
Supplementary material for ‘AIDE: An algorithm for measuring the
accuracy of probabilistic inference algorithms’

A Sequential Monte Carlo
An SMC sampler template based on [1] is reproduced in Algorithm 3. The algorithm evolves a set
of P particles to approximate a sequence of target distributions using a combination of proposal
kernels, weighting, and resampling steps. The final target distribution in the sequence is typically
the posterior p(x|y). In our version, the algorithm resamples once from the final weighted particle
approximation and returns this particle as its output sample x. Specifically, the algorithm uses a
sequence of unnormalized target distributions p̃t defined on spaces Xt for t = 1 . . . T , with XT = X
(the original space of latent variables in the generative model) and p̃T (x) := p(x, y). The algorithm
also makes use of an initialization kernel k1 defined on X1, proposal kernels kt defined on Xt and
indexed by Xt−1 for t = 2 . . . T , and backward kernels `t defined on Xt−1 and indexed by Xt for
t = 2 . . . T . For simplicity of analysis we assume that resampling occurs at every step in the sequence.
The weight functions used in the algorithm are:

w1(xi1) := p̃1(xi1)
k1(xi1)

wt(xjt−1, x
i
t) :=

p̃t(xit)`t
(
xjt−1;xit

)
p̃t−1

(
xjt−1

)
kt
(
xit;x

j
t−1

) (1)

Note that Algorithm 3 does not sample from the backward kernels, which serve to define the
extended target distributions p̃t(xt)

∏t
s=2 `s(xs−1;xs) that justify the SMC sampler as a sequential

importance sampler [1]. When P = 1, Xt = X for all t, kt(xt;xt−1) is a detailed balance transition
operator for pt−1, and `t = kt, the algorithm reduces to AIS.1 The particle filter without rejuvenation
[3] is also a special case of Algorithm 3. A variety of other SMC variants can also be seen to be
special cases of this formulation [1]. The SMC marginal likelihood estimate p̂(y) is computed from
the weights wit generated during the SMC algorithm according to:

p̂(y) =
T∏
t=1

1
P

P∑
i=1

wit (2)

Note that an SMC marginal likelihood estimate can also be computed from the weights wit generated
during the generalized conditional SMC algorithm. Note that p̂(y) a function of the SMC trace u.
To relate ξ(u, x) to p̂(y), we write the joint distribution of the generative inference model for SMC:

q(u, x) :=
[
P∏
i=1

k1(xi1)
] T∏

t=2

P∏
i=1

w
ait−1
t−1∑P

j=1w
j
t−1

kt(xit;x
ait−1
t−1)

[wITT∑P
j=1w

j
T

]
δ(x, xITT) (3)

1More generally, the proposal kernel kt needs to have stationary distribution pt−1. The backward kernel `t is the
‘reversal’ of kt as defined in [2]. When the proposal kernel satisfies detailed balance, it is its own reversal, and therefore
sampling from the backward kernel is identical to sampling from the forward kernel.

1

Algorithm 3 Sequential Monte Carlo
for i← 1 . . . P do

xi1 ∼ k1(·) . Initialize particle i
wi1 ← w1(xi1) . Initial weight for particle i

for t← 2 . . . T do
W 1:P
t−1 ← w1:P

t−1/(
∑P
i=1w

i
t−1) . Normalize weights w1:P

t−1 = (w1
t−1, . . . , w

P
t−1)

for i← 1 . . . P do
ait−1 ∼ Categorical(W 1:P

t−1) . Sample index of parent for particle i

xit ∼ kt
(
·;xa

i
t−1
t−1

)
. Sample value for new particle i

wit ← wt(x
ait−1
t−1 , x

i
t) . Compute weight for particle i

IT ∼ Categorical(W 1:P
T) . Sample particle index for output sample

x← xITT
return x . Return the output sample

The the canonical meta-inference sampler (Algorithm 1) for SMC takes as input a latent sample
x and returns a trace u = (x,a, IT) of Algorithm 3, containing all particles at all time steps x,
all parent indices a, and the final output particle index IT . The distribution on outputs of the
meta-inference sampler is given by:

r(u;x) := δ(xITT , x) 1
P T

[
T∏
t=2

`t(xIt−1
t−1 ;xItt)

] P∏
i=1
i 6=I1

k1(xi1)

 T∏
t=2

P∏
i=1
i 6=It

w
ait−1
t−1∑P

j=1w
j
t−1

kt(xit;x
ait−1
t−1)

 (4)

Taking the ratio q(u, x)/r(u;x) and simplifying gives p(x, y)/p̂(y). Therefore, the quantity ξ(u, x) =
q(u, x)/r(u;x) can be computed from an SMC trace u, in terms of the SMC marginal likelihood
estimate and the unnormalized posterior probability p(x, y).

