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Abstract

Recent advances in bandit tools and techniques for sequential learning are steadily
enabling new applications and are promising the resolution of a range of challeng-
ing related problems. We study the game tree search problem, where the goal is to
quickly identify the optimal move in a given game tree by sequentially sampling its
stochastic payoffs. We develop new algorithms for trees of arbitrary depth, that op-
erate by summarizing all deeper levels of the tree into confidence intervals at depth
one, and applying a best arm identification procedure at the root. We prove new
sample complexity guarantees with a refined dependence on the problem instance.
We show experimentally that our algorithms outperform existing elimination-based
algorithms and match previous special-purpose methods for depth-two trees.

1 Introduction

We consider two-player zero-sum turn-based interactions, in which the sequence of possible succes-
sive moves is represented by a maximin game tree T . This tree models the possible actions sequences
by a collection of MAX nodes, that correspond to states in the game in which player A should take
action, MIN nodes, for states in the game in which player B should take action, and leaves which
specify the payoff for player A. The goal is to determine the best action at the root for player A. For
deterministic payoffs this search problem is primarily algorithmic, with several powerful pruning
strategies available [20]. We look at problems with stochastic payoffs, which in addition present a
major statistical challenge.

Sequential identification questions in game trees with stochastic payoffs arise naturally as robust
versions of bandit problems. They are also a core component of Monte Carlo tree search (MCTS)
approaches for solving intractably large deterministic tree search problems, where an entire sub-tree
is represented by a stochastic leaf in which randomized play-out and/or evaluations are performed [4].
A play-out consists in finishing the game with some simple, typically random, policy and observing
the outcome for player A.

For example, MCTS is used within the AlphaGo system [21], and the evaluation of a leaf position
combines supervised learning and (smart) play-outs. While MCTS algorithms for Go have now
reached expert human level, such algorithms remain very costly, in that many (expensive) leaf
evaluations or play-outs are necessary to output the next action to be taken by the player. In this
paper, we focus on the sample complexity of Monte-Carlo Tree Search methods, about which very
little is known. For this purpose, we work under a simplified model for MCTS already studied by
[22], and that generalizes the depth-two framework of [10].
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1.1 A simple model for Monte-Carlo Tree Search

We start by fixing a game tree T , in which the root is a MAX node. Letting L be the set of leaves
of this tree, for each ` ∈ L we introduce a stochastic oracle O` that represents the leaf evaluation or
play-out performed when this leaf is reached by an MCTS algorithm. In this model, we do not try
to optimize the evaluation or play-out strategy, but we rather assume that the oracle O` produces
i.i.d. samples from an unknown distribution whose mean µ` is the value of the position `. To ease the
presentation, we focus on binary oracles (indicating the win or loss of a play-out), in which the oracle
O` is a Bernoulli distribution with unknown mean µ` (the probability of player A winning the game
in the corresponding state). Our algorithms can be used without modification in case the oracle is a
distribution bounded in [0,1].

For each node s in the tree, we denote by C(s) the set of its children and by P(s) its parent. The root
is denoted by s0. The value (for player A) of any node s is recursively defined by V` = µ` if ` ∈ L and

Vs = {
maxc∈C(s) Vc if s is a MAX node,
minc∈C(s) Vc if s is a MIN node.

The best move is the action at the root with highest value,

s∗ = argmax
s∈C(s0)

Vs.

To identify s∗ (or an ε-close move), an MCTS algorithm sequentially selects paths in the game tree
and calls the corresponding leaf oracle. At round t, a leaf Lt ∈ L is chosen by this adaptive sampling
rule, after which a sampleXt ∼ OLt is collected. We consider here the same PAC learning framework
as [22, 10], in which the strategy also requires a stopping rule, after which leaves are no longer
evaluated, and a recommendation rule that outputs upon stopping a guess ŝτ ∈ C(s0) for the best
move of player A.

Given a risk level δ and some accuracy parameter ε ≥ 0 our goal is have a recommendation ŝτ ∈ C(s0)

whose value is within ε of the value of the best move, with probability larger than 1 − δ, that is

P (V (s0) − V (ŝτ) ≤ ε) ≥ 1 − δ.

An algorithm satisfying this property is called (ε, δ)-correct. The main challenge is to design
(ε, δ)-correct algorithms that use as few leaf evaluations τ as possible.

Related work The model we introduce for Monte-Carlo Tree Search is very reminiscent of a
stochastic bandit model. In those, an agent repeatedly selects one out of several probability distri-
butions, called arms, and draws a sample from the chosen distribution. Bandits models have been
studied since the 1930s [23], mostly with a focus on regret minimization, where the agent aims to
maximize the sum of the samples collected, which are viewed as rewards [18]. In the context of
MCTS, a sample corresponds to a win or a loss in one play-out, and maximizing the number of
successful play-outs (that correspond to simulated games) may be at odds with identifying quickly
the next best action to take at the root. In that, our best action identification problem is closer to a
so-called Best Arm Identification (BAI) problem.

The goal in the standard BAI problem is to find quickly and accurately the arm with highest mean.
The BAI problem in the fixed-confidence setting [7] is the special case of our simple model for a tree
of depth one. For deeper trees, rather than finding the best arm (i.e. leaf), we are interested in finding
the best action at the root. As the best root action is a function of the means of all leaves, this is a
more structured problem.

Bandit algorithms, and more recently BAI algorithms have been successfully adapted to tree search.
Building on the UCB algorithm [2], a regret minimizing algorithm, variants of the UCT algorithm
[17] have been used for MCTS in growing trees, leading to successful AIs for games. However, there
are only very weak theoretical guarantees for UCT. Moreover, observing that maximizing the number
of successful play-outs is not the target, recent work rather tried to leverage tools from the BAI
literature. In [19, 6] Sequential Halving [14] is used for exploring game trees. The latter algorithm is
a state-of-the-art algorithm for the fixed-budget BAI problem [1], in which the goal is to identify the
best arm with the smallest probability of error based on a given budget of draws. The proposed SHOT
(Sequential Halving applied tO Trees) algorithm [6] is compared empirically to the UCT approach
of [17], showing improvements in some cases. A hybrid approach mixing SHOT and UCT is also
studied [19], still without sample complexity guarantees.
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In the fixed-confidence setting, [22] develop the first sample complexity guarantees in the model we
consider. The proposed algorithm, FindTopWinner is based on uniform sampling and eliminations,
an approach that may be related to the Successive Eliminations algorithm [7] for fixed-confidence
BAI in bandit models. FindTopWinner proceeds in rounds, in which the leaves that have not been
eliminated are sampled repeatedly until the precision of their estimates doubled. Then the tree is
pruned of every node whose estimated value differs significantly from the estimated value of its
parent, which leads to the possible elimination of several leaves. For depth-two trees, [10] propose
an elimination procedure that is not round-based. In this simpler setting, an algorithm that exploits
confidence intervals is also developed, inspired by the LUCB algorithm for fixed-confidence BAI
[13]. Some variants of the proposed M-LUCB algorithm appear to perform better in simulations than
elimination based algorithms. We now investigate this trend further in deeper trees, both in theory
and in practice.

