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Abstract

We consider the parametric learning problem, where the objective of the learner is
determined by a parametric loss function. Employing empirical risk minimization
with possibly regularization, the inferred parameter vector will be biased toward
the training samples. Such bias is measured by the cross validation procedure
in practice where the data set is partitioned into a training set used for training
and a validation set, which is not used in training and is left to measure the out-
of-sample performance. A classical cross validation strategy is the leave-one-out
cross validation (LOOCV) where one sample is left out for validation and training
is done on the rest of the samples that are presented to the learner, and this process
is repeated on all of the samples. LOOCV is rarely used in practice due to the
high computational complexity. In this paper, we first develop a computationally
efficient approximate LOOCV (ALOOCV) and provide theoretical guarantees for
its performance. Then we use ALOOCV to provide an optimization algorithm
for finding the regularizer in the empirical risk minimization framework. In our
numerical experiments, we illustrate the accuracy and efficiency of ALOOCV as
well as our proposed framework for the optimization of the regularizer.

1 Introduction
We consider the parametric supervised/unsupervised learning problem, where the objective of the
learner is to build a predictor based on a set of historical data. Let zn = {zi}ni=1, where zi ∈
Z denotes the data samples at the learner’s disposal that are assumed to be drawn i.i.d. from an
unknown density function p(·), and Z is compact.

We assume that the learner expresses the objective in terms of minimizing a parametric loss function
`(z;θ), which is a function of the parameter vector θ. The learner solves for the unknown parameter
vector θ ∈ Θ ⊆ Rk, where k denotes the number of parameters in the model class, and Θ is a
convex, compact set.

Let
L(θ) , E{`(z;θ)} (1)

be the risk associated with the parameter vector θ, where the expectation is with respect to the den-
sity p(·) that is unknown to the learner. Ideally, the goal of the learner is to choose the parameter
vector θ∗ such that θ∗ ∈ arg minθ∈Θ L(θ) = arg minθ∈ΘE{`(z;θ)}. Since the density function
p(·) is unknown, the learner cannot compute θ∗ and hence cannot achieve the ideal performance of
L(θ∗) = minθ∈Θ L(θ) associated with the model class Θ. Instead, one can consider the minimiza-
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tion of the empirical version of the problem through the empirical risk minimization framework:

θ̂(zn) ∈ arg min
θ∈Θ

∑
i∈[n]

`(zi;θ) + r(θ),

where [n] , {1, 2, . . . , n} and r(θ) is some regularization function. While the learner can eval-
uate her performance on the training data samples (also called the in-sample empirical risk, i.e.,
1
n

∑n
i=1 `(zi; θ̂(zn))), it is imperative to assess the average performance of the learner on fresh test

samples, i.e., L(θ̂(zn)), which is referred to as the out-of-sample risk. A simple and universal ap-
proach to measuring the out-of-sample risk is cross validation [1]. Leave-one-out cross validation
(LOOCV), which is a popular exhaustive cross validation strategy, uses (n − 1) of the samples for
training while one sample is left out for testing. This procedure is repeated on the n samples in a
round-robin fashion, and the learner ends up with n estimates for the out-of-sample loss correspond-
ing to each sample. These estimates together form a cross validation vector which can be used for
the estimation of the out-of-sample performance, model selection, and tuning the model hyperpa-
rameters. While LOOCV provides a reliable estimate of the out-of-sample loss, it brings about an
additional factor of n in terms of computational cost, which makes it practically impossible because
of the high computational cost of training when the number of samples is large.

Contribution: Our first contribution is to provide an approximation for the cross validation vector,
called ALOOCV, with much lower computational cost. We compare its performance with LOOCV
in problems of reasonable size where LOOCV is tractable. We also test it on problems of large size
where LOOCV is practically impossible to implement. We describe how to handle quasi-smooth
loss/regularizer functions. We also show that ALOOCV is asymptotically equivalent to Takeuchi
information criterion (TIC) under certain regularity conditions.

