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Abstract

Contextual bandits are a form of multi-armed bandit in which the agent has access
to predictive side information (known as the context) for each arm at each time step,
and have been used to model personalized news recommendation, ad placement,
and other applications. In this work, we propose a multi-task learning framework
for contextual bandit problems. Like multi-task learning in the batch setting, the
goal is to leverage similarities in contexts for different arms so as to improve the
agent’s ability to predict rewards from contexts. We propose an upper confidence
bound-based multi-task learning algorithm for contextual bandits, establish a cor-
responding regret bound, and interpret this bound to quantify the advantages of
learning in the presence of high task (arm) similarity. We also describe an effective
scheme for estimating task similarity from data, and demonstrate our algorithm’s
performance on several data sets.

1 Introduction

A multi-armed bandit (MAB) problem is a sequential decision making problem where, at each time
step, an agent chooses one of several “arms," and observes some reward for the choice it made. The
reward for each arm is random according to a fixed distribution, and the agent’s goal is to maximize
its cumulative reward [4] through a combination of exploring different arms and exploiting those
arms that have yielded high rewards in the past [15, 11].

The contextual bandit problem is an extension of the MAB problem where there is some side
information, called the context, associated to each arm [12]. Each context determines the distribution
of rewards for the associated arm. The goal in contextual bandits is still to maximize the cumulative
reward, but now leveraging the contexts to predict the expected reward of each arm. Contextual
bandits have been employed to model various applications like news article recommendation [7],
computational advertisement [9], website optimization [20] and clinical trials [19]. For example, in
the case of news article recommendation, the agent must select a news article to recommend to a
particular user. The arms are articles and contextual features are features derived from the article and
the user. The reward is based on whether a user reads the recommended article.

One common approach to contextual bandits is to fix the class of policy functions (i.e., functions from
contexts to arms) and try to learn the best function with time [13, 18, 16]. Most algorithms estimate
rewards either separately for each arm, or have one single estimator that is applied to all arms. In
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contrast, our approach is to adopt the perspective of multi-task learning (MTL). The intuition is that
some arms may be similar to each other, in which case it should be possible to pool the historical
data for these arms to estimate the mapping from context to rewards more rapidly. For example, in
the case of news article recommendation, there may be thousands of articles, and some of those are
bound to be similar to each other.

Problem 1 Contextual Bandits
for t = 1, ..., T do

Observe context xa,t ∈ Rd for all arms a ∈ [N ], where [N ] = {1, ...N}
Choose an arm at ∈ [N ]
Receive a reward rat,t ∈ R
Improve arm selection strategy based on new observation (xat,t, at, rat,t)

end for

The contextual bandit problem is formally stated in Problem 1. The total T trial reward is defined as∑T
t=1 rat,t and the optimal T trial reward as

∑T
t=1 ra∗t ,t, where rat,t is reward of the selected arm

at at time t and a∗t is the arm with maximum reward at trial t. The goal is to find an algorithm that
minimizes the T trial regret

R(T ) =

T∑
t=1

ra∗t ,t −
T∑
t=1

rat,t.

We focus on upper confidence bound (UCB) type algorithms for the remainder of the paper. A UCB
strategy is a simple way to represent the exploration and exploitation tradeoff. For each arm, there is
an upper bound on reward, comprised of two terms. The first term is a point estimate of the reward,
and the second term reflects the confidence in the reward estimate. The strategy is to select the arm
with maximum UCB. The second term dominates when the agent is not confident about its reward
estimates, which promotes exploration. On the other hand, when all the confidence terms are small,
the algorithm exploits the best arm(s) [2].

In the popular UCB type contextual bandits algorithm called Lin-UCB, the expected reward of an
arm is modeled as a linear function of the context, E[ra,t|xa,t] = xTa,tθ

∗
a, where ra,t is the reward of

arm a at time t and xa,t is the context of arm a at time t. To select the best arm, one estimates θa
for each arm independently using the data for that particular arm [13]. In the language of multi-task
learning, each arm is a task, and Lin-UCB learns each task independently.

In the theoretical analysis of the Lin-UCB [7] and its kernelized version Kernel-UCB [18] θa is
replaced by θ, and the goal is to learn one single estimator using data from all the arms. In other
words, the data from the different arms are pooled together and viewed as coming from a single task.
These two approaches, independent and pooled learning, are two extremes, and reality often lies
somewhere in between. In the MTL approach, we seek to pool some tasks together, while learning
others independently.

