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Proofs for Section 3

Lemma 1. Let T be the first time index such that (1) has a solution. Since zt = 1− µ by definition
for t < T , clearly tzt is increasing for t ∈ [T − 1].

Now consider the case t ≥ T − 1. Using the convexity of D(µ+ x, µ) (in x) and the definition of the
sequence zt, we have

D
(
µ+ t

t+1
N
N+1zt, µ

)
≤ t

t+1D
(
µ+ N

N+1zt, µ
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≤ t

t+ 1

log (κ(N) log2(2t)/δ)

t

≤ log (κ(N) log2(2(t+ 1))/δ)
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= D
(
µ+ N

N+1zt+1, µ
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,

where the last equality holds, since t ≥ T − 1. Comparing the two ends of this chain of inequalities
implies that t

t+1zt ≤ zt+1 since the function D(µ+ x, µ) is increasing in x.

Theorem 1. Consider the setting of Theorem 2 and let

c(N) =
N + 1

N − log(N + 1)
.

Define zt as the solution of

D(µ+ zt, µ) =
c(N) log (κ(N) log2(2t)/δ)

t
,

if a solution exists, and zt = 1− µ otherwise. Then

(i) : P (∃t ∈ N : µ̂t − µ > zt) ≤ δ ,
(ii) : P (∃t ∈ N : µ̂t − µ < −zt) ≤ δ .

The correctness of the confidence intervals L′(t, δ) and U ′(t, δ) follow from Theorem 1 in the same
way as that of L(t, δ) and U(t, δ) follow from Theorem 2 shown in Section 3.

Proof of Theorem 1. It is clear by consulting the proof of Theorem 2 that if we had

D(µ+ x, µ) ≤ c(N)D
(
µ+ N

N+1x, µ
)
∀x ∈ [0, 1− µ], ∀µ ∈ (0, 1) ,

then using it at step (7) would yield the desired result.

Let α ∈ (0, 1) and use the notation D(µ+ x, µ) = fµ(x). We wish to show that

gµ(x) := fµ(x)− cfµ(αx) ≤ 0 ∀x ∈ [0, 1− µ], ∀µ ∈ (0, 1) .
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with c = 1
α+(1−α) log(1−α) .

We first examine gµ(x) as a function of x. Recall that the first and second derivatives of fµ(x) (in x)
are

f ′µ(x) = log µ+x
µ − log 1−µ−x

1−µ , and f ′′µ (x) = 1
(µ+x)(1−µ−x) .

Hence
g′′µ(x) = f ′′µ (x)− cα2f ′′µ (αx) .

As for the sign of the second derivative, we have
f ′′µ (x)− cα2f ′′µ (αx) ≶ 0

m
f ′′µ (x) ≶ cα2f ′′µ (αx)

m
(µ+ αx)(1− µ− αx) ≶ cα2(µ+ x)(1− µ− x)

m
(c− 1)α2x2 + α(1− 2µ)(1− cα)x+ µ(1− µ)(1− cα2) ≶ 0 .

Denote the left side by h(x). The roots of h(x) are

x1,2 =
−α(1− 2µ)(1− cα)±

√
α2(1− 2µ)2(1− cα)2 − 4α(1− 2µ)(1− cα)µ(1− µ)(1− cα2)

2α(1− 2µ)(1− cα)

=
−(1− 2µ)(1− cα)±

√
(1− 2µ)2(1− cα)2 − 4(c− 1)µ(1− µ)(1− cα2)

2(c− 1)α
.

Note that
c =

1

α+ (1− α) log(1− α)
≥ 1

α− (1− α)α
=

1

α2
>

1

α
> 1 ,

since log(1 + x) ≤ x. This implies that the expression under the root is positive, and that√
(1− 2µ)2(1− cα)2 − 4(c− 1)µ(1− µ)(1− cα2) ≥ |(1− 2µ)(1− cα)| ,

which in turn implies that at least one of the roots of h(x) is negative. Let y = max{x1, x2}.
By the previous observation, the function gµ(x) is concave on the interval [0, y] and convex on the
interval [y, 1−µ] (with the convention that [a, b] = ∅ if a > b). Noting that gµ(0) = 0 and g′µ(0) = 0
we have gµ(x) ≤ 0 on [0, y]. On the other hand, gµ(1− µ) ≤ 0⇒ gµ(x) ≤ 0 for x ∈ [y, 1− µ], by
the convexity of gµ(x) on this interval and that gµ(y) ≤ 0.