Our second contribution is to use ALOOCV to develop a gradient descent algorithm for jointly
optimizing the regularization hyperparameters as well as the unknown parameter vector θ. We show
that multiple hyperparameters could be tuned using the developed algorithm. We emphasize that
the second contribution would not have been possible without the developed estimator as obtaining
the gradient of the LOOCV with respect to tuning parameters is computationally expensive. Our
experiments show that the developed method handles quasi-smooth regularized loss functions as
well as number of tuning parameters that is on the order of the training samples.

Finally, it is worth mentioning that although the leave-one-out cross validation scenario is considered
in our analyses, the results and the algorithms can be extended to the leave-q-out cross validation
and bootstrap techniques.

Related work: A main application of cross validation (see [1] for a recent survey) is in model
selection [2–4]. On the theoretical side, the proposed approximation on LOOCV is asymptotically
equivalent to Takeuchi information criterion (TIC) [4–7], under certain regularity conditions (see [8]
for a proof of asymptotic equivalence of AIC and LOOCV in autoregressive models). This is also
related to Barron’s predicted square error (PSE) [9] and Moody’s effective number of parameters
for nonlinear systems [10]. Despite these asymptotic equivalences our main focus is on the non-
asymptotic performance of ALOOCV.

ALOOCV simplifies to the closed form derivation of the LOOCV for linear regression, called
PRESS (see [11, 12]). Hence, this work can be viewed as an approximate extension of this closed
form derivation for an arbitrary smooth regularized loss function. This work is also related to the
concept of influence functions [13], which has recently received renewed interest [14]. In contrast to
methods based on influence functions that require large number of samples due to their asymptotic
nature, we empirically show that the developed ALOOCV works well even when the number of
samples and features are small and comparable to each other. In particular, ALOOCV is capable
of predicting overfitting and hence can be used for model selection and choosing the regularization
hyperparameter. Finally, we expect that the idea of ALOOCV can be extended to derive computa-
tionally efficient approximate bootstrap estimators [15].

Our second contribution is a gradient descent optimization algorithm for tuning the regularization
hyperparameters in parametric learning problems. A similar approach has been taken for tuning
the single parameter in ridge regression where cross validation can be obtained in closed form [16].
Most of the existing methods, on the other hand, ignore the response and carry out the optimiza-
tion solely based on the features, e.g., Stein unbiased estimator of the risk for multiple parameter
selection [17, 18].
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Bayesian optimization has been used for tuning the hyperparameters in the model [19–23], which
postulates a prior on the parameters and optimizes for the best parameter. Bayesian optimization
methods are generally derivative free leading to slow convergence rate. In contrast, the proposed
method is based on a gradient descent method. Other popular approaches to the tuning of the opti-
mization parameters include grid search and random search [24–26]. These methods, by nature, also
suffer from slow convergence. Finally, model selection has been considered as a bi-level optimiza-
tion [27,28] where the training process is modeled as a second level optimization problem within the
original problem. These formulations, similar to many other bi-level optimization problems, often
lead to computationally intensive algorithms that are not scalable.

We remark that ALOOCV can also be used within Bayesian optimization, random search, and grid
search methods. Further, resource allocation can be used for improving the optimization perfor-
mance in all of such methods.

2 Problem Setup

To facilitate the presentation of the ideas, let us define the following concepts. Throughout, we
assume that all the vectors are in column format.

Definition 1 (regularization vector/regularized loss function) We suppose that the learner is
concerned with M regularization functions r1(θ), . . . , rM (θ) in addition to the main loss function
`(z;θ). We define the regularization vector r(θ) as

r(θ) , (r1(θ), . . . , rM (θ))>.

Further, let λ = (λ1, . . . , λM )> be the vector of regularization parameters. We call wn(z;θ,λ) the
regularized loss function given by

wn(z;θ,λ) , `(z;θ) +
1

n
λ>r(θ) = `(z;θ) +

1

n

∑
m∈[M ]

λmrm(θ).