We present an algorithm motivated by this idea and call it kernelized multi-task learning UCB
(KMTL-UCB). Our main contributions are proposing a UCB type multi-task learning algorithm
for contextual bandits, established a regret bound and interpreting the bound to reveal the impact
of increased task similarity, introducing a technique for estimating task similarities on the fly, and
demonstrating the effectiveness of our algorithm on several datasets.

This paper is organized as follows. Section 2 describes related work and in Section 3 we propose
a UCB algorithm using multi-task learning. Regret analysis is presented in Section 4, and our
experimental findings are reported in Section 5. We conclude in Section 6.

2 Related Work

A UCB strategy is a common approach to quantify the exploration/exploitation tradeoff. At each
time step t, and for each arm a, a UCB strategy estimates a reward r̂a,t and a one-sided confidence
interval above r̂a,t with width ŵa,t. The term ucba,t = r̂a,t + ŵa,t is called the UCB index or just
UCB. Then at each time step t, the algorithm chooses the arm a with the highest UCB.
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In contextual bandits, the idea is to view learning the mapping x 7→ r as a regression problem.
Lin-UCB uses a linear regression model while Kernel-UCB uses a nonlinear regression model drawn
from the reproducing kernel Hilbert space (RKHS) of a symmetric and positive definite (SPD) kernel.
Either of these two regression models could be applied in either the independent setting or the pooled
setting. In the independent setting, the regression function for each arm is estimated separately. This
was the approach adopted by Li et al. [13] with a linear model. Regret analysis for both Lin-UCB
and Kernel-UCB adopted the pooled setting [7, 18]. Kernel-UCB in the independent setting has not
previously been considered to our knowledge, although the algorithm would just be a kernelized
version of Li et al. [13]. We will propose a methodology that extends the above four combinations
of setting (independent and pooled) and regression model (linear and nonlinear). Gaussian Process
UCB (GP-UCB) uses a Gaussian prior on the regression function and is a Bayesian equivalent of
Kernel-UCB [16].

There are some contextual bandit setups that incorporate multi-task learning. In Lin-UCB with Hybrid
Linear Models the estimated reward consists of two linear terms, one that is arm-specific and another
that is common to all arms [13]. Gang of bandits [5] uses a graph structure (e.g., a social network) to
transfer the learning from one user to other for personalized recommendation. Collaborative filtering
bandits [14] is a similar technique which clusters the users based on context. Contextual Gaussian
Process UCB (CGP-UCB) builds on GP-UCB and has many elements in common with our framework
[10]. We defer a more detailed comparison to CGP-UCB until later.

3 KMTL-UCB

We propose an alternate regression model that includes the independent and pooled settings as special
cases. Our approach is inspired by work on transfer and multi-task learning in the batch setting
[3, 8]. Intuitively, if two arms (tasks) are similar, we can pool the data for those arms to train better
predictors for both.

Formally, we consider regression functions of the form

f : X̃ 7→ Y

where X̃ = Z × X , and Z is what we call the task similarity space, X is the context space and
Y ⊆ R is the reward space. Every context xa ∈ X is associated with an arm descriptor za ∈ Z , and
we define x̃a = (za, xa) to be the augmented context. Intuitively, za is a variable that can be used to
determine the similarity between different arms. Examples of Z and za will be given below.

Let k̃ be a SPD kernel on X̃ . In this work we focus on kernels of the form

k̃
(

(z, x), (z′, x′)
)

= kZ(z, z′)kX (x, x′), (1)

where kX is a SPD kernel on X , such as linear or Gaussian kernel if X = Rd, and kZ is a kernel on
Z (examples given below). LetHk̃ be the RKHS of functions f : X̃ 7→ R associated to k̃. Note that
a product kernel is just one option for k̃, and other forms may be worth exploring.