Our Contribution. In this paper, we propose a generic architecture, called BAI-MCTS, that builds
on a Best Arm Identification (BAI) algorithm and on confidence intervals on the node values in order
to solve the best action identification problem in a tree of arbitrary depth. In particular, we study two
specific instances, UGapE-MCTS and LUCB-MCTS, that rely on confidence-based BAI algorithms
[8, 13]. We prove that these are (ε, δ)-correct and give a high-probability upper bound on their
sample complexity. Both our theoretical and empirical results improve over the elimination-based
state-of-the-art algorithm, FindTopWinner [22].

2 BAI-MCTS algorithms

We present a generic class of algorithms, called BAI-MCTS, that combines a BAI algorithm with
an exploration of the tree based on confidence intervals on the node values. Before introducing the
algorithm and two particular instances, we first explain how to build such confidence intervals, and
also introduce the central notion of representative child and representative leaf.

2.1 Confidence intervals and representative nodes

For each leaf ` ∈ L, using the past observations from this leaf we may build a confidence interval
I`(t) = [L`(t),U`(t)],

where U`(t) (resp. L`(t)) is an Upper Confidence Bound (resp. a Lower Confidence Bound) on the
value V (`) = µ`. The specific confidence interval we shall use will be discussed later.

These confidence intervals are then propagated upwards in the tree using the following con-
struction. For each internal node s, we recursively define Is(t) = [Ls(t),Us(t)] with

Ls(t) = {
maxc∈C(s) Lc(t) for a MAX node s,
minc∈C(s) Lc(t) for a MIN node s, Us(t) = {

maxc∈C(s) Uc(t) for a MAX node s,
minc∈C(s) Uc(t) for a MIN node s.

Note that these intervals are the tightest possible on the parent under the sole assumption that the
child confidence intervals are all valid. A similar construction was used in the OMS algorithm of [3]
in a different context. It is easy to convince oneself (or prove by induction, see Appendix B.1) that
the accuracy of the confidence intervals is preserved under this construction, as stated below.
Proposition 1. Let t ∈ N. One has ⋂`∈L (µ` ∈ I`(t)) ⇒ ⋂s∈T (Vs ∈ Is(t)).

We now define the representative child cs(t) of an internal node s as

cs(t) = {
argmaxc∈C(s) Uc(t) if s is a MAX node,
argminc∈C(s) Lc(t) if s is a MIN node,

and the representative leaf `s(t) of a node s ∈ T , which is the leaf obtained when going down the
tree by always selecting the representative child:

`s(t) = s if s ∈ L, `s(t) = `cs(t)(t) otherwise.
The confidence intervals in the tree represent the statistically plausible values in each node, hence the
representative child can be interpreted as an “optimistic move” in a MAX node and a “pessimistic
move” in a MIN node (assuming we play against the best possible adversary). This is reminiscent of
the behavior of the UCT algorithm [17]. The construction of the confidence intervals and associated
representative children are illustrated in Figure 1.
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(a) Children (b) Parent

Figure 1: Construction of confidence in-
terval and representative child (in red)
for a MAX node.

Input: a BAI algorithm
Initialization: t = 0.
while not BAIStop ({s ∈ C(s0)}) do

Rt+1 = BAIStep ({s ∈ C(s0)})

Sample the representative leaf
Lt+1 = `Rt+1(t)

Update the information about the arms.
t = t + 1.

end
Output: BAIReco ({s ∈ C(s0)})

Figure 2: The BAI-MCTS architecture

2.2 The BAI-MCTS architecture

In this section we present the generic BAI-MCTS algorithm, whose sampling rule combines two
ingredients: a best arm identification step which selects an action at the root, followed by a confidence
based exploration step, that goes down the tree starting from this depth-one node in order to select
the representative leaf for evaluation.

The structure of a BAI-MCTS algorithm is presented in Figure 2. The algorithm depends on a Best
Arm Identification (BAI) algorithm, and uses the three components of this algorithm:

• the sampling rule BAIStep(S) selects an arm in the set S

• the stopping rule BAIStop(S) returns True if the algorithm decides to stop

• the recommendation rule BAIReco(S) selects an arm as a candidate for the best arm

In BAI-MCTS, the arms are the depth-one nodes, hence the information needed by the BAI algorithm
to make a decision (e.g. BAIStep for choosing an arm, or BAIStop for stopping) is information
about depth-one nodes, that has to be updated at the end of each round (last line in the while loop).
Different BAI algorithms may require different information, and we now present two instances that
rely on confidence intervals (and empirical estimates) for the value of the depth-one nodes.

2.3 UGapE-MCTS and LUCB-MCTS

Several Best Arm Identification algorithms may be used within BAI-MCTS, and we now present
two variants, that are respectively based on the UGapE [8] and the LUCB [13] algorithms. These
two algorithms are very similar in that they exploit confidence intervals and use the same stopping
rule, however the LUCB algorithm additionally uses the empirical means of the arms, which within
BAI-MCTS requires defining an estimate V̂s(t) of the value of the depth-one nodes.

The generic structure of the two algorithms is similar. At round t + 1 two promising depth-one nodes
are computed, that we denote by bt and ct. Among these two candidates, the node whose confidence
interval is the largest (that is, the most uncertain node) is selected:

Rt+1 = argmax
i∈{bt,ct}

[Ui(t) −Li(t)] .

Then, following the BAI-MCTS architecture, the representative leaf of Rt+1 (computed by going
down the tree) is sampled: Lt+1 = `Rt+1(t). The algorithm stops whenever the confidence intervals
of the two promising arms overlap by less than ε:

τ = inf {t ∈ N ∶ Uct(t) −Lbt(t) < ε} ,

and it recommends ŝτ = bτ .

In both algorithms that we detail below bt represents a guess for the best depth-one node, while ct is
an “optimistic” challenger, that has the maximal possible value among the other depth-one nodes.
Both nodes need to be explored enough in order to discover the best depth-one action quickly.
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UGapE-MCTS. In UGapE-MCTS, introducing for each depth-one node the index

Bs(t) = max
s′∈C(s0)/{s}

Us′(t) −Ls(t),

the promising depth-one nodes are defined as

bt = argmin
a∈C(s0)

Ba(t) and ct = argmax
b∈C(s0)/{bt}

Ub(t).

LUCB-MCTS. In LUCB-MCTS, the promising depth-one nodes are defined as

bt = argmax
a∈C(s0)

V̂a(t) and ct = argmax
b∈C(s0)/{bt}

Ub(t),

where V̂s(t) = µ̂`s(t)(t) is the empirical mean of the reprentative leaf of node s. Note that several
alternative definitions of V̂s(t) may be proposed (such as the middle of the confidence interval Is(t),
or maxa∈C(s) V̂a(t)), but our choice is crucial for the analysis of LUCB-MCTS, given in Appendix C.

3 Analysis of UGapE-MCTS

In this section we first prove that UGapE-MCTS and LUCB-MCTS are both (ε, δ)-correct. Then we
give in Theorem 3 a high-probability upper bound on the number of samples used by UGapE-MCTS.
A similar upper bound is obtained for LUCB-MCTS in Theorem 9, stated in Appendix C.