The above definition encompasses many popular learning problems. For example, elastic net regres-
sion [31] can be cast in this framework by setting r1(θ) = ‖θ‖1 and r2(θ) = 1

2‖θ‖
2
2.

Definition 2 (empirical risk/regularized empirical risk) Let the empirical risk be defined as
L̂zn(θ) = 1

n

∑n
i=1 `(zi;θ). Similarly, let the regularized empirical risk be defined as Ŵzn(θ,λ) =

1
n

∑n
i=1{wn(zi;θ,λ)}.

Definition 3 (regularized empirical risk minimization) We suppose that the learner solves the
empirical risk minimization problem by selecting θ̂λ(zn) as follows:

θ̂λ(zn) ∈ arg min
θ∈Θ

{
Ŵzn(θ,λ)

}
= arg min

θ∈Θ

∑
i∈[n]

`(zi;θ) + λ>r(θ)

 . (2)

Once the learner solves for θ̂λ(zn), the empirical risk corresponding to θ̂λ(zn) can be readily com-
puted by L̂zn(θ̂λ(zn)) = 1

n

∑
i∈[n] `(zi; θ̂λ(zn)). While the learner can evaluate her performance

on the observed data samples (also called the in-sample empirical risk, i.e., L̂zn(θ̂λ(zn))), it is
imperative to assess the performance of the learner on unobserved fresh samples, i.e., L(θ̂λ(zn))
(see (1)), which is referred to as the out-of-sample risk. To measure the out-of-sample risk, it is
a common practice to perform cross validation as it works outstandingly well in many practical
situations and is conceptually universal and simple to implement.

Leave-one-out cross validation (LOOCV) uses all of the samples but one for training, which is left
out for testing, leading to an n-dimensional cross validation vector of out-of-sample estimates. Let
us formalize this notion. Let zn\i , (z1, . . . , zi−1, zi+1, . . . , zn) denote the set of the training
examples excluding zi.
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Definition 4 (LOOCV empirical risk minimization/cross validation vector) Let θ̂λ(zn\i) be
the estimated parameter over the training set zn\i, i.e.,

θ̂λ(zn\i) ∈ arg min
θ∈Rk

{
Ŵzn\i(θ,λ)

}
= arg min

θ∈Rk

 ∑
j∈[n]\i

`(zj ;θ) + λ>r(θ)

 . (3)

The cross validation vector is given by {CVλ,i(z
n)}i∈[n] where CVλ,i(z

n) , `(zi; θ̂λ(zn\i)), and
the cross validation out-of-sample estimate is given by CVλ(zn) , 1

n

∑n
i=1 CVλ,i(z

n).

The empirical mean and the empirical variance of the n-dimensional cross validation vector are used
by practitioners as surrogates on assessing the out-of-sample performance of a learning method.

The computational cost of solving the problem in (3) is n times that of the original problem in (2).
Hence, while LOOCV provides a simple yet powerful tool to estimate the out-of-sample perfor-
mance, the additional factor of n in terms of the computational cost makes LOOCV impractical
in large-scale problems. One common solution to this problem is to perform validation on fewer
number of samples, where the downside is that the learner would obtain a much more noisy and
sometimes completely unstable estimate of the out-of-sample performance compared to the case
where the entire LOOCV vector is at the learner’s disposal. On the other hand, ALOOCV described
next will provide the benefits of LOOCV with negligible additional computational cost.

We emphasize that the presented problem formulation is general and includes a variety of parametric
machine learning tasks, where the learner empirically solves an optimization problem to minimize
some loss function.

3 Approximate Leave-One-Out Cross Validation (ALOOCV)

We assume that the regularized loss function is three times differentiable with continuous derivatives
(see Assumption 1). This includes many learning problems, such as the L2 regularized logistic loss
function. We later comment on how to handle the `1 regularizer function in LASSO. To proceed,
we need one more definition.