3.1 Upper Confidence Bound

Instead of learning regression estimates for each arm separately, we effectively learn regression
estimates for all arms at once by using all the available training data. Let N be the total number
of distinct arms that algorithm has to choose from. Define [N ] = {1, ..., N} and let the observed
contexts at time t be xa,t,∀a ∈ [N ]. Let na,t be the number of times the algorithm has selected arm
a up to and including time t so that

∑N
a=1 na,t = t. Define sets ta = {τ < t : aτ = a}, where aτ is

the arm selected at time τ . Notice that |ta| = na,t−1 for all a. We solve the following problem at
time t:

f̂t = arg min
f∈Hk̃

1

N

N∑
a=1

1

na,t−1

∑
τ∈ta

(f(x̃a,τ )− ra,τ )2 + λ‖f‖2Hk̃ , (2)

where x̃a,τ is the augmented context of arm a at time τ , and ra,τ is the reward of an arm a selected at
time τ . This problem (2) is a variant of kernel ridge regression. Applying the representer theorem [17]
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the optimal f can be expressed as f =
∑N
a′=1

∑
τ ′∈ta′

αa′,τ ′ k̃(·, x̃a′,τ ′), which yields the solution
(detailed derivation is in the supplementary material)

f̂t(x̃) = k̃t−1(x̃)T (ηt−1K̃t−1 + λI)−1ηt−1yt−1, (3)

where K̃t−1 is the (t − 1) × (t − 1) kernel matrix on the augmented data [x̃aτ ,τ ]t−1τ=1, k̃t−1(x̃) =

[k̃(x̃, x̃aτ ,τ )]t−1τ=1 is a vector of kernel evaluations between x̃ and the past data, yt−1 = [raτ ,τ ]t−1τ=1 are
all observed rewards, and ηt−1 is the (t− 1)× (t− 1) diagonal matrix ηt−1 = diag[ 1

naτ,t−1
]t−1τ=1.

When x̃ = x̃a,t, we write k̃a,t = k̃t−1(x̃a,t). With only minor modifications to the argument in Valko
et al [18], we have the following:
Lemma 1. Suppose the rewards [raτ ,τ ]Tτ=1 are independent random variables with means

E[raτ ,τ |x̃aτ ,τ ] = f∗(x̃aτ ,τ ), where f∗ ∈ Hk̃ and ‖f∗‖Hk̃ ≤ c. Let α =
√

log(2TN/δ)
2 and δ > 0.

With probability at least 1− δ
T , we have that ∀a ∈ [N ]

|f̂t(x̃a,t)− f∗(x̃a,t)| ≤ wa,t := (α+ c
√
λ)sa,t (4)

where sa,t = λ−1/2
√
k̃(x̃a,t, x̃a,t)− k̃Ta,t(ηt−1K̃t−1 + λI)−1ηt−1k̃a,t.

The result in Lemma 1 motivates the UCB

ucba,t = f̂t(x̃a,t) + wa,t

and inspires Algorithm 1.

Algorithm 1 KMTL-UCB
Input: β ∈ R+,
for t = 1, ..., T do

Update the (product) kernel matrix K̃t−1 and ηt−1
Observe context features at time t: xa,t for each a ∈ [N ].
Determine arm descriptor za for each a ∈ [N ] to get augmented context x̃a,t.
for all a at time t do
pa,t ← f̂t(x̃a,t) + βsa,t

end for
Choose arm at = arg max pa,t, observe a real valued payoff rat,t and update yt .
Output: at

end for

Before an arm has been selected at least once, f̂t(x̃a,t) and the second term in sa,t, i.e.,
k̃Ta,t(ηt−1K̃t−1 + λI)−1ηt−1k̃a,t, are taken to be 0. In that case, the algorithm only uses the first

term of sa,t, i.e.,
√
k̃(x̃a,t, x̃a,t), to form the UCB.

3.2 Choice of Task Similarity Space and Kernel

To illustrate the flexibility of our framework, we present the following three options for Z and kZ :

1. Independent: Z = {1, ..., N}, kZ(a, a′) = 1a=a′ . The augmented context for a context xa
from arm a is just (a, xa).

2. Pooled: Z = {1}, kZ ≡ 1. The augmented context for a context xa for arm a is just (1, xa).
3. Multi-Task: Z = {1, ..., N} and kZ is a PSD matrix reflecting arm/task similarities. If this

matrix is unknown, it can be estimated as discussed below.