3.1 Choosing the Confidence Intervals

From now on, we assume that the confidence intervals on the leaves are of the form

L`(t) = µ̂`(t) −

¿
Á
ÁÀβ(N`(t), δ)

2N`(t)
and U`(t) = µ̂`(t) +

¿
Á
ÁÀβ(N`(t), δ)

2N`(t)
. (1)

β(s, δ) is some exploration function, that can be tuned to have a δ-PAC algorithm, as expressed in
the following lemma, whose proof can be found in Appendix B.2

Lemma 2. If δ ≤ max(0.1∣L∣,1), for the choice

β(s, δ) = ln(∣L∣/δ) + 3 ln ln(∣L∣/δ) + (3/2) ln(ln s + 1) (2)

both UGapE-MCTS and LUCB-MCTS satisfy P(V (s∗) − V (ŝτ) ≤ ε) ≥ 1 − δ.

An interesting practical feature of these confidence intervals is that they only depend on the local
number of draws N`(t), whereas most of the BAI algorithms use exploration functions that depend
on the number of rounds t. Hence the only confidence intervals that need to be updated at round t are
those of the ancestors of the selected leaf, which can be done recursively.

Moreover, β(s, δ) scales with ln(ln(s)), and not ln(s), leveraging some tools recently introduced to
obtain tighter confidence intervals [12, 15]. The union bound over L (that may be an artifact of our
current analysis) however makes the exploration function of Lemma 2 still a bit over-conservative
and in practice, we recommend the use of β(s, δ) = ln (ln(es)/δ).

Finally, similar correctness results (with slightly larger exploration functions) may be obtained for
confidence intervals based on the Kullback-Leibler divergence (see [5]), which are known to lead to
better performance in standard best arm identification problems [16] and also depth-two tree search
problems [10]. However, the sample complexity analysis is much more intricate, hence we stick to
the above Hoeffding-based confidence intervals for the next section.

3.2 Complexity term and sample complexity guarantees

We first introduce some notation. Recall that s∗ is the optimal action at the root, identified with
the depth-one node satisfying V (s∗) = V (s0), and define the second-best depth-one node as s∗2 =
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argmaxs∈C(s0)/{s∗} Vs. RecallP(s) denotes the parent of a node s different from the root. Introducing
furthermore the set Anc(s) of all the ancestors of a node s, we define the complexity term by

H∗
ε (µ) ∶= ∑

`∈L

1

∆2
` ∨∆2

∗ ∨ ε
2
, where ∆∗ ∶= V (s∗) − V (s∗2)

∆` ∶= maxs∈Anc(`)/{s0} ∣Vs − V (P(s))∣ (3)

The intuition behind these squared terms in the denominator is the following. We will sample a leaf `
until we either prune it (by determining that it or one of its ancestors is a bad move), prune everyone
else (this happens for leaves below the optimal arm) or reach the required precision ε.
Theorem 3. Let δ ≤ min(1,0.1∣L∣). UGapE-MCTS using the exploration function (2) is such that,
with probability larger than 1 − δ, (V (s∗) − V (ŝτ) < ε) and, letting ∆`,ε = ∆` ∨∆∗ ∨ ε,

τ ≤ 8H∗
ε (µ) ln

∣L∣

δ
+∑

`

16

∆
2

`,ε

ln ln
1

∆
2

`,ε

+ 8H∗
ε (µ) [3 ln ln

∣L∣

δ
+ 2 ln ln(8e ln

∣L∣

δ
+ 24e ln ln

∣L∣

δ
)] + 1.

Remark 4. If β(Na(t), δ) is changed to β(t, δ), one can still prove (ε, δ) correctness and further-
more upper bound the expectation of τ . However the algorithm becomes less efficient to implement,
since after each leaf observation, ALL the confidence intervals have to be updated. In practice, this
change lowers the probability of error but does not effect significantly the number of play-outs used.

3.3 Comparison with previous work

To the best of our knowledge1, the FindTopWinner algorithm [22] is the only algorithm from the
literature designed to solve the best action identification problem in any-depth trees. The number of
play-outs of this algorithm is upper bounded with high probability by

∑
`∶∆`>2ε

(
32

∆2
`

ln
16∣L∣

∆`δ
+ 1) + ∑

`∶∆`≤2ε

(
8

ε2
ln

8∣L∣

εδ
+ 1)

One can first note the improvement in the constant in front of the leading term in ln(1/δ), as well as
the presence of the ln ln(1/∆`,ε2) second order, that is unavoidable in a regime in which the gaps are
small [12]. The most interesting improvement is in the control of the number of draws of 2ε-optimal
leaves (such that ∆` ≤ 2ε). In UGapE-MCTS, the number of draws of such leaves is at most of order
(ε ∨∆2

∗)
−1 ln(1/δ), which may be significantly smaller than ε−1 ln(1/δ) if there is a gap in the best

and second best value. Moreover, unlike FindTopWinner and M-LUCB [10] in the depth two case,
UGapE-MCTS can also be used when ε = 0, with provable guarantees.

Regarding the algorithms themselves, one can note that M-LUCB, an extension of LUCB suited for
depth-two tree, does not belong to the class of BAI-MCTS algorithms. Indeed, it has a “reversed”
structure, first computing the representative leaf for each depth-one node: ∀s ∈ C(s0),Rs,t = `s(t)

and then performing a BAI step over the representative leaves: L̃t+1 = BAIStep(Rs,t, s ∈ C(s0)).
This alternative architecture can also be generalized to deeper trees, and was found to have empirical
performance similar to BAI-MCTS. M-LUCB, which will be used as a benchmark in Section 4, also
distinguish itself from LUCB-MCTS by the fact that it uses an exploration rate that depends on the
global time β(t, δ) and that bt is the empirical maximin arm (which can be different from the arm
maximizing V̂s). This alternative choice is not yet supported by theoretical guarantees in deeper trees.

Finally, the exploration step of BAI-MCTS algorithm bears some similarity with the UCT algorithm
[17], as it goes down the tree choosing alternatively the move that yields the highest UCB or the
lowest LCB. However, the behavior of BAI-MCTS is very different at the root, where the first move is
selected using a BAI algorithm. Another key difference is that BAI-MCTS relies on exact confidence

1In a recent paper, [11] independently proposed the LUCBMinMax algorithm, that differs from UGapE-
MCTS and LUCB-MCTS only by the way the best guess bt is picked. The analysis is very similar to ours,
but features some refined complexity measure, in which ∆` (that is the maximal distance between consecutive
ancestors of the leaf, see (3)) is replaced by the maximal distance between any ancestors of that leaf. Similar
results could be obtained for our two algorithms following the same lines.
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intervals: each interval Is(t) is shown to contain with high probability the corresponding value Vs,
whereas UCT uses more heuristic confidence intervals, based on the number of visits of the parent
node, and aggregating all the samples from descendant nodes. Using UCT in our setting is not obvious
as it would require to define a suitable stopping rule, hence we don’t include a comparison with this
algorithm in Section 4. A hybrid comparison between UCT and FindTopWinner is proposed in
[22], providing UCT with the random number of samples used by the the fixed-confidence algorithm.
It is shown that FindTopWinner has the advantage for hard trees that require many samples. Our
experiments show that our algorithms in turn always dominate FindTopWinner.