Hence, all that remains to show is gµ(1− µ) ≤ 0 for all µ ∈ (0, 1). This yields the inequality

0 ≥ log 1
µ − c

(
(µ+ α(1− µ)) log µ+α(1−µ)

µ + (1− µ− α(1− µ)) log 1−µ−α(1−µ)
1−α

)
= log 1

µ − c
(

((1− α)µ+ α) log
(

1 + α
(1−α)µ

)
+ log(1− α)

)
:= l(µ) .

Note that the right side is equal to zero at µ = 1. To conclude the inequality above, we show that the
right side is increasing in µ. We have

∂

∂µ
l(µ) = − 1

µ
− c

(
(1− α) log

(
1 + α

(1−α)µ

)
− α

µ

)
=

1

µ
(cα− 1)− c(1− α) log

(
1 + α

(1−α)µ

)
.

Using the inequality log(1 + x) ≤ x−a
a+1 + log(1 + a) (that is the line tangential to log(1 + x) at any

point a > −1 upper bounds log(1 + x)) with a = α
1−α , we can continue as

∂

∂µ
l(µ) ≥ 1

µ
(cα− 1)− c(1− α) log

(
α
(

1
µ − 1

)
− log(1− α)

)
=

1

µ
(cα− 1− cα(1− α))− c(1− α) (α− log(1− α)) .
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Finally, noting that cα− 1− cα(1−α) is positive (since c ≥ 1/α2) we can further decrease the right
hand side by using 1/µ ≥ 1, which yields

∂

∂µ
l(µ) ≥ c (α− (1− α) log(1− α))− 1 .

The right side is non-negative, whenever c ≥ 1/(α− (1− α) log(1− α)), concluding the proof.

Proofs for Section 4

Proposition 1. The lil-KLUCB algorithm is 2δ-PAC.

Proof. Suppose that when the algorithm stops, TOP(t) 6= 1. This implies that there exists t ∈ N and
i ≥ 2 for which

Li(fTi(t)(δ/(n− 1))) > U1(fT1(t)(δ)) .

Consider the events Ω1(δ) and Ωi(δ/(n− 1)) for i ≥ 2, and let their intersection be

Ω = Ω1(δ) ∩ (∩i≥2Ωi(δ/(n− 1))) .

Note that
P(Ω) = 1− P(Ω) ≥ 1− P

(
Ω1(δ) ∪ (∪i≥2Ωi(δ/(n− 1))

)
≥ 1− 2δ

by Theorem 1 (where Ω is the complementary event of Ω). However, on the event Ω the algorithm
cannot fail, as on this event Li(fTi(t)(δ/(n − 1))) ≤ µi and U1(fT1(t)(δ)) ≥ µ1 which (together
with the first display) would imply µ1 < µi, a contradiction.

The backbone to proving Theorem 1 is the following lemma. Recall that for µ, µ̃ ∈ [0, 1], the
Chernoff information D∗(µ, µ̃) between two Bernoulli random variables with parameters µ and µ̃
can be written as

D∗(µ, µ̃) = inf
x∈(0,1)

max {D(x, µ), D(x, µ̃)} .

Lemma 2. Let Y1, Y2, . . . be independent samples from a distribution P, and consider a sequence of
confidence bounds for the mean µ of the form

U(ft(δ)) = sup {m > µ̂t : D(µ̂t,m) ≤ ft(δ)} ,

where µ̂t is the empirical mean based on {Yj}j∈[t], δ ∈ (0, 1) and ft(x) is decreasing in x. Consider
a realization of the sequence {µ̂t}t∈N, and suppose that ε ∈ (0, 1) is such that

D(µ̂t, µ) ≤ ft(ε) ∀t ∈ N .