Algorithm 1 with the first two choices specializes to the independent and pooled settings mentioned
previously. In either setting, choosing a linear kernel for kX leads to Lin-UCB, while a more general
kernel essentially gives rise to Kernel-UCB. We will argue that the multi-task setting facilitates
learning when there is high task similarity.
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We also introduce a fourth option for Z and kZ that allows task similarity to be estimated when it is
unknown. In particular, we are inspired by the kernel transfer learning framework of Blanchard et al.
[3]. Thus, we define the arm similarity space to be Z = PX , the set of all probability distributions
on X . We further assume that contexts for arm a are drawn from probability measure Pa. Given a
context xa for arm a, we define its augmented context to be (Pa, xa).

To define a kernel on Z = PX , we use the same construction described in [3], originally introduced
by Steinwart and Christmann [6]. In particular, in our experiments we use a Gaussian-like kernel

kZ(Pa, Pa′) = exp(−‖Ψ(Pa)−Ψ(Pa′)‖2/2σ2
Z), (5)

where Ψ(P ) =
∫
k′X (·, x)dPx is the kernel mean embedding of a distribution P . This embedding is

defined by yet another SPD kernel k′X on X , which could be different from the kX used to define k̃.
We may estimate Ψ(Pa) via Ψ(P̂a) = 1

na,t−1

∑
τ∈ta k

′
X (·, xaτ ,τ ), which leads to an estimate of kZ .

4 Theoretical Analysis

To simplify the analysis we consider a modified version of the original problem 2:

f̂t = arg min
f∈Hk̃

1

N

N∑
a=1

∑
τ∈ta

(f(x̃a,τ )− ra,τ )2 + λ‖f‖2Hk̃ . (6)

In particular, this modified problem omits the terms 1
na,t−1

as they obscure the analysis. In practice,
these terms should be incorporated.

In this case sa,t = λ−1/2
√
k̃(x̃a,t, x̃a,t)− k̃Ta,t(K̃t−1 + λI)−1k̃a,t. Under this assumption Kernel-

UCB is exactly KMTL-UCB with kZ ≡ 1. On the other hand, KMTL-UCB can be viewed as
a special case of Kernel-UCB on the augmented context space X̃ . Thus, the regret analysis of
Kernel-UCB applies to KMTL-UCB, but it does not reveal the potential gains of multi-task learning.
We present an interpretable regret bound that reveals the benefits of MTL. We also establish a lower
bound on the UCB width that decreases as task similarity increases (presented in the supplementary
file).

4.1 Analysis of SupKMTL-UCB

It is not trivial to analyze algorithm 1 because the reward at time t is dependent on the past rewards.
We follow the same strategy originally proposed in [1] and used in [7, 18] which uses SupKMTL-UCB
as a master algorithm, and BaseKMTL-UCB (which is called by SupKMTL-UCB) to get estimates of
reward and width. SupKMTL-UCB builds mutually exclusive subsets of [T ] such that rewards in any
subset are independent. This guarantees that the independence assumption of Lemma 1 is satisfied.
We describe these algorithms in a supplementary section because of space constraints.
Theorem 1. Assume that ra,t ∈ [0, 1],∀a ∈ [N ], T ≥ 1, ‖f∗‖Hk̃ ≤ c, k̃(x̃, x̃) ≤ ck̃,∀x̃ ∈ X̃ and
the task similarity matrix KZ is known. With probability at least 1− δ, SupKMTL-UCB satisfies

R(T ) ≤ 2
√
T + 10

(√√√√ log
(

2TN(log(T ) + 1)/δ
)

2
+ c
√
λ

)√
2m log g([T ])

√
T dlog(T )e

= O
(√

T log(g([T ]))
)

where g([T ]) = det(K̃T+1+λI)
λT+1 and m = max(1,

ck̃
λ ).

Note that this theorem assumes that task similarity is known. In the experiments for real datasets
using the approach discussed in subsection 3.2 we estimate the task similarity from the available data.

4.2 Interpretation of Regret Bound

The following theorems help us interpret the regret bound by looking at

g([T ]) =
det(K̃T+1 + λI)

λT+1
=

T+1∏
t=1

(λt + λ)

λ
,
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where, λ1 ≥ λ2 ≥ · · · ≥ λT+1 are the eigenvalues of the kernel matrix K̃T+1.

As mentioned above, the regret bound of Kernel-UCB applies to our method, and we are able to
recover this bound as a corollary of Theorem 1. In the case of Kernel-UCB K̃t = KXt ,∀t ∈ [T ] as
all arm estimators are assumed to be the same. We define the effective rank of K̃T+1 in the same way
as [18] defines the effective dimension of the kernel feature space.