3.4 Proof of Theorem 3.

Letting Et = ⋂`∈L (µ` ∈ I`(t)) and E = ⋂t∈N Et, we upper bound τ assuming the event E holds,
using the following key result, which is proved in Appendix D.

Lemma 5. Let t ∈ N. Et ∩ (τ > t) ∩ (Lt+1 = `) ⇒ N`(t) ≤
8β(N`(t),δ)
∆2
`
∨∆2

∗∨ε
2 .

An intuition behind this result is the following. First, using that the selected leaf ` is a representative
leaf, it can be seen that the confidence intervals from sD = ` to s0 are nested (Lemma 11). Hence if
Et holds, V (sk) ∈ I`(t) for all k = 1, . . . ,D, which permits to lower bound the width of this interval
(and thus upper bound N`(t)) as a function of the V (sk) (Lemma 12). Then Lemma 13 exploits the
mechanism of UGapE to further relate this width to ∆∗ and ε.

Another useful tool is the following lemma, that will allow to leverage the particular form of the
exploration function β to obtain an explicit upper bound on N`(τ).

Lemma 6. Let β(s) = C + 3
2

ln(1 + ln(s)) and define S = sup{s ≥ 1 ∶ aβ(s) ≥ s}. Then

S ≤ aC + 2a ln(1 + ln(aC)).

This result is a consequence of Theorem 16 stated in Appendix F, that uses the fact that for C ≥

− ln(0.1) and a ≥ 8, it holds that

3

2

C(1 + ln(aC))

C (1 + ln(aC)) − 3
2

≤ 1.7995564 ≤ 2.

On the event E , letting τ` be the last instant before τ at which the leaf ` has been played before
stopping, one has N`(τ − 1) = N`(τ`) that satisfies by Lemma 5

N`(τ`) ≤
8β(N`(τ`), δ)

∆2
` ∨∆2

∗ ∨ ε
2
.

Applying Lemma 6 with a = a` = 8
∆2
`
∨∆2

∗∨ε
2 and C = ln ∣L∣

δ
+ 3 ln ln ∣L∣

δ
leads to

N`(τ − 1) ≤ a` (C + 2 ln(1 + ln(a`C))) .

Letting ∆`,ε = ∆` ∨∆∗ ∨ ε and summing over arms, we find

τ = 1 +∑
`

N`(τ − 1)

≤ 1 +∑
`

8

∆
2

`,ε

⎛
⎜
⎝

ln
∣L∣

δ
+ 3 ln ln

∣L∣

δ
+ 2 ln ln

⎛
⎜
⎝

8e
ln ∣L∣

δ
+ 3 ln ln ∣L∣

δ

∆
2

`,ε

⎞
⎟
⎠

⎞
⎟
⎠

= 1 +∑
`

8

∆
2

`,ε

⎛
⎜
⎝

ln
∣L∣

δ
+ 2 ln ln

1

∆
2

`,ε

⎞
⎟
⎠
+ 8H∗

ε (µ) [3 ln ln
∣L∣

δ
+ 2 ln ln(8e ln

∣L∣

δ
+ 24e ln ln

∣L∣

δ
)] .

To conclude the proof, we remark that from the proof of Lemma 2 (see Appendix B.2) it follows that
on E , V (s∗) − V (ŝτ) < ε and that E holds with probability larger than 1 − δ.
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4 Experimental Validation

In this section we evaluate the performance of our algorithms in three experiments. We evaluate
on the depth-two benchmark tree from [10], a new depth-three tree and the random tree ensemble
from [22]. We compare to the FindTopWinner algorithm from [22] in all experiments, and in the
depth-two experiment we include the M-LUCB algorithm from [10]. Its relation to BAI-MCTS is
discussed in Section 3.3. For our BAI-MCTS algorithms and for M-LUCB we use the exploration
rate β(s, δ) = ln ∣L∣

δ
+ ln(ln(s) + 1) (a stylized version of Lemma 2 that works well in practice), and

we use the KL refinement of the confidence intervals (1). To replicate the experiment from [22], we
supply all algorithms with δ = 0.1 and ε = 0.01. For comparing with [10] we run all algorithms with
ε = 0 and δ = 0.1∣L∣ (undoing the conservative union bound over leaves. This excessive choice, which
might even exceed one, does not cause a problem, as the algorithms depend on δ

∣L∣
= 0.1). In none of

our experiments the observed error rate exceeds 0.1.

Figure 3 shows the benchmark tree from [10, Section 5] and the performance of four algorithms on it.
We see that the special-purpose depth-two M-LUCB performs best, very closely followed by both
our new arbitrary-depth LUCB-MCTS and UGapE-MCTS methods. All three use significantly fewer
samples than FindTopWinner. Figure 4 (displayed in Appendix A for the sake of readability) shows
a full 3-way tree of depth 3 with leafs drawn uniformly from [0,1]. Again our algorithms outperform
the previous state of the art by an order of magnitude. Finally, we replicate the experiment from
[22, Section 4]. To make the comparison as fair as possible, we use the proven exploration rate from
(2). On 10K full 10-ary trees of depth 3 with Bernoulli leaf parameters drawn uniformly at random
from [0,1] the average numbers of samples are: LUCB-MCTS 141811, UGapE-MCTS 142953 and
FindTopWinner 2254560. To closely follow the original experiment, we do apply the union bound
over leaves to all algorithms, which are run with ε = 0.01 and δ = 0.1. We did not observe any error
from any algorithm (even though we allow 10%). Our BAI-MCTS algorithms deliver an impressive
15-fold reduction in samples.

0.45

0.45 0.35 0.30

0.45 0.50 0.55

905

875

2941

798

199

200

2931

212

81

82

2498

92

0.35 0.40 0.60

629

630

2932

752

287

279

2930

248

17

17

418

22

0.30 0.47 0.52

197

193

1140

210

123

123

739

44

20
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Figure 3: The 3 × 3 tree of depth 2 that is the benchmark in [10]. Shown below the leaves are the
average numbers of pulls for 4 algorithms: LUCB-MCTS (0.89% errors, 2460 samples), UGapE-
MCTS (0.94%, 2419), FindTopWinner (0%, 17097) and M-LUCB (0.14%, 2399). All counts are
averages over 10K repetitions with ε = 0 and δ = 0.1 ⋅ 9.

5 Lower bounds and discussion

Given a tree T , a MCTS model is parameterized by the leaf values, µ ∶= (µ`)`∈L, which determine the
best root action: s∗ = s∗(µ). For µ ∈ [0,1]∣L∣, We define Alt(µ) = {λ ∈ [0,1]∣L∣ ∶ s∗(λ) ≠ s∗(µ)}.
Using the same technique as [9] for the classic best arm identification problem, one can establish the
following (non explicit) lower bound. The proof is given in Appendix E.
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Theorem 7. Assume ε = 0. Any δ-correct algorithm satisfies

Eµ[τ] ≥ T ∗(µ)d(δ,1 − δ), where T ∗(µ)−1
∶= sup
w∈Σ∣L∣

inf
λ∈Alt(µ)

∑
`∈L

w`d (µ`, λ`) (4)

with Σk = {w ∈ [0,1]i ∶ ∑
k
i=1wi = 1} and d(x, y) = x ln(x/y) + (1 − x) ln((1 − x)/(1 − y)) is the

binary Kullback-Leibler divergence.