B AIDE specialized for evaluating variational inference using AIS
To make AIDE more concrete for the reader, we provide the AIDE algorithm when specialized to
measure the symmetrized KL divergence between a variational approximation qθ(x) and an annealed
importance sampler (AIS). For variational inference, there is no meta-inference sampler necessary
because we can evaluate the variational approximating distribution, as discussed in the main text.
The meta-inference sampler for AIS consists of running the AIS chain in reverse, starting from a
latent sample. The trace u that is generated is the vector of intermediate states x = (x1, . . . , xT) in
the chain. The AIS marginal likelihood estimate p̂(y) can be computed from a trace u of the AIS
algorithm in terms of the weights (which are themselves deterministic functions of the trace):

p̂(y) = p̃1(x1)
k1(x1)

T∏
t=2

p̃t(xt)
p̃t−1(xt)

(5)

Note that p̂(y) can be computed from a trace u that is generated either by a ‘forward’ run of AIS,
or a reverse run of AIS. Algorithm 4 gives a concrete instantiation of AIDE (Algorithm 2) simplified
for the case when the gold-standard algorithm is an AIS sampler, and the target algorithm being

2

evaluated is a variational approximation. We further simplify the algorithm by fixing Mg = 1, where
AIS is the gold-standard. The AIS algorithm must support two primitives: ais.forward(), which
runs AIS forward and returns the resulting output sample x and the resulting marginal likelihood
estimate p̂(y), and ais.reverse(x), which takes as input a sample x and runs the same AIS chain
in reverse order, returning the resulting marginal likelihood estimate p̂(y).

Algorithm 4 AIDE specialized for measuring divergence between variational inference and AIS
Require: AIS algorithm ais.forward() and ais.reverse(x)

Trained variational approximation qθ(x)
Number of AIS forward samples Ng
Number of variational samples Nt

for n← 1 . . . Ng do
. Run AIS forward, record the marginal likelihood estimate p̂(y)n and the final state in chain xn(

p̂(y)n, xn

)
∼ ais.forward()

for n← 1 . . . Nt do
. Generate sample x′n from the variational approximation
x′n ∼ qθ(x)
. Run AIS in reverse, starting from x′n, and record resulting marginal likelihood estimate p̂(y)

′
n

p̂(y)
′
n ∼ ais.reverse(x′n)

. Compute AIDE estimate

D̂ ← 1
Ng

Ng∑
n=1

log

(
p(xn, y)

qθ(xn)p̂(y)n

)
− 1

Nt

Nt∑
n=1

log

(
p(x′n, y)

qθ(x′n)p̂(y)
′
n

)
return D̂

C Proofs
Theorem 1. The estimate D̂ produced by AIDE is an upper bound on the symmetrized KL divergence
in expectation, and the expectation is nonincreasing in AIDE parameters Mg and Mt.

Proof. We consider the general case of two inference algorithms a and b with generative inference
models (U ,X , qa) and (V,X , qb), and meta-inference algorithms (ra, ξa) and (rb, ξb) with normalizing
constants Za and Zb respectively. For example a may be ‘target’ inference algorithm and b may be
the ‘gold standard’ inference algorithm. Note that the analysis of AIDE is symmetric in a and b.
First, we define the following quantity relating a and b:

Lab := Ex∼qa(x)

[
log Zbqb(x)

Zaqa(x)

]
= log Zb

Za
−DKL(qa(x) ‖ qb(x)) (6)

When Za = 1 and when b is a rejection sampler for the posterior p(x|y), we have that Zb = p(x, y),
and Lab is the ‘ELBO’ of inference algorithm a with respect to the posterior. We also define the
quantity:

Uab := −Lba = log Zb
Za

+DKL(qb(x) ‖ qa(x)) (7)

Note that Uab − Lab = Uba − Lba is the symmetrized KL divergence between qa(x) and qb(x). The
AIDE estimate can be understood as a difference of an estimate of Uab and an estimate of Lab.