Definition 5 (Hessian/empirical Hessian) LetH(θ) denote the Hessian of the risk function defined
as H(θ) , ∇2

θL(θ). Further, let Ĥzn(θ,λ) denote the empirical Hessian of the regularized loss
function, defined as Ĥzn(θ,λ) , Êzn

{
∇2

θwn(z;θ,λ)
}

= 1
n

∑n
i=1∇2

θwn(zi;θ,λ). Similarly, we
define Ĥzn(θ,λ) , Êzn\i

{
∇2

θwn(z;θ,λ)
}

= 1
n−1

∑
i∈[n]\i∇2

θwn(zi;θ,λ).

Next we present the set of assumptions we need to prove the main result of the paper.

Assumption 1 We assume that

(a) There exists θ∗ ∈ Θ◦,3 such that ‖θ̂λ(zn)− θ∗‖∞ = op(1).4

(b) wn(z;θ) is of class C3 as a function of θ for all z ∈ Z .

(c) H(θ∗) � 0 is positive definite.

Theorem 1 Under Assumption 1, let

θ̃
(i)

λ (zn) , θ̂λ(zn) +
1

n− 1

(
Ĥzn\i

(
θ̂λ(zn),λ

))−1

∇θ`(zi; θ̂λ(zn)), (4)

assuming the inverse exists. Then,

θ̂λ(zn\i)− θ̃
(i)

λ (zn) =
1

n− 1

(
Ĥzn\i

(
θ̂λ(zn),λ

))−1

ε
(i)
λ,n, (5)

3(·)◦ denotes the interior operator.
4Xn = op(an) implies that Xn/an approaches 0 in probability with respect to the density function p(·).
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with high probability where

ε
(i)
λ,n = ε

(i),1
λ,n − ε

(i),2
λ,n , (6)

and ε(i),1
λ,n is defined as

ε
(i),1
λ,n ,

1

2

∑
j∈[n]\i

∑
κ∈[k]

(θ̂λ(z
n)− θ̂λ(zn\i))>

(
∂

∂θκ
∇2

θwn−1(zj ; ζ
i,j,1
λ,κ (zn),λ)

)
(θ̂λ(z

n)− θ̂λ(zn\i))êκ,

(7)
where êκ is κ-th standard unit vector, and such that for all κ ∈ [k], ζi,j,1λ,κ (zn) = αi,j,1κ θ̂λ(zn) +

(1− αi,j,1κ )θ̂λ(zn\i) for some 0 ≤ αi,j,1κ ≤ 1. Further, ε(i),2
λ,n is defined as

ε
(i),2
λ,n ,

∑
j∈[n]\i

∑
κ,ν∈[k]̂

e>ν (θ̂λ(z
n)−θ̂λ(zn\i))

(
∂2

∂θκ∂θν
∇>θ wn−1(zj ; ζ

i,j,2
λ,κ,ν(z

n),λ)

)
(θ̂λ(z

n)−θ̂λ(zn\i))êκ,

(8)
such that for κ, ν ∈ [k], ζ(i),2

λ,κ,ν(zn) = αi,j,2κ,ν θ̂λ(zn)+(1−αi,j,2κ,ν )θ̂λ(zn\i) for some 0 ≤ αi,j,2κ,ν ≤ 1.

Further, we have5

‖θ̂λ(zn)− θ̂λ(zn\i))‖∞ = Op

(
1

n

)
, (9)

‖θ̂λ(zn\i)− θ̃
(i)

λ (zn)‖∞ = Op

(
1

n2

)
. (10)

See the appendix for the proof. Inspired by Theorem 1, we provide an approximation on the cross
validation vector.