This result is however not directly amenable for comparison with our upper bounds, as the optimiza-
tion problem defined in Lemma 7 is not easy to solve. Note that d(δ,1− δ) ≥ ln(1/(2.4δ)) [15], thus
our upper bounds have the right dependency in δ. For depth-two trees with K (resp. M ) actions for
player A (resp. B), we can moreover prove the following result, that suggests an intriguing behavior.
Lemma 8. Assume ε = 0 and consider a tree of depth two with µ = (µi,j)1≤i≤K,1≤j≤M such that
∀(i, j), µ1,1 > µi,1, µi,1 < µi,j . The supremum in the definition of T ∗(µ)−1 can be restricted to

Σ̃K,M ∶= {w ∈ ΣK×M ∶ wi,j = 0 if i ≥ 2 and j ≥ 2}
and

T ∗(µ)−1
= max
w∈Σ̃K,M

min
i=2,...,K
a=1,...,M

[w1,ad(µ1,a,
w1,aµ1,a +wi,1µi,1

w1,a +wi,1
)+wi,1d(µi,1,

w1,aµ1,a +wi,1µi,1

w1,a +wi,1
)] .

It can be extracted from the proof of Theorem 7 (see Appendix E) that the vector w∗(µ) that attains
the supremum in (4) represents the average proportions of selections of leaves by any algorithm
matching the lower bound. Hence, the sparsity pattern of Lemma 8 suggests that matching algorithms
should draw many of the leaves much less than O(ln(1/δ)) times. This hints at the exciting prospect
of optimal stochastic pruning, at least in the asymptotic regime δ → 0.

As an example, we numerically solve the lower bound optimization problem (which is a concave
maximization problem) for µ corresponding to the benchmark tree displayed in Figure 3 to obtain

T ∗(µ) = 259.9 and w∗
= (0.3633,0.1057,0.0532), (0.3738,0,0), (0.1040,0,0).

With δ = 0.1 we find kl(δ,1− δ) = 1.76 and the lower bound is Eµ[τ] ≥ 456.9. We see that there is a
potential improvement of at least a factor 4.

Future directions An (asymptotically) optimal algorithm for BAI called Track-and-Stop was
developed by [9]. It maintains the empirical proportions of draws close to w∗(µ̂), adding forced
exploration to ensure µ̂→ µ. We believe that developing this line of ideas for MCTS would result in
a major advance in the quality of tree search algorithms. The main challenge is developing efficient
solvers for the general optimization problem (4). For now, even the sparsity pattern revealed by
Lemma 8 for depth two does not give rise to efficient solvers. We also do not know how this sparsity
pattern evolves for deeper trees, let alone how to compute w∗(µ).
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A Numerical Results for a Depth Three Tree

The results for our experiments on a depth-three tree are displayed in Figure 4.

B Confidence Intervals

B.1 Proof of Proposition 1

The proof proceeds by induction. Let the inductive hypothesis beHd=“for all the nodes s at (graph)
distance d from a leaf, Vs ∈ Is(t)”.

H0 clearly holds by definition of Et. Now let d such thatHd holds and let s be at distance d + 1 of a
leaf. Then all s′ ∈ C(s) are at distance at most d from a leaf and using the inductive hypothesis,

∀c ∈ C(s), Lc(t) ≤ Vc ≤ Uc(t).

Assume that s is a MAX node. Using that Us(t) = maxc∈C(s) Uc(t), one has c ∈ C(s), Vc ≤ Uc(t) ≤
Us(t). By definition, Vs = maxc∈C(s) Vc, thus it follows that Vs ≤ Us(t). Still by definition of Vs, it
holds that ∀c ∈ C(s),Lc(t) ≤ Vc ≤ Vs and finally, as Ls(t) = maxc∈C(s) Lc(t), Ls(t) ≤ Vs ≤ Us(t).
A similar reasoning yields the same conclusion if s is a MIN node, thusHd+1 holds.

As the tree T is finite, we conclude by induction that ∀s ∈ T , Vs ∈ Is(t).

B.2 Proof of Lemma 2

Let
Et = ⋂

`∈L

(µ` ∈ I`(t)) and E = ⋂
t∈N
Et.

Using Proposition 1, on Et, for all s ∈ T , Vs ∈ Is(t). If the algorithm stops at some time t, as
Lbt(t) > Uct

(t) − ε, the outputted action, ŝτ = bt, satisfies Lŝτ (t) > Us′(t) − ε, for all s′ ≠ ŝτ . As E
holds, one obtains

V (ŝτ) ≥ max
s′≠ŝτ

V (s′) − ε,

and ŝτ is an ε-maximin action. Hence, the algorithm is correct on E . The error probability is thus
upper bounded by

P (E
c
) ≤ P (∃` ∈ L,∃t ∈ N ∶ ∣µ̂`(t) − µ`∣ >

√
β(N`(t), δ)/(2N`(t)))

≤ ∑
`∈L

P (∃s ∈ N ∶ 2s(µ̂`,s − µ`)
2
> β(s, δ))

≤ 2∣L∣P (∃s ∈ N ∶ Ss >
√

2σ2sβ(s, δ)) ,

where Ss = X1 + ⋅ ⋅ ⋅ +Xs is a martingale with σ2-subgaussian increments, with σ2 = 1/4. It was
shown in [15] that for δ ≤ 0.1, if

β(t, δ) = ln(
1

δ
) + 3 ln ln(

1

δ
) + (3/2) ln(ln(s) + 1),

one has P (∃s ∈ N ∶ Ss >
√

2σ2sβ(s, δ)) ≤ δ, which concludes the proof.

C Sample complexity analysis of LUCB-MCTS

We provide an analysis of a slight variant of LUCB-MCTS that may stop at even rounds only and for
t ∈ 2N draws the representative leaf of the two promising depth-one nodes:

Lt+1 = `bt(t) and Lt+2 = `ct(t). (5)

The stopping rule is then τ = inf {t ∈ 2N∗ ∶ Uct(t) −Lbt(t) < ε}.
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For this algorithm, our sample complexity guarantee features a slightly different complexity term.
For a leaf ` = s0s1 . . . sD, we first introduce

∆̃` = max
s∈Anc(`)/{s0,s1}

∣V (s) − V (P(s))∣,

a quantity that differs from ∆` only by the fact that the maximum doesn’t take into account the gap
between the root and the depth-one ancestor of `. Then H̃∗

ε (µ) is defined similarly as H∗
ε (µ) by

H̃∗
ε (µ) = ∑

`∈L

1

∆̃2
` ∨∆2

∗ ∨ ε
2
.