3

Specifically, we define the following estimator of Lab:

L̂Na,Ma,Mb
ab := 1

Na

Na∑
n=1

log

 1
Mb

∑Mb
k=1 ξb(vn,k, xn)

1
Ma

∑Ma
k=1 ξa(un,k, xn)

 (8)

= 1
Na

Na∑
n=1

log

 1
Mb

∑Mb
k=1 Zb

qb(vn,k,xn)
rb(vn,k;xn)

1
Ma

∑Ma
k=1 Za

qa(un,k,xn)
ra(un,k;xn)

 (9)

where:

xn ∼ qa(x) for n = 1 . . . Na

un,1|xn ∼ qa(u|x) for n = 1 . . . Na

un,k|xn ∼ ra(u;x) for n = 1 . . . Na and k = 2 . . .Ma

vn,k|xn ∼ rb(v;x) for n = 1 . . . Na and k = 1 . . .Mb

We now analyze the expectation E[L̂1,Ma,Mb
ab] and how it depends on Ma and Mb. We use the

notation ui:j = (ui, . . . , uj). First, note that:

E[L̂1,Ma,Mb
ab] = log Zb

Za
+ Ex∼qa(x)

[
log qb(x)

qa(x)

]

+ Ex∼qa(x)
v1:Mb |x

iid∼ rb(v;x)

log 1
Mb

Mb∑
k=1

qb(vk|x)
rb(vk;x)

− Ex∼qa(x)

u1|x∼qa(u|x)
u2:Ma |x

iid∼ ra(u;x)

[
log 1

Ma

Ma∑
k=1

qa(uk|x)
ra(uk;x)

]
(10)

= Lab + Ex∼qa(x)
v1:Mb |x

iid∼ rb(v;x)

log 1
Mb

Mb∑
k=1

qb(vk|x)
rb(vk;x)

− Ex∼qa(x)

u1∼qa(u|x)
u2:Ma |x

iid∼ ra(u;x)

[
log 1

Ma

Ma∑
k=1

qa(uk|x)
ra(uk;x)

]
(11)

We define the following families of distributions on v1:Mb
, indexed by x:

ηMb
b (v1:Mb

;x) = 1
Mb

Mb∑
k=1

qb(vk|x)
Mb∏
`=1
6̀=k

rb(v`;x) (12)

λMb
b (v1:Mb

;x) =
Mb∏
k=1

rb(vk;x) (13)

and similarly for u1:Ma :

ηMa
a (v1:Ma ;x) = 1

Ma

Ma∑
k=1

qa(uk|x)
Ma∏
`=1
` 6=k

ra(u`;x) (14)

λMa
a (u1:Ma ;x) =

Ma∏
k=1

ra(uk;x) (15)

4

Taking the first expectation in Equation (11):

Ex∼qa(x)
v1:Mb

iid∼ rb(v;x)

log 1
Mb

Mb∑
k=1

qb(vk|x)
rb(vk;x)

 (16)

= Ex∼qa(x)
v1:Mb

iid∼ rb(v;x)

log

1
Mb

∑Mb
k=1 qb(vk|x)

∏Mb
`=1
`6=k

rb(v`;x)∏Mb
k=1 rb(vk;x)

 (17)

= Ex∼qa(x)
v1:Mb∼λ

Mb
b

(v1:Mb ;x)

[
log η

Mb
b (v1:Mb

;x)
λMb
b (v1:Mb

;x)

]
(18)

= −Ex∼qa(x)
[
DKL(λMb

b (v1:Mb
;x) ‖ ηMb

b (v1:Mb
;x))

]
(19)

Taking the second expectation in Equation (11):

Ex∼qa(x)
u1∼qa(u|x)
u2:Ma

iid∼ ra(u;x)

[
log 1

Ma

Ma∑
k=1

qa(uk|x)
ra(uk;x)

]
(20)

= Ex∼qa(x)
u1∼qa(u|x)
u2:Ma

iid∼ ra(u;x)

log

1
Ma

∑Ma
k=1 qa(uk|x)

∏Ma
`=1
`6=k

ra(u`;x)∏Ma
k=1 ra(uk;x)

 (21)

= Ex∼qa(x)
u1∼qa(u|x)
u2:Ma

iid∼ ra(u;x)

[
log η

Ma
a (u1:Ma ;x)
λMa
a (u1:Ma ;x)

]
(22)

= Ex∼qa(x)
u1:Ma∼η

Ma
a (u1:Ma ;x)

[
log η

Ma
a (u1:Ma ;x)
λMa
a (u1:Ma ;x)

]
(23)

= Ex∼qa(x)
[
DKL(ηMa

a (u1:Ma ;x) ‖ λMa
a (u1:Ma ;x))