Definition 6 (approximate cross validation vector) Let ACVλ,i(z
n) = `

(
zi; θ̃

(i)

λ (zn)

)
. We call

{ACVλ,i(z
n)}i∈[n] the approximate cross validation vector. We further call

ACVλ(zn) ,
1

n

n∑
i=1

ACVλ,i(z
n) (11)

the approximate cross validation estimator of the out-of-sample loss.

We remark that the definition can be extended to leave-q-out and q-fold cross validation by replacing
the index i to an index set S with |S| = q, comprised of the q left-out samples in (4).

The cost of the computation of {θ̃
(i)

λ (zn)}i∈[n] is upper bounded byO(np+C(n, p)) where C(n, p)

is the computational cost of solving for θ̂λ(zn) in (2); see [14]. Note that the empirical risk mini-
mization problem posed in (2) requires time at least Ω(np). Hence, the overall cost of computation

of {θ̃
(i)

λ (zn)}i∈[n] is dominated by solving (2). On the other hand, the cost of computing the true
cross validation performance by naively solving n optimization problems {θ̂λ(zn\i)}i∈[n] posed
in (3) would be O(nC(n, p)) which would necessarily be Ω(n2p) making it impractical for large-
scale problems.

Corollary 2 The approximate cross validation vector is exact for kernel ridge regression. That is,

given that the regularized loss function is quadratic in θ, we have θ̃
(i)

λ (zn) = θ̂λ(zn\i) for all
i ∈ [n] .

Proof We notice that the error term ε(i)
λ,n in (6) only depends on the third derivative of the loss func-

tion in a neighborhood of θ̂λ(zn). Hence, provided that the regularized loss function is quadratic in
θ, ε(i)

λ,n = 0 for all i ∈ [n]. �

5Xn = Op(an) implies that Xn/an is stochastically bounded with respect to the density function p(·).
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The fact that the cross validation vector could be obtained for kernel ridge regression in closed form
without actually performing cross validation is not new, and the method is known as PRESS [11].
In a sense, the presented approximation could be thought of as an extension of this idea to more
general loss and regularizer functions while losing the exactness property. We remark that the idea
of ALOOCV is also related to that of the influence functions. In particular, influence functions have
been used in [14] to derive an approximation on LOOCV for neural networks with large sample
sizes. However, we notice that methods based on influence functions usually underestimate over-
fitting making them impractical for model selection. In contrast, we empirically demonstrate the
effectiveness of ALOOCV in capturing overfitting and model selection.

In the case of `1 regularizer we assume that the support set of θ̂λ(zn) and θ̂λ(zn\i) are the same.
Although this would be true for large enough n under Assumption 1, it is not necessarily true for a
given sample zn when sample i is left out. Provided that the support set of θ̂λ(zn\i) is known we use
the developed machinery in Theorem 1 on the subset of parameters that are non-zero. Further, we
ignore the `1 regularizer term in the regularized loss function as it does not contribute to the Hessian
matrix locally, and we assume that the regularized loss function is otherwise smooth in the sense
of Assumption 1. In this case, the cost of calculating ALOOCV would scale with O(npa log(1/ε))

where pa denotes the number of non-zero coordinates in the solution θ̂λ(zn).

We remark that although the nature of guarantees in Theorem 1 are asymptotic, we have experi-
mentally observed that the estimator works really well even for n and p as small as 50 in elastic net
regression, logistic regression, and ridge regression. Next, we also provide an asymptotic character-
ization of the approximate cross validation.

Lemma 3 Under Assumption 1, we have

ACVλ(zn) = L̂zn(θ̂λ(zn)) + R̂zn(θ̂λ(zn),λ) +Op

(
1

n2

)
, (12)

where
R̂zn(θ,λ) ,

1

n(n− 1)

∑
i∈[n]

∇>θ `(zi;θ)
[
Ĥzn\i(θ,λ)

]−1

∇θ`(zi;θ). (13)

Note that in contrast to the ALOOCV (in Theorem 1), the Op(1/n2) error term here depends on the
second derivative of the loss function with respect to the parameters, consequently leading to worse
performance, and underestimation of overfitting.