Definition 1. The effective rank of K̃T+1 is defined to be r := min{j : jλ log T ≥
∑T+1
i=j+1 λi}.

In the following result, the notation Õ hides logarithmic terms.

Corollary 1. log(g([T ])) ≤ r log
(

2T
2(T+1)ck̃+rλ−rλ log T

rλ

)
, and therefore R(T ) = Õ(

√
rT )

However, beyond recovering a known bound, Theorem 1 can also be interpreted to reveal the
potential gains of multi-task learning. To interpret the regret bound in Theorem 1, we make a
further assumption that after time t, na,t = t

N for all a ∈ [N ]. For simplicity define nt = na,t.
Let (�) denote the Hadamard product, (⊗) denote the Kronecker product and 1n ∈ Rn be the
vector of ones. Let KXt = [kX (xaτ ,τ , xaτ′ ,τ ′)]

t
τ,τ ′=1 be the t × t kernel matrix on contexts,

KZt = [kZ(zaτ , zaτ′ )]
t
τ,τ ′=1 be the associated t × t kernel matrix based on arm similarity, and

KZ = [kZ(za, za)]Na=1 be the N × N arm/task similarity matrix between N arms, where xaτ ,τ
is the observed context and zaτ is the associated arm descriptor. Using eqn. (1), we can write
K̃t = KZt �KXt . We rearrange the sequence of xaτ ,τ to get [xa,τ ]Na=1,τ=(t+1)a

such that elements

(a−1)nt to ant belong to arm a. Define K̃r
t ,K

r
Xt

andKr
Zt

to be the rearranged kernel matrices based
on the re-ordered set [xa,τ ]Na=1,τ=(t+1)a

. Notice that we can write K̃r
t = (KZ ⊗ 1nt1

T
nt) �K

r
Xt

and the eigenvalues λ(K̃t) and λ(K̃r
t ) are equal. To summarize, we have

K̃t = KZt �KXt

λ(K̃t) = λ
(

(KZ ⊗ 1nt1Tnt)�K
r
Xt

)
. (7)

Theorem 2. Let the rank of matrix KXT+1
be rx and the rank of matrix KZ be rz . Then

log(g([T ])) ≤ rzrx log
(

(T+1)ck̃+λ

λ

)
This means that when the rank of the task similarity matrix is low, which reflects a high degree
of inter-task similarity, the regret bound is tighter. For comparison, note that when all tasks are
independent, rz = N and when all tasks are the same (pooled), then rz = 1. In the case of Lin-
UCB [7] where all arm estimators are assumed to be the same and kX is a linear kernel, the regret
bound in Theorem 1 evaluates to Õ(

√
dT ), where d is the dimension of the context space. In the

original Lin-UCB algorithm [13] where all arm estimators are different, the regret bound would be
Õ(
√
NdT ).

We can further comment on g([T ]) when all distinct tasks (arms) are similar to each other with
task similarity equal to µ. Thus define KZ(µ) := (1− µ)IN + µ1N1

T
N and K̃r

t (µ) = (KZ(µ) ⊗
1nt1

T
nt)�K

r
Xt

.

Theorem 3. Let gµ([T ]) =
det(K̃r

T+1(µ)+λI)

λT+1 . If µ1 ≤ µ2 then gµ1
([T ]) ≥ gµ2

([T ]).

This shows that when there is more task similarity, the regret bound is tighter.

4.3 Comparison with CGP-UCB

CGP-UCB transfers the learning from one task to another by leveraging additional known task-
specific context variables [10], similar in spirit to KTML-UCB. Indeed, with slight modifications,
KMTL-UCB can be viewed as a frequentist analogue of CGP-UCB, and similarly CGP-UCB could
be modified to address our setting. Furthermore, the term g([T ]) appearing in our regret bound is
equivalent to an information gain term used to analyze CGP-UCB. In the agnostic case of CGP-
UCB where there is no assumption of a Gaussian prior on decision functions, their regret bound is
O(log(g([T ]))

√
T ), while their regret bound matches ours when they adopt a GP prior on f∗. Thus,

our primary contributions with respect to CGP-UCB are to provide a tighter regret bound in agnostic
case, and a technique for estimating task similarity which is critical for real-world applications.
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5 Experiments