Theorem 9. Let δ ≤ min(1,0.1∣L∣). LUCB-MCTS using the exploration function (2) and se-
lecting the two promising leaves at each round is such that, with probability larger than 1 − δ,
(V (s∗) − V (ŝτ) < ε) and

τ ≤ 16H̃∗
ε (µ) [ln

∣L∣

δ
+ 3 ln ln

∣L∣

δ
+ 2 ln ln(16eH̃∗

ε (µ)(ln
∣L∣

δ
+ 3 ln ln

∣L∣

δ
))] .

Proof. The analysis follows the same lines as that of UGapE-MCTS, yet it relies on a slightly
different key result, proved in the next section. Letting Et = ∩`∈L(µ` ∈ I`(t)) as in the proof of
Theorem 3 and defining E = ∩t∈2N∗Et, one can state the following.
Lemma 10. Let t ∈ 2N.

Et ∩ (τ > t) ⇒ ∃` ∈ {Lt+1, Lt+2} ∶ N`(t) ≤
8β(t, δ)

∆̃2
` ∨∆2

∗ ∨ ε
2
.

Let T be a deterministic time. We upper bound τ assuming the event E holds. Using Lemma 10 and
the fact that for every even t, (τδ > t) = (τδ > t + 1) by definition of the algorithm, one has

min(τ, T ) =
T

∑
t=0

1(τ>t) = 2 ∑
t∈2N
t≤T

1(τδ>t) = 2 ∑
t∈2N
t≤T

1(∃`∈{Lt+1,Lt+2}∶N`(t)≤2β(t,δ)/(∆̃2
`
∨∆2

∗ε
2))

≤ 2 ∑
t∈2N
t≤T

∑
`∈L

1(Lt+1=`)∪(Lt+2=`)1(N`(t)≤8β(T,δ)/(∆̃2
`
∨∆2

∗ε
2))

≤ 16∑
`∈L

1

∆̃2
` ∨∆2

∗ ∨ ε
2
β(T, δ) = 16H̃∗

ε (µ)β(T, δ).

For any T such that 16H̃∗
ε (µ)β(T, δ) < T , one has min(τ, T ) < T , which implies τ < T . Therefore

τ ≤ sup{t ∈ N ∶ 16H̃∗
ε (µ)β(t, δ) ≥ t}.

Just like in the analysis of UGapE-MCTS, the conclusion now follows from Lemma 6, applied with
a = 16H̃∗

ε (µ) and C = ln(∣L∣/δ) + 3 ln ln(∣L∣/δ), which yields

τ ≤ 16H̃∗
ε (µ) [ln

∣L∣

δ
+ 3 ln ln

∣L∣

δ
+ 2 ln ln(16eH̃∗

ε (µ)(ln
∣L∣

δ
+ 3 ln ln

∣L∣

δ
))] .

Using that P(E) ≥ 1 − δ and that the algorithm is correct on E yields the conclusion.

D Proof of Lemma 5 and Lemma 10

We first state Lemma 12, that holds for both UGapE and LUCB-MCTS and is a consequence of the
definition of the exploration procedure. This result builds on the following lemma, that expresses the
fact that along a path from the root to a representative leaf, the confidence intervals are nested.
Lemma 11. Let t ∈ N and s0, s1, . . . , sD be a path from the root down to a leaf ` = sD.

(`s1(t) = sD)⇒ (∀k = 2, . . . ,D, Isk−1(t) ⊆ Isk(t))

Lemma 12. Let t ∈ N and s0, s1, . . . , sD be a path from the root down to a leaf ` = sD. If Et holds
and ` is selected at round t + 1 (UGapE) or if t is even and ` ∈ {Lt+1, Lt+2} (LUCB), then

¿
Á
ÁÀ2β(N`(t), δ)

N`(t)
≥ max
k=2...D

∣V (sk) − V (sk−1)∣.
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UGapE-MCTS: proof of Lemma 5. The following lemma is specific to UGapE-MCTS. We let
s0, s1, . . . , sD be a path down to a leaf ` = sD.
Lemma 13. Let t ∈ N. If Et holds and UGapE-MCTS has not stopped after t observations, that is
(τ > t),

(Lt+1 = `)⇒
⎛
⎜
⎝

¿
Á
ÁÀ8β(N`(t), δ)

N`(t)
≥ max (∆∗, V (s0) − V (s1), ε)

⎞
⎟
⎠

Putting together Lemma 12 and Lemma 13 and using that

∆` = max(V (s0) − V (s1), max
k=2...D

∣V (sk) − V (sk−1)∣)

one obtains

Et ∩ (τ > t) ∩ (Lt+1 = `) ⇒
⎛
⎜
⎝

¿
Á
ÁÀ8β(N`(t), δ)

N`(t)
≥ max (∆`,∆∗, ε)

⎞
⎟
⎠
,

which yields the proof of Lemma 5 by inverting the bound.

LUCB-MCTS: proof of Lemma 10. The following lemma is specific to the LUCB-MCTS algo-
rithm. It can be viewed as a generalization of Lemma 2 in [13].
Lemma 14. Let t ∈ 2N and let γ ∈ [V (s∗2), V (s∗)]. If Et holds and LUCB-MCTS has not stopped
after t observations, that is (τ > t), then

∃` ∈ {Lt+1, Lt+2} ∶ (γ ∈ I`(t)) ∩
⎛
⎜
⎝

¿
Á
ÁÀ2β(t, δ)

N`(t)
≥ ε

⎞
⎟
⎠
.

Choosing γ = V (s∗)+V (s∗2)

2
and letting s` be the depth-one ancestor of `, on Et it holds that V (s`) ∈

I`(t) (by Lemma 11) and

(γ ∈ I`(t)) ⇒
⎛
⎜
⎝

¿
Á
ÁÀ2β(t, δ)

N`(t)
≥ ∣V (s`) − γ∣

⎞
⎟
⎠

⇒
⎛
⎜
⎝

¿
Á
ÁÀ2β(t, δ)

N`(t)
≥
V (s∗) − V (s∗2)

2

⎞
⎟
⎠
.

Recall ∆∗ = V (s∗) − V (s∗2). By Lemma 14, on Et ∩ (τ > t), there exists ` ∈ {Lt+1, Lt+2} such that
¿
Á
ÁÀ8β(t, δ)

N`(t)
≥ max(∆∗, ε). (6)

Moreover, noting that for a leaf ` = s0, s1, . . . , sD,

∆̃` = max
k=2,...,D

∣V (sk) − V (sk−1)∣

a consequence of Lemma 12 is that for ` ∈ {Lt+1, Lt+2},
¿
Á
ÁÀ2β(t, δ)

N`(t)
≥ ∆̃`. (7)

Combining (6) and (7) yields

Et ∩ (τ > t) ⇒ ∃` ∈ {Lt+1, Lt+2} ∶

¿
Á
ÁÀ8β(t, δ)

N`(t)
≥ max (∆̃`,∆∗, ε) ,

which yields the proof of Lemma 10 by inverting the bound.
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D.1 Proof of Lemma 11.