4 Tuning the Regularization Parameters
Thus far, we presented an approximate cross validation vector that closely follows the pre-
dictions provided by the cross validation vector, while being computationally inexpensive.
In this section, we use the approximate cross validation vector to tune the regulariza-
tion parameters for the optimal out-of-sample performance. We are interested in solving
minλ

(
CVλ(zn) = 1

n

∑n
i=1 `

(
zi; θ̂λ

(
zn\i

)))
. To this end, we need to calculate the gradient of

θ̂λ(zn) with respect to λ, which is given in the following lemma.

Lemma 4 We have∇λθ̂λ(zn) = − 1
n

[
Ĥzn

(
θ̂λ(zn),λ

)]−1

∇θr(θ̂λ(zn)).

Corollary 5 We have∇λθ̂λ(zn\i) = − 1
n−1

[
Ĥzn\i

(
θ̂λ(zn\i),λ

)]−1

∇θr(θ̂λ(zn\i)).

In order to apply first order optimization methods for minimizing CVλ(zn), we need to compute its
gradient with respect to the tuning parameter vector λ. Applying the simple chain rule implies

∇λCVλ(zn) =
1

n

n∑
i=1

∇>λ θ̂λ(zn\i) ∇θ`
(
zi; θ̂λ

(
zn\i

))
(14)

=− 1

n(n− 1)

n∑
i=1

∇>θ r
(
θ̂λ(zn\i)

) [
Ĥzn\i

(
θ̂λ(zn\i)

)]−1

∇θ`
(
zi; θ̂λ

(
zn\i

))
, (15)
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Figure 1: The progression of the loss when
Algorithm 1 is applied to ridge regression
with diagonal regressors.

0 100 200 300 400 500 600 700 800

Iteration Number

0.1

0.15

0.2

0.25

0.3

0.35

 mean(
1
,...,

m
)

mean(
m+1

, ...,
p
)

Figure 2: The progression of λ’s when Al-
gorithm 1 is applied to ridge regression with
diagonal regressors.

where (15) follows by substituting∇λθ̂λ(zn\i) from Corollary 5. However, (15) is computationally
expensive and almost impossible in practice even for medium size datasets. Hence, we use the
ALOOCV from (4) (Theorem 1) in (14) to approximate the gradient.

Let

g
(i)
λ (zn) , − 1

n− 1
∇>θ r

(
θ̃

(i)

λ (zn)

) [
Ĥzn\i

(
θ̃

(i)

λ (zn)

)]−1

∇θ`

(
zi; θ̃

(i)

λ (zn)

)
. (16)

Further, motivated by the suggested ALOOCV, let us define the approximate gradient gλ(zn) as
gλ(zn) , 1

n

∑
i∈[n] g

(i)
λ (zn) . Based on our numerical experiments, this approximate gradient

closely follows the gradient of the cross validation, i.e., ∇λCVλ(zn) ≈ gλ(zn). Note that this
approximation is straightforward to compute. Therefore, using this approximation, we can apply the
first order optimization algorithm 1 to optimize the tuning parameter λ. Although Algorithm 1 is

Algorithm 1 Approximate gradient descent algorithm for tuning λ

Initialize the tuning parameter λ0, choose a step-size selection rule, and set t = 0
for t = 0, 1, 2, . . . do

calculate the approximate gradient gλt(zn)
set λt+1 = λt − αtgλt(zn)

end for

more computationally efficient compared to LOOCV (saving a factor of n), it might still be compu-
tationally expensive for large values of n as it still scales linearly with n. Hence, we also present an
online version of the algorithm using the stochastic gradient descent idea; see Algorithm 2.

