T is tight if y(T ) = r(T ); Tight sets are exactly those constraints in the base polytope
who are tight at y). It modifies two fractional variables in such a way that their sum remains constant,
until some variable becomes integral or a new constraint becomes tight. Note that since the sum of
all of elements of y is an integer (rank of the matroid), there exist at least two fractional variables in
the case that the point is fractional.

For our purpose, we are faced with uniform matroid, which we argue that finding tight constraints
is easy, i.e., we can compute the HITCONSTRAINT subroutine in a very fast way. This subroutine
is given a fractional point y and two variables i and j, and tries to increase yi and decrease yj
simultaneously, and find a new tight constraint A. For sure, one should search for this new tight set
through the sets having i inside them but not j. So let A denote the family of all subsets containing i
and not containing j. So we are interested in δ = minA∈A(r(A)− y(A)), the maximum increase
in yi (and decrease in yj) that does not violate any polytope condition, but produces a new tight
constraint. We claim that δ is trivial in case of the uniform matroid: δ = min{1− yi, yj}. Also the
new tight set A is either {i} or V − j.
This simple form of the HITCONSTRAINT gives an efficient algorithm for RANDOMIZED-PIPAGE-
ROUNDING, which we describe in Algorithm 3. Moreover, one has the following Theorem:
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Algorithm 3 RANDOMIZED-PIPAGE-ROUNDING for the Uniform Matroid

1: Input: fractional y; k ∈ N defining the matroid rank
2: while y fractional do
3: Select i and j among fractional variables
4: if yi + yj < 1 then
5: Let p = yj/(yi + yj)
6: With probability p, set yi ← 0 and yj ← yi+yj , and with probability 1−p, set yi ← yi+yj

and yj ← 0.
7: else
8: Let p = (1− yi)/(2− yi − yj)
9: With probability p, set yi ← yi + yj − 1 and yj ← 1, and with probability 1− p, set yi ← 1

and yj ← yi + yj − 1.
10: end if
11: end while
12: return y

Theorem 7. Let M be the uniform matroid and y be a fractional point inside P(M). Then
RANDOMIZED-PIPAGE-ROUNDING returns an integral point yrnd in O(n) time, such that

E[F (yrnd)] ≥ F (y).

The proof of this algorithm’s correctness is similar to the original one given in [7]. It is also noteworthy
that our algorithm runs in O(n) time compared to O(n2), as described in [7].

E Details on experiments

E.1 Influence Maximization

Our approach is to obtain samples from the product distribution, (G, v) ∼ G × U , and compute the
set Pv (see the definitions for the class of weighted coverage functions in Section 3). Note that the
vertex v is chosen uniformly at random. Since Pv is smaller compared to G, it is less efficient to
sample G completely. Instead, while doing the BFS starting from v, we select edges with probability
p and proceed. Note that in case of maximizing the upper-bound (8), whenever the sum of xi visited
so far exceeds 1, one can stop and return 0, otherwise return 1Pv

in the end. This approach is quite
fast, but may need too many iterations to converge, because of its locality (i.e. we only take one
vertex in each iteration). Note that the size of the gradient in this case is at most

√
|Pv| ≤

√
n.

E.2 Facility Location

Computing the (stochastic) gradient for the concave upper bound can be done in linear time. Let h be
the first index that

∑h
j=1 xj ≥ 1, then a vector in sub-gradient of F̄ (·) is simply

g = (m1 −mh, . . . ,mh−1 −mh, 0, 0, . . . , 0). (18)

In case of the multilinear extension, we give a linear time algorithm for computing the gradient. Let
h be the first index that xh = 1 (if no such index exists, then set h = n+ 1). It’s clear from (10) that
∂F
∂xi

(x) = 0 for i = h+ 1, . . . , n. For i = h, h− 1, . . . , 1 one has the following recursion:

∂Fe
∂xi

(x) =
1− xi+1

1− xi
∂Fe
∂xi+1

(x) + (mi −mi+1)

i−1∏
j=1

(1− xj),

which can be done completely in linear time.