Then for any fixed µ̃ ∈ (µ, 1) we have

ft(δ · ε) < D∗(µ̃, µ) ⇒ U(ft(δ)) < µ̃ .

Proof. We first note that ft(δ · ε) ≥ min{ft(δ), ft(ε)} since δ, ε ≤ 1 and ft(·) is decreasing.

The claim then follows by the definitions of D∗(µ, µ̃), Ut(δ) and ε. In particular, on one hand
D(µ̂t, µ) ≤ ft(δ · ε) for every t ∈ N. On the other hand,

µ̃ ≤ Ut(δ) ⇐⇒ D(µ̂t, µ̃) ≤ ft(δ) ⇒ D(µ̂t, µ̃) ≤ ft(δ · ε) .

This would imply that for µ̂t we both have both D(µ̂t, µ) ≤ ft(δ · ε) and D(µ̂t, µ̃) ≤ ft(δ · ε).
However, this is impossible, by the definition of D∗(µ̃, µ).

With this lemma, we are ready to prove Theorem 1.

Proof of Theorem 1. Observe that at each time step two things can happen in the algorithm (apart
from stopping): (1) Arm 1 is not pulled (two sub-optimal arms are pulled); (2) Arm 1 is pulled
together with some other (suboptimal) arm.
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Our aim is to upper bound the number of times any given arm is be played for either of the reasons
above. We do so on an event of the form

Ω′ =
⋂
i∈[n]

Ωi(δi) ,

as a function of the quantities {δi}i∈[n], invoking Lemma 2. We set δ1 = δ and choose {δi}i≥2 such
that they take the largest possible values, i.e. δi = sup{ε ∈ (0, 1) : Ωi(ε) holds}. Finally, we control
the contribution of these random δi to the sample complexity bound obtained in the previous step.

Note that we know from Theorem 1 that P(Ω1(δ)) ≤ δ.

A sample complexity bound under Ω′: If Arm 1 is not pulled at time t, there has to exist another
Arm i such that µ̂i,t ≥ µ̂1,t. Under the event Ω1(δ) this can no longer happen once Ui(fTi(t)(δ)) <
µ1. By Lemma 2 the latter is guaranteed when

fTi(t)(δ · δi) < D∗(µi, µ1) .

Using the notation

τi(δ · δi) = min {t ∈ N : ft(δ · δi) < D∗(µi, µ1)} ,

we know that any suboptimal Arm i can only be pulled at most τi(δ · δi) times in a way that it is not
pulled together with Arm 1. Hence, Arm 1 will be played eventually.

Suppose that at time t a suboptimal Arm i (i ≥ 2) is pulled together with Arm 1. This can only
happen if the confidence regions of the means of the two arms overlap at time t, i.e. L1(fT1(t)(δ)) ≤
Ui(fTi(t)(δ)). However, this is impossible once there exists a value µ̃i ∈ (µi, µ1) that separates the
two confidence bounds, i.e Ui(fTi(t)(δ)) < µ̃i < L1(fT1(t)(δ)).

According to Lemma 2, this happens once Ti(t) is such that

fTi(t)(δ · δi) ≤ D
∗(µi, µ̃i) ,

and T1(t) is such that
fT1(t)(δ) ≤ D

∗(µ1, µ̃i) .

Note that in the second inequality, the quantity on the left hand side can indeed be chosen as fT1(t)(δ)

instead of fT1(t)(δ
2)), which can be easily seen by consulting the proof of Lemma 2.

For i ≥ 2 let
ξi(δ · δi) = min {t ∈ N : ft(δ · δi) < D∗(µi, µ̃i)} ,

and

ξ1(δ) = min

{
t ∈ N : ft(δ/(n− 1)) < min

i≥2
D∗(µ1, µ̃i)

}
.