Algorithm 2 Stochastic (online) approximate gradient descent algorithm for tuning λ

Initialize the tuning parameter λ0 and set t = 0
for t = 0, 1, 2, . . . do

choose a random index it ∈ {1, . . . , n}
calculate the stochastic gradient g(it)

λt (zn) using (16)

set λt+1 = λt − αtg(it)

λt (zn)
end for

5 Numerical Experiments

Ridge regression with diagonal regressors: We consider the following regularized loss function:

wn(z;θ,λ) = `(z;θ) +
1

n
λ>r(θ) =

1

2
(y − θ>x)2 +

1

2n
θ> diag(λ)θ.

7



Histogram of

Figure 3: The histogram of the normalized difference between LOOCV and ALOOCV for 5 runs
of the algorithm on randomly selected samples for each λ in Table 1 (MNIST dataset with n = 200
and p = 400).

λ L̂zn L CV ACV IF
3.3333 0.0637 (0.0064) 0.1095 (0.0168) 0.1077 (0.0151) 0.1080 (0.0152) 0.0906 (0.0113)
1.6667 0.0468 (0.0051) 0.1021 (0.0182) 0.1056 (0.0179) 0.1059 (0.0179) 0.0734 (0.0100)
0.8333 0.0327 (0.0038) 0.0996 (0.0201) 0.1085 (0.0214) 0.1087 (0.0213) 0.0559 (0.0079)
0.4167 0.0218 (0.0026) 0.1011 (0.0226) 0.1158 (0.0256) 0.1155 (0.0254) 0.0397 (0.0056)
0.2083 0.0139 (0.0017) 0.1059 (0.0256) 0.1264 (0.0304) 0.1258 (0.0300) 0.0267 (0.0038)
0.1042 0.0086 (0.0011) 0.1131 (0.0291) 0.1397 (0.0356) 0.1386 (0.0349) 0.0171 (0.0024)
0.0521 0.0051 (0.0006) 0.1219 (0.0330) 0.1549 (0.0411) 0.1534 (0.0402) 0.0106 (0.0015)

Table 1: The results of logistic regression (in-sample loss, out-of-sample loss, LOOCV, and
ALOOCV, and Influence Function LOOCV) for different regularization parameters on MNIST
dataset with n = 200 and p = 400. The numbers in parentheses represent the standard error.

n
pλ L̂zn L ACV
1e5 0.6578 0.6591 0.6578 (0.0041)
1e4 0.5810 0.6069 0.5841 (0.0079)
1e3 0.5318 0.5832 0.5444 (0.0121)
1e2 0.5152 0.5675 0.5379 (0.0146)
1e1 0.4859 0.5977 0.5560 (0.0183)
1e0 0.4456 0.6623 0.6132 (0.0244)

Table 2: The results of logistic regression (in-
sample loss, out-of-sample loss, CV, ACV)
on CIFAR-10 dataset with n = 9600 and p =
3072.

`(zi; θ̂λ(zn)) CV ACV IF
0.0872 8.5526 8.6495 0.2202
0.0920 2.1399 2.1092 0.2081
0.0926 10.8783 9.4791 0.2351
0.0941 3.5210 3.3162 0.2210
0.0950 5.7753 6.1859 0.2343
0.0990 5.2626 5.0554 0.2405
0.1505 12.0483 11.5281 0.3878

Table 3: Comparison of the leave-one-out es-
timates on the 8 outlier samples with highest
in-sample loss in the MNIST dataset.