E.3 Exemplar-based Clustering

Let V be a set of points. One can quantify the representativeness a set of exemplars S ⊆ V by the
loss function L(S) = 1

|S|
∑
v∈V mins∈S ‖v − s‖2. Finding the best k exemplars is equivalent to
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solving min|S|=k L(S). By introducing an appropriate phantom element e0 we can turn L(·) into
a monotone submodular function [15]: f(S) = L({e0}) − L(S ∪ {e0}). Thus maximizing f is
equivalent to minimizing L. In our experiments, to ensure non-negativity of the function values, we
transform our dataset V by the transformation T : Rm → Rm,

T (x) =
3√
m
1 +

x− x̄

‖x− x̄‖2
, where x̄ =

1

|V |
∑
x∈V

x,

and set e0 = 0.

F Concave Envelope Evaluation

Here we prove Lemma 1. Define f(x) as follows:

f(x) =

{
1−

∏n
i=1(1− xi) x ∈ [0, 1]n

−∞ Otherwise
.

We first compute the Fenchel concave dual of f , which is defined as
f∗(y) = inf{y>x− f(x) | x ∈ Rn}. (19)

For brevity, let us define h(x,y) := y>x− f(x). We partition Rn into several subsets (cases below)
and compute the infimum (19) for each subset and take the minimum over all partitions.

Case I, x ∈ (0, 1)n: Here we can compute the infimum by setting the gradient equal to zero. For a
fixed y ∈ Rn we have

∇xh(x,y) = 0 ⇐⇒ yi =
∂f

∂xi
=

∏n
j=1(1− xj)
(1− xi)

.

Clearly yi > 0. Let us define P =
∏
i(1 − xi). We then have y1 · · · yn = Pn−1, and then

xi = 1 − P/yi. Since xi > 0, we should have yi > P . The following lemma gives the necessary
condition on y for this to happen.
Lemma 8. Let y1, . . . , yn ∈ R+, n ≥ 2, and assume that ∀i ∈ [n] : yi > n−1

√
y1 · · · yn. Then we

have yi < 1 for all i ∈ [n].

Proof. We prove the argument by induction. The case n = 2 is obvious since
y1 > y1y2 ⇒ y2 < 1, y2 > y1y2 ⇒ y1 < 1.

Suppose the claim is true for n− 1. We now prove it for n. W.l.o.g. assume y1 ≤ · · · ≤ yn. We have
yn−1

1 > y1y2 · · · yn ⇒ ∀i ≥ 2 : yi ≥ y1 > n−2
√
y2 · · · yn.

So y2, . . . , yn satisfy the lemma’s conditions, and by the induction hypothesis, we have y2, . . . , yn <
1. Since y1 ≤ y2, we also have y1 < 1.

So far, we know that there is a minimum in this case if y ∈ (0, 1)n. The minimum value would be

h(x,y) =
∑

xiyi − f(x) =
∑

(1− P/yi)yi − (1− P )

=
∑

yi − (n− 1)P − 1 (20)

This minimum value, as will be clear shortly, is not the best (lower values are available on other
partitions), because of the following lemma:
Lemma 9. Let y ∈ (0, 1)n. Then the minimum value of h(x,y) over x ∈ (0, 1)n is strictly greater
than −1.

Proof. Because of (20), we have

min
x∈(0,1)n

h(x,y) =

n∑
i=1

yi − (n− 1) n−1
√
y1 · · · yn − 1

>

n∑
i=2

yi − (n− 1) n−1
√
y2 · · · yn − 1 since 1 > y1 > 0

≥ −1 by AM-GM inequality
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Case II, at least for one index i ∈ [n] we have xi = 1: In this case, we have f(x) = 1, and h(x,y) =

y>x− 1. W.l.o.g. assume y1 ≤ · · · ≤ yn. It’s clear that the minimum value for h over these values
of x would be

min
x∈[0,1]n,∃ixi=1

h(x,y) =

{
y1 − 1 y ≥ 0∑
yi<0 yi − 1 Otherwise

.

Case III, for some i ∈ [n] we have xi = 0: In this case, f would have the same form (with xi deleted)
and also yi is deleted from h, and hence the problem is reduced to n− 1 dimensional case. So the
same type of solutions as the previous cases would occur.