The leaf ` is the representative of the depth 1 node s1, therefore the path s1, . . . , sD is such that
csk−1(t) = sk for all k = 2, . . . ,D. Using the way the representative are build, we now show that

∀k ∈ {2, . . . ,D}, Isk−1(t) ⊆ Isk(t).

If sk−1 is a MAX node, Usk−1(t) = Usk(t) by definition and Lsk−1(t) = maxs∈C(sk−1) Ls(t) ≥

Lsk(t). Similarly, if sk−1 is a MIN node, Lsk−1(t) = Lsk(t) by definition and Usk−1(t) =

mins∈C(sk−1) Us(t) ≤ Usk(t), so that in both cases Isk−1(t) ⊆ Isk(t).

D.2 Proof of Lemma 12.

Let ` ∈ L be a leaf that is sampled based on the information available at round t. In particular, as `
is a representative leaf of the depth 1 node s1, the path s1, . . . , sD is such that csk−1(t) = sk for all
k = 2, . . . ,D. Let k = 2, . . . ,D. If sk−1 ∈ {2, . . . ,D} is a MAX node, it holds by definition of the
representative children that, for all s′ ∈ C(sk−1),

Usk(t) ≥ Us′(t).

Now, from Lemma 11 one has U`(t) ≥ Usk(t) and from Proposition 1 as Et holds, one has

∀s ∈ T , Vs ∈ Is(t). (8)

Using these two ingredients yields

U`(t) ≥ V (s′)

L`(t) + 2

¿
Á
ÁÀβ(N`(t), δ)

2N`(t)
≥ V (s′)

Lsk(t) + 2

¿
Á
ÁÀβ(N`(t), δ)

2N`(t)
≥ V (s′)

V (sk) + 2

¿
Á
ÁÀβ(N`(t), δ)

2N`(t)
≥ V (s′).

Thus
¿
Á
ÁÀ2β(N`(t), δ)

N`(t)
≥ max

s′∈C(sk−1)
V (s′) − V (sk) = V (sk−1) − V (sk) ≥ 0.

If sk−1 is a MIN node, a similar reasoning show that
¿
Á
ÁÀ2β(N`(t), δ)

N`(t)
≥ V (sk) − V (sk−1) ≥ 0.

Putting everything together yields
¿
Á
ÁÀ2β(N`(t), δ)

N`(t)
≥ max

k=2,...,D
∣V (sk) − V (sk−1)∣.

D.3 Proof of Lemma 13.

We first prove the following intermediate result, that generalizes Lemma 4 in [8].

Lemma 15. For all t ∈ N∗, the following holds

if Rt+1 = bt then Uct(t) ≤ Ubt(t)

if Rt+1 = ct then Lct(t) ≤ Lbt(t)
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Proof. Assume ct is selected (i.e. Rt+1 = ct) and Lct(t) > Lbt(t). As the confidence interval on
V (ct) is larger than the confidence intervals on V (bt) (ct is selected), this also yields Uct

(t) > Ubt
(t).

Hence
Bbt(t) = Uct

(t) − Lbt(t) > Ubt
(t) − Lct(t).

Also, by definition of ct, Uct
(t) ≥ Ub(t). Hence

Bbt(t) > max
b≠ct

Ub(t) − Lct(t) = Bct(t),

which contradicts the definition of bt. Thus, we proved by contradiction that Lct(t) ≥ Lbt(t).

A similar reasoning can be used to prove that Rt+1 = bt ⇒ Uct(t) ≤ Ubt(t).

A simple consequence of Lemma 15 is the fact that, on Et ∩ (τ > t),

(Lt+1 = `) ⇒
⎛
⎜
⎝

¿
Á
ÁÀ2β(N`(t), δ)

N`(t)
> ε

⎞
⎟
⎠
. (9)

Indeed, as the algorithm doesn’t stop after t rounds, it holds that Uct(t) −Lbt(t) > ε. If ` is the arm
selected at round t+ 1, ` = `Rt+1(t) and one can prove using Lemma 15 that URt+1(t)−LRt+1(t) > ε
(by distinguishing two cases). Finally, as Et holds, by Lemma 11, IRt+1(t) ⊆ I`(t). Hence
U`(t) −L`(t) > ε, and (9) follows using the particular form of the confidence intervals.

To complete the proof, we now show that

(Lt+1 = `) ⇒
⎛
⎜
⎝

¿
Á
ÁÀ8β(N`(t), δ)

N`(t)
> max(∆∗, V (s0) − V (s1)

⎞
⎟
⎠
. (10)

by distinguishing several cases.

Case 1: s∗ ∉ Anc(`) and Rt+1 = ct. Using that the algorithm doesn’t stop yields

Lct(t) −Ubt
(t) + 2(Uct

(t) −Lct(t)) > ε.

As Et holds, Lct(t) ≤ V (ct) = V (s1) and Ubt(t) ≥ V (bt).

Therefore, if bt = s
∗ it holds that

2(Uct
(t) − Lct(t)) > V (s∗) − V (s1) + ε.

If bt ≠ s
∗, by definition of ct one has

Uct
(t) ≥ Us∗(t) ≥ V (s∗),

hence

Lct(t) + (Uct
(t) − Lct(t)) ≥ V (s∗)

V (s1) + (Uct
(t) − Lct(t)) ≥ V (s∗).

Thus, recalling that V (s0) = V (s∗), whatever the value of bt, one obtains

2(Uct
(t) − Lct(t)) ≥ V (s0) − V (s1).

From Lemma 11 the width of Ict(t) is upper bounded by the width of I`(t), hence

2 (U`(t) − L`(t)) ≥ V (s0) − V (s1). (11)

Case 2: s∗ ∉ Anc(`) and Rt+1 = bt. As s∗ ≠ bt, by definition of ct one has

Uct
(t) ≥ Us∗(t) ≥ V (s∗).

Hence, using Lemma 15,

Ubt
(t) − Lbt(t) ≥ Uct

(t) − Lbt(t) ≥ V (s∗) − V (s1),

as Et holds. Finally, by Lemma 11,

U`(t) − L`(t) ≥ V (s0) − V (s1). (12)
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Case 3: s∗ ∈ Anc(`) and Rt+1 = bt. One has bt = s
∗. Using that the algorithm doesn’t stop yields

Lct(t) −Ubt
(t) + 2(Ubt

(t) − Lbt(t)) > ε.

As Et holds, Ubt
(t) ≤ V (s∗) and Lct(t) ≤ V (ct) ≤ V (s∗2). Therefore, if bt = s

∗ it holds that

2(Ubt(t) −Lbt(t)) > V (s∗) − V (s∗2) + ε.

and by Lemma 11
2 (U`(t) − L`(t)) ≥ V (s∗) − V (s∗2). (13)

Case 4: s∗ ∈ Anc(`) and Rt+1 = ct. One has ct = s
∗. Using Lemma 15 yields

Uct
(t) − Lct(t) ≥ Uct

(t) − Lbt(t) ≥ V (s∗) − V (s∗2),

as Et holds and V (bt) ≤ V (s∗2). Finally, by Lemma 11,

U`(t) − L`(t) ≥ V (s∗) − V (s∗2). (14)

Combining (11)-(14), we see that in all four cases

2(U`(t) − L`(t)) ≥ max(V (s∗) − V (s∗2), V (s0) − V (s1)),

as for s∗ ∉ Anc(`), V (s0) − V (s1) = V (s∗) − V (s1) ≥ V (s∗) − V (s∗2), and for s∗ ∈ Anc(`),
V (s0) − V (s1) = 0. Using the expression of the confidence intervals and recalling that ∆∗ =

V (s∗) − V (s∗2), one obtains

4

¿
Á
ÁÀβ(N`(t), δ)

2N`(t)
≥ max(∆∗, V (s0) − V (s1))

which proves (10).