We test our algorithm on synthetic data and some multi-class classification datasets. In the case of
multi-class datasets, the number of arms N is the number of classes and the reward is 1 if we predict
the correct class, otherwise it is 0. We separate the data into two parts - validation set and test set.
We use all Gaussian kernels and pre-select the bandwidth of kernels using five fold cross-validation
on a holdout validation set and we use β = 0.1 for all experiments. Then we run the algorithm on
the test set 10 times (with different sequences of streaming data) and report the mean regret. For the
synthetic data, we compare Kernel-UCB in the independent setting (Kernel-UCB-Ind) and pooled
setting (Kernel-UCB-Pool), KMTL-UCB with known task similarity, and KMTL-UCB-Est which
estimates task similarity on the fly. For the real datasets in the multi-class classification setting, we
compare Kernel-UCB-Ind and KMTL-UCB-Est. In this case, the pooled setting is not valid because
xa,t is the same for all arms (only za differs) and KMTL-UCB is not valid because the task similarity
matrix is unknown. We also report the confidence intervals for these results in the supplementary
material.

5.1 Synthetic News Article Data

Suppose an agent has access to a pool of articles and their context features. The agent then sees a
user along with his/her features for which it needs to recommend an article. Based on user features
and article features the algorithm gets a combined context xa,t. The user context xu,t ∈ R2,∀t is
randomly drawn from an ellipse centered at (0, 0) with major axis length 1 and minor axis length 0.5.
Let xu,t[:, 1] be the minor axis and xu,t[:, 2] be the major axis. Article context xart,t is any angle θ ∈
[0, π2 ]. To get the overall summary xa,t of user and article the user context xu,t is rotated with xart,t.

Rewards for each article are defined based on the minor axis ra,t =
(

1.0− (xu,t[:, 1]− a
N + 0.5)2

)
.

Figure 1: Synthetic Data

Figure 1 shows one such example for 4 different arms. The color code describes the reward, the two
axes show the information about user context, and theta is the article context. We take N = 5. For
KMTL-UCB, we use a Gaussian kernel on xart,t to get the task similarity.

The results of this experiment are shown in Figure 1. As one can see, Kernel-UCB-Pool performs the
worst. That means for this setting combining all the data and learning a single estimator is not efficient.
KMTL-UCB beats the other methods in all 10 runs, and Kernel-UCB-Ind and KMTL-UCB-Est
perform equally well.

5.2 Multi-class Datasets

In the case of multi-class classification, each class is an arm and the features of an example for which
the algorithm needs to recommend a class are the contexts. We consider the following datasets:
Digits (N = 10, d = 64), Letter (N = 26, d = 16), MNIST (N = 10, d = 780 ), Pendigits
(N = 10, d = 16), Segment (N = 7, d = 19) and USPS (N = 10, d = 256). Empirical mean regrets
are shown in Figure 2. KMTL-UCB-Est performs the best in three of the datasets and performs
equally well in the other three datasets. Figure 3 shows the estimated task similarity (re-ordered
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to reveal block structure) and one can see the effect of the estimated task similarity matrix on the
empirical regret in Figure 2. For the Digits, Segment and MNIST datasets, there is significant
inter-task similarity. For Digits and Segment datasets, KMTL-UCB-Est is the best in all 10 runs of
the experiment while for MNIST, KMTL-UCB-Est is better for all but 1 run.

Figure 2: Results on Multiclass Datasets - Empirical Mean Regret

Figure 3: Estimated Task Similarity for Real Datasets

6 Conclusions and future work

We present a multi-task learning framework in the contextual bandit setting and describe a way to
estimate task similarity when it is not given. We give theoretical analysis, interpret the regret bound,
and support the theoretical analysis with extensive experiments. In the supplementary material we
establish a lower bound on the UCB width, and argue that it decreases as task similarity increases.

Our proposal to estimate the task similarity matrix using the arm similarity space Z = PX can be
extended in different ways. For example, we could also incorporate previously observed rewards
into Z . This would alleviate a potential problem with our approach, namely, that some contexts
may have been selected when they did not yield a high reward. Additionally, by estimating the task
similarity matrix, we are estimating arm-specific information. In the case of multiclass classification,
kZ reflects information that represents the various classes. A natural extension is to incorporate
methods for representation learning into the MTL bandit setting.
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