By monotonicity of the Chernoff-information ξi(δ · δi) ≥ τi(δ · δi) for every i ≥ 2. Thus, Arm i can
not be pulled more than ξi(δ · δi) times.

Hence the sample complexity on the event Ω′ is upper bounded by

ξ1(δ) +
∑
i≥2

ξi(δ · δi) .

Controlling the contribution of the δi: It is easy to check that there exists a universal constant K1

such that

ξi(δ · δi) ≤
K1 log

(
(δ · δi)−1 logD∗(µi, µ̃i)

−1)
D∗(µi, µ̃i)

.

and

ξ1(δ) ≤
K1 log

(
(n− 1)δ−1 logD∗(µ1, µ̃)−1

)
D∗(µ1, µ̃)

.

Now let δi = sup{ε > 0 : Ui(ft(ε)) ≥ µi ∀t ∈ N}. We have

P(δi < γ) = P(∃t ∈ N : Ui(ft(ε)) ≥ µi) ≤ γ
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according to Theorem 1. Hence, substituting γ = exp(−D∗(µi, µ̃i)z) we get

P
(

log δ−1i
D∗(µi, µ̃i)

≥ z
)
≤ exp(−D∗(µi, µ̃i)z) .

Hence D∗(µi, µ̃i)−1 log δ−1i are independent sub-exponential random variables. Using standard
techniques for bounding sums of sub-exponential random variables, we have

P

∑
i≥2

log δ−1i
D∗(µi, µ̃i)

≥ K2

∑
i≥2

log δ−1

D∗(µi, µ̃i)

 ≤ δ ,
with some constant K2.

Combining this inequality with those for ξi(·) concludes the proof.

The sub-Gaussian tail-bounds for the numerical comparisons of Section 5

We can get a sub-Gaussian tail bound as well with the method of Theorem 2 as follows. We start by
the same union-bound 4.

Upper bounding the terms in the second sum go analogously up to the display 6. At that point, we
can use Pinsker’s inequality stating that 2(x− y)2 ≤ D(x, y) (see [1])1. This yields

P
(
∃t ∈ [2k, 2k+1] : µ̂t − µ > zt

)
≤ exp

(
−2tj

(
N+j−1
N+j

)2
z2tj−1

)
.

Recall that tj = (1 + j
N )2k and define

zt =

√
1

2

(
N + 1

N

)2
log (κ(N) log2(2t)/δ)

t
,

where κ(N) is the same constant as in the statement of Theorem 2. Note that the sequence tzt is
increasing, which was required for the computations leading to 6.

Plugging in these values, we get

P
(
∃t ∈ [2k, 2k+1] : µ̂t − µ > zt

)
≤ exp

(
−N+j−1

N+1

(
N+1
N

)2
log
(
κ(N) log2

(
2k+1N+j

N

)
/δ
))

≤ δ
N+1
N κ(N)−

N+1
N (k + 1)−

N+1
N ,

where the last line follows by j ≥ 1.

As for the first term in 4 we can also use Pinsker’s inequality to get

P(∃t ∈ [N ] : µ̂t − µ > zt) ≤ exp
(
−
(
N+1
N

)2
log (κ(N) log2(2t)/δ)

)
≤ δ

N+1
N κ(N)−

N+1
N

∑
t∈[N ]

log2(2t)−
N+1
N .

The proof concludes the same way as that of Theorem 2, so that with the definition of zt above we
have that

P(∃t ∈ N : µ̂t − µ > zt) ≤ δ .

The New Yorker Cartoon Caption Contest

Each week a cartoon in need of a caption appears in The New Yorker magazine. The readers are
invited to submit their ideas for funny captions to go with that cartoon. The New Yorker selects
three finalists from the submissions, after which the readers select their favorite by voting online at
http://contest.newyorker.com/CaptionContest.aspx?tab=vote.

1Note that another approach would be to use Hoeffding’s bound for the moment generating function
E(eλ(Y1−µ)) at 5. At the end, this would result in the same result as using Pinsker’s inequality.
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