In other words, we consider one regularization parameter per each model parameter. To validate the
proposed optimization algorithm, we consider a scenario with p = 50 where x is drawn i.i.d. from
N (0, Ip). We let y = θ∗>x + ε where θ1 = . . . = θ40 = 0 and θ41, . . . , θ50 ∼ N (0, 1) i.i.d, and
ε ∼ N (0, 0.1). We draw n = 150 samples from this model, and apply Algorithm 1 to optimize for
λ = (λ1, . . . , λ50). The problem is designed in such a way that out of 50 features, the first 40 are
irrelevant while the last 10 are important. We initialize the algorithm with λ1

1 = . . . = λ1
50 = 1/3

and compute ACV using Theorem 1. Recall that in this case, ACV is exactly equivalent to CV (see
Corollary 2). Figure 1 plots ALOOCV, the out-of-sample loss, and the mean value of λ calculated
over the irrelevant and relevant features respectively. As expected, the λ for an irrelevant feature is
set to a larger number, on the average, compared to that of a relevant feature. Finally, we remark
that the optimization of 50 tuning parameters in 800 iterations took a mere 28 seconds on a PC.
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Figure 4: The application of Algorithms 1 and 2 to elastic net regression. The left panel shows the
loss vs. number of iterations. The right panel shows the run-time vs. n (the sample size).

Logistic regression: The second example that we consider is logistic regression:

wn(z;θ,λ) = `(z;θ) +
1

n
λ>r(θ) = H(y|| sigmoid(θ0 + θ>x)) +

1

2n
λ‖θ‖22.

where H(·||·) for any u ∈ [0, 1] and v ∈ (0, 1) is given by H(u||v) := u log 1
v + (1 − u) log 1

1−v ,

and denotes the binary cross entropy function, and sigmoid(x) := 1/(1 + e−x) denotes the sig-
moid function. In this case, we only consider a single regularization parameter. Since the loss and
regularizer are smooth, we resort to Theorem 1 to compute ACV. We applied logistic regression on
MNIST and CIFAR-10 image datasets where we used each pixel in the image as a feature according
to the aforementioned loss function. In MNIST, we classify the digits 2 and 3 while in CIFAR-10,
we classify “bird” and “cat.” As can be seen in Tables 1 and 2, ACV closely follows CV on the
MNIST dataset. On the other hand, the approximation of LOOCV based on influence functions [14]
performs poorly in the regime where the model is significantly overfit and hence it cannot be used
for effective model selection. On CIFAR-10, ACV takes ≈1s to run per each sample, whereas CV
takes ≈60s per each sample requiring days to run for each λ even for this medium sized problem.
The histogram of the normalized difference between CV and ACV vectors is plotted in Figure 3
for 5 runs of the algorithm for each λ in Table 1. As can be seen, CV and ACV are almost always
within 5% of each other. We have also plotted the loss for the eight outlier samples with the highest
in-sample loss in the MNIST dataset in Table 3. As can be seen, ALOOCV closely follows LOOCV
even when the leave-one-out loss is two orders of magnitude larger than the in-sample loss for these
outliers. On the other hand, the approximation based on the influence functions fails to capture the
out-of-sample performance and the outliers in this case.

Elastic net regression: Finally, we consider the popular elastic net regression problem [31]:

wn(z;θ,λ) = `(z;θ) +
1

n
λ>r(θ) =

1

2
(y − θ>x)2 +

1

n
λ1‖θ‖1 +

1

2n
λ2‖θ‖22.

In this case, there are only two regularization parameters to be optimized for the quasi-smooth
regularized loss. Similar to the previous case, we consider y = θ∗>x+ ε where θκ = κρκψκ where
ρκ is a Bernoulli(1/2) RV and ψκ ∼ N (0, 1). Hence, the features are weighted non-uniformly in y
and half of them are zeroed out on the average. We apply both Algorithms 1 and 2 where we used the
approximation in Theorem 1 and the explanation on how to handle `1 regularizers to compute ACV.
We initialized with λ1 = λ2 = 0. As can be seen on the left panel (Figure 4), ACV closely follows
CV in this case. Further, we see that both algorithms are capable of significantly reducing the loss
after only a few iterations. The right panel compares the run-time of the algorithms vs. the number
of samples. This confirms our analysis that the run-time of CV scales quadratically with O(n2) as
opposed to O(n) in ACV. This impact is more signified in the inner panel where the run-time ratio
is plotted.
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