]
(24)

where to obtain Equation (23) we used the fact that log(ηMa
a (u1:Ma ;x)/λMa

a (u1:Ma ;x)) is invariant
to permutation of its arguments u1:Ma . Substituting the expression given by Equation (19) and the
expression given by Equation (24) into Equation (11), we have:

E[L̂1,Ma,Mb
ab] = Lab − Ex∼qa(x)

[
DKL(λMb

b (v1:Mb
;x) ‖ ηMb

b (v1:Mb
;x))

]
(25)

− Ex∼qa(x)
[
DKL(ηMa

a (u1:Ma ;x) ‖ λMa
a (u1:Ma ;x))

]
(26)

From non-negativity of KL divergence:

E[L̂1,Ma,Mb
ab] ≤ Lab (27)

Next, we show that E[L̂1,Ma,Mb
ab] is nondecreasing in both Ma and Mb. First, we show this for Ma.

We introduce the notation u1:k−1:k+1:Ma := (u1, . . . , uk−1, uk+1, . . . ,Ma) to denote the subvector of
length Ma − 1 obtained by removing element k from vector u1:Ma , where u1:0:2:Ma := u2:Ma and
u1:Ma−1:Ma+1:Ma := u1:Ma−1. Note that:

ηMa
a (u1:Ma ;x) = 1

Ma

Ma∑
k=1

ηMa−1
a (u1:k−1:k+1:Ma ;x)ra(uk;x) (28)

5

By convexity of KL divergence, we have:

DKL(ηMa
a (u1:Ma ;x) ‖ λMa

a (u1:Ma ;x)) (29)

≤ 1
Ma

Ma∑
k=1

DKL(ηMa−1
a (u1:k−1:k+1:Ma ;x)ra(uk;x) ‖ λMa

a (u1:Ma ;x)) (30)

= 1
Ma

Ma∑
k=1

DKL(ηMa−1
a (u1:Ma−1;x) ‖ λMa−1

a (u1:Ma−1;x)) (31)

= DKL(ηMa−1
a (u1:Ma−1;x) ‖ λMa−1

a (u1:Ma−1;x)) (32)

A similar argument can be used to show that:

DKL(λMb
b (v1:Mb

;x) ‖ ηMb
b (v1:Mb

;x)) (33)
≤ DKL(λMb−1

b (v1:Mb−1;x) ‖ ηMb−1
b (v1:Mb−1;x)) (34)

Applying these inequalities to Equation (26), we have:

Lab ≥ E[L̂1,Ma,Mb
ab] ≥ E[L̂1,Ma−1,Mb

ab] (35)

Lab ≥ E[L̂1,Ma,Mb
ab] ≥ E[L̂1,Ma,Mb−1

ab] (36)

To conclude the proof we apply these inequalities to the expectation of the AIDE estimate:

D̂Na,Nb,Ma,Mb = −L̂Na,Ma,Mb
ab − L̂Nb,Mb,Ma

ba (37)

E[D̂Na,Nb,Ma,Mb] = E[−L̂1,Ma,Mb
ab] + E[−L̂1,Mb,Ma

ba] (38)
≥ −Lab − Lba (39)
= DKL(qa(x) ‖ qb(x)) +DKL(qb(x) ‖ qa(x)) (40)

E[D̂Na,Nb,Ma,Mb] ≤ E[D̂Na,Nb,Ma−1,Mb] (41)
E[D̂Na,Nb,Ma,Mb] ≤ E[D̂Na,Nb,Ma,Mb−1] (42)

D Bias of AIDE for AIS and MH
When the generic SMC algorithm (Algorithm 3) is used with a single particle (P = 1), the algorithm
becomes a Markov chain that samples from transition kernels kt, and the canonical SMC meta-
inference algorithm also becomes a Markov chain that samples from transition kernels `t in reverse
order. For this analysis we assume that kt = `t and that kt satisfies detailed balance with respect to
intermediate distribution pt−1 for t = 2 . . . T . Then, the incremental weight simplifies to:

wt(xt−1, xt) = p̃t(xt)kt(xt−1;xt)
p̃t−1(xt−1)kt(xt;xt−1) (43)

= p̃t(xt)
p̃t−1(xt−1)

p̃t−1(xt−1)
p̃t−1(xt)

(44)

= p̃t(xt)
p̃t−1(xt)

(45)

6

Under the limiting assumption that kt(xt;xt−1) = pt−1(xt), the approximation error of the canonical
meta-inference algorithm becomes:

DKL(q(u|x) ‖ r(u;x)) =
T∑
t=2

DKL(pt−1(x) ‖ pt(x)) (46)

where p0 is defined to be the initialization distribution k1, and where pT (x) = p(x|y). A similar
result can be obtained for the other direction of divergence. If the intermediate distributions are
sufficiently fine-grained, then empirically this divergence converges to zero (as demonstrated in e.g.
[4]). However, in standard Markov chain Monte Carlo practice, without annealing, the intermediate
distributions are pt = pT for all t > 0. In this case, the approximation error of meta-inference is the
divergence between the initializing distribution and the posterior, which is generally large. Better
meta-inference algorithms that do not rely on the AIS assumption that the chain is near equilibrium
at all times are needed in order for AIDE to be a practical tool for measuring the accuracy of
standard, non-annealed Markov chain Monte Carlo.

E Evaluating SMC inference in DPMM for galaxy velocity data
We obtained a data set of galaxy velocities based on redshift [5], and randomly subsampled down to
forty of the galaxies for analysis. A histogram of the data set is shown in Figure 1(a). We consider
the task of inference in a collapsed normal-inverse-gamma DPMM. We used SMC with 100 particles,
optimal (Gibbs) proposal for cluster assignments, and Metropolis-Hastings rejuvenation kernels
over hyperparameters and Gibbs kernels over cluster assignments as the gold-standard inference
algorithm. Using this gold-standard, we evaluated the accuracy of SMC inference with the prior
proposal, and without rejuvenation kernels using AIDE and using an alternative diagnostic based
on comparing the average number of clusters in the sampling distribution relative to the average
number under the gold-standard sampling distribution. Results are shown in Figure 1(b) and
Figure 1(c).

7

0 10000 20000 30000 40000 50000
Recessional velocity (redshift, km/s)

0

200

400

600

800

(a)

100 101 102

Number of particles

100

101

102

na
ts

AIDE estimates

(b)

100 101 102

Number of particles

4

6

8

Av
er

ag
e

nu
m

be
r

of
 c

lu
st

er
s

Heuristic diagnostic

(c)

SMC, prior proposal
0 rejuvenation sweep(s)

SMC, prior proposal
1 rejuvenation sweep(s)

SMC, prior proposal
4 rejuvenation sweep(s)

SMC, optimal proposal
0 rejuvenation sweep(s)

SMC, optimal proposal
1 rejuvenation sweep(s)

SMC, optimal proposal
4 rejuvenation sweep(s)

Gold-standard

Figure 1: (a) shows a histogram of velocities of galaxies from [5]. We model this data set using
a Dirichlet process mixture, and evaluate the accuracy of SMC inference algorithms relative to a
gold-standard, using AIDE and using a heuristic diagnostic based on measuring the average number
of clusters in the approximating distribution and the gold-standard distribution. (b) shows results
of AIDE. (c) shows result of the heuristic diagnostic. Both techniques indicate that rejuvenation
kernels are important for fast convergence. Unlike the heuristic diagnostic, AIDE does not require
custom design of a probe function for each model. We envision AIDE being used in concert with
heuristic diagnostics like (c). In our experience, AIDE provides more conservative quantification of
accuracy than heuristic diagnostics. The experiment was performed on a subsampled set of 40 data
points from the data set in (a).

8

References
[1] P. Del Moral, A. Doucet, and A. Jasra, “Sequential monte carlo samplers,” Journal of the Royal

Statistical Society: Series B (Statistical Methodology), vol. 68, no. 3, pp. 411–436, 2006.

[2] R. M. Neal, “Annealed importance sampling,” Statistics and computing, vol. 11, no. 2, pp. 125–
139, 2001.

[3] N. J. Gordon, D. J. Salmond, and A. F. Smith, “Novel approach to nonlinear/non-gaussian
bayesian state estimation,” in IEE Proceedings F (Radar and Signal Processing), vol. 140,
pp. 107–113, IET, 1993.

[4] R. B. Grosse, S. Ancha, and D. M. Roy, “Measuring the reliability of mcmc inference with
bidirectional monte carlo,” in Advances in Neural Information Processing Systems, pp. 2451–2459,
2016.

[5] M. J. Drinkwater, Q. A. Parker, D. Proust, E. Slezak, and H. Quintana, “The large scale
distribution of galaxies in the shapley supercluster,” Publications of the Astronomical Society of
Australia, vol. 21, no. 1, pp. 89–96, 2004.

9

	Sequential Monte Carlo
	AIDE specialized for evaluating variational inference using AIS
	Proofs
	Bias of AIDE for AIS and MH
	Evaluating SMC inference in DPMM for galaxy velocity data