In total, for y, such that y1 ≤ · · · yn we can write

f∗(y) =


∑
yi<0 yi − 1 y1 < 0

y1 − 1 0 ≤ y1 < 1

0 1 ≤ y1

Now that we have computed the Fenchel dual of f , we can compute the Fenchel dual of f∗, which
would be the Fenchel bi-conjugate of f . By definition we have

f∗∗(z) = inf{z>y − f∗(y) | y ∈ Rn}.

Let’s define g(y, z) = z>y − f∗(y). We will find the minimum on the orthant y1 ≤ · · · ≤ yn.

Case IV, y1 ≥ 1: We have g(y, z) = z>y. If z has negative components, then infimum would
become −∞. So from now on, we assume z ≥ 0. In this case, the minimum of g over this case is∑
zi.

Case V, yi ∈ (0, 1): We have

g(y, z) = z>y − y1 + 1 ≥ y1(
∑
zi − 1) + 1.

Now if
∑
zi ≥ 1, the righthand side’s minimum would be 1 and this minimum is achieved by setting

y = 0. But if
∑
zi < 1, then

y1(
∑
zi − 1) + 1 ≥

∑
zi − 1 + 1 =

∑
zi,

and this minimum is achieved by setting y = 1.

Case VI, y1 < 0: We have

g(y, z) = z>y −
∑
yi<0

yi + 1

=
∑
i:yi<0

yi(zi − 1) +
∑
j:yj≥0

yjzj + 1

If for some i, zi > 1, then infimum of g over this case would become −∞, so we have also z ≤ 1.
In this case, the minimum would become 1.

Summing all up, we have:

f∗∗(z) =

{
min{1,

∑
zi} z ∈ [0, 1]n

−∞ Otherwise
,

and this is what we wanted to prove.

G Pathological Examples

Here we present a special case, where GREEDY fails to give a proper solution, but our method works
well. Our example would be about influence maximization with partition matroid condition. It is well
known that for general matroids (matroids other than the uniform matroid), GREEDY is guaranteed to
give 1/2-optimal solution.

18



B: N − 1 nodes A: N − 1 nodes 3

012

Figure 2: Pathological graph for Influence Maximization

Construct a graph G = (V,E) as follows: V = {0, 1, 2, . . . , 2N + 1}, and connect vertices like in
the figure. Also take the partitions to be {0} and {1, 2, . . . , 2N + 1}, meaning that one should take
from each partition at most one vertex.

The GREEDY algorithm, first chooses the vertex with the highest out-degree, which is 1, and then is
forced to choose 0 as the second vertex because of matroid condition, leading to the (1/2+ε)-optimal
answer {0, 1}.
On the other hand, our algorithm successfully gives the optimal answer {0, 2}. It’s a good practice to
show why. Let us choose x(0) be the projection of 1 on the partition matroid polytope, namely

x(0) = (1, 1
2N+1 , . . . ,

1
2N+1 ).

The (sub-)gradient of F̄ at x(0) is calculated as follows:

∇F̄ (x(0)) = 0{0} + 1{1} + 1{2} + 1{3,1} +
∑
a∈A

0{0,1,a} +
∑
b∈B

1{2,b}

= (0, 2, N, 1, 0, . . . , 0︸ ︷︷ ︸
a∈A

, 1, . . . , 1︸ ︷︷ ︸
b∈B

)

where the reason of 0{0} and 0{0,1,a} for a ∈ A is x0 = 1 and x0 + x1 + xa > 1 respectively. It’s
obvious that moving along this gradient, and projecting, makes x0 = x2 = 1 and all others to zero,
selecting {0, 2} as the solution.

The difference here with GREEDY is apparently in two places: (i) being on the matroid base polytope
forces the algorithm tochoose a vertex from the first partition, and simultaneously (ii) selecting 0
means all vertices a ∈ A are influenced, so there is no need to select 1. GREEDY does not take into
account that in the future it should select a node in some other partition, that may lose his achievement
in the first step.
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