D.4 Proof of Lemma 14.

Fix γ ∈ [V (s∗2), V (s∗)] and assume Et ∩ (τ > t) holds. We assume (by contradiction) that γ doesn’t
belong to ILt+1(t) nor to ILt+2(t). There are four possibilities:

• LLt+1(t) > γ and LLt+2(t) > γ. As Et holds and Lt+1 and Lt+2 are representative, it yields
that there exists two nodes s ∈ C(s0) such that Vs > γ, which contradicts the definition of γ.

• ULt+1(t) < γ and ULt+2(t) < γ. From the definition of ct+1, it yields that for all s ∈ C(s0),
Us(t) < γ and as Et holds one obtains Vs < γ for all s ∈ C(s0), which contradicts the
definition of γ.

• LLt+1(t) > γ and γ > ULt+2(t). This implies that LLt+1(t) > ULt+2(t) and that Lbt(t) >
Uct

(t) (by Lemma 11 and the fact that Lt+1 and Lt+2 are representative leaves). This yields
(τ ≤ t) and a contradiction.

• ULt+1(t) < γ and γ < LLt+2(t). This implies in particular that µ̂Lt+1(t) < µ̂Lt+2(t). Thus
V̂ (bt, t) < V̂ (ct, t), which contradicts the definition of bt.

Hence, we just proved by contradiction that there exists ` ∈ {Lt+1, Lt+2} such that γ ∈ I`(t). To
prove Lemma 14, it remains to establish the following three statements.

1. (γ ∈ ILt+1(t)) ∩ (γ ∈ ILt+2(t)) ⇒ (∃` ∈ {Lt+1, Lt+2} ∶

√
2β(t,δ)
N`(t)

> ε)

2. (γ ∈ ILt+1(t)) ∩ (γ ∉ ILt+2(t)) ⇒ (

√
2β(t,δ)
NLt+1(t)

> ε)

3. (γ ∉ ILt+1(t)) ∩ (γ ∈ ILt+2(t)) ⇒ (

√
2β(t,δ)
NLt+2(t)

> ε)
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Statement 1. As the algorithm doesn’t stop, Uct
(t) − Lbt(t) > ε. Hence

ULt+2(t) − LLt+1(t) > ε

µ̂Lt+2(t) +

¿
Á
ÁÀβ(NLt+2(t), δ)

2NLt+2(t)
− µ̂Lt+1(t) +

¿
Á
ÁÀβ(NLt+1(t), δ)

2NLt+1(t)
> ε

¿
Á
ÁÀβ(NLt+2(t), δ)

2NLt+2(t)
+

¿
Á
ÁÀβ(NLt+1(t), δ)

2NLt+1(t)
> ε

using that by definition of bt, µ̂Lt+2(t) < µ̂Lt+1(t). Hence, there exists ` ∈ {Lt+1, Lt+2} such that

¿
Á
ÁÀβ(N`(t), δ)

2N`(t)
>
ε

2
⇒

¿
Á
ÁÀ2β(t, δ)

N`(t)
> ε.

Statement 2. We consider two cases and first assume that γ ∈ ILt+1(t) and γ ≥ ULt+2(t). Using the
fact that the algorithm doesn’t stop at round t, the following events hold

(ULt+2(t) − LLt+1(t) > ε) ∩ (ULt+1(t) > γ) ∩ (ULt+2(t) ≤ γ)

⇒ (ULt+2(t) − LLt+1(t) > ε) ∩ (ULt+1(t) > γ) ∩ (ULt+2(t) − LLt+1(t) + LLt+1(t) ≤ γ)

⇒ (ULt+1(t) > γ) ∩ (LLt+1(t) ≤ γ − ε)

⇒ (ULt+1(t) − LLt+1(t) > ε)

⇒
⎛
⎜
⎝

¿
Á
ÁÀ 2β(t, δ)

NLt+1(t)
> ε

⎞
⎟
⎠
.

The second case is γ ∈ ILt+1(t) and γ ≤ LLt+2(t). Then the following holds

(ULt+2(t) − LLt+1(t) > ε) ∩ (LLt+1(t) ≤ γ) ∩ (LLt+2(t) ≥ γ)

⇒ (LLt+1(t) ≤ γ) ∩ (ULt+2(t) + LLt+2(t) − LLt+1(t) > γ + ε)

⇒ (LLt+1(t) ≤ γ) ∩
⎛
⎜
⎝

2µ̂Lt+2(t) − µ̂Lt+1(t) +

¿
Á
ÁÀ2β(NLt+1(t), δ)

2NLt+1(t)
> γ + ε

⎞
⎟
⎠

⇒ (LLt+1(t) ≤ γ) ∩
⎛
⎜
⎝
µ̂Lt+1(t) +

¿
Á
ÁÀ2β(NLt+1(t), δ)

2NLt+1(t)
> γ + ε

⎞
⎟
⎠

⇒ (ULt+1(t) − LLt+1(t) > ε) ,

where the third implication uses the fact that µ̂Lt+2(t) ≤ µ̂Lt+1(t).

Statement 3. We consider two cases and first assume that γ ∈ ILt+2(t) and γ ≤ LLt+1(t). Using the
fact that the algorithm doesn’t stop at round t, the following events hold

(ULt+2(t) − LLt+1(t) > ε) ∩ (LLt+1(t) ≥ γ) ∩ (LLt+2(t) ≤ γ)

⇒ (ULt+2(t) > γ + ε) ∩ (LLt+2(t) ≤ γ)

⇒ (ULt+2(t) − LLt+2(t) > ε)

⇒
⎛
⎜
⎝

¿
Á
ÁÀ 2β(t, δ)

NLt+2(t)
> ε

⎞
⎟
⎠
.
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The second case is γ ∈ ILt+2(t) and γ ≥ ULt+1(t). Then the following holds

(ULt+2(t) − LLt+1(t) > ε) ∩ (ULt+2(t) ≥ γ) ∩ (γ ≥ ULt+1(t))

⇒ (ULt+2(t) − (LLt+1(t) +ULt+1(t)) > ε − γ) ∩ (ULt+2(t) ≥ γ)

⇒
⎛
⎜
⎝
µ̂Lt+2(t) +

¿
Á
ÁÀ2β(NLt+2(t), δ)

2NLt+2(t)
− 2µ̂Lt+1(t) > ε − γ

⎞
⎟
⎠
∩ (ULt+2(t) ≥ γ)

⇒
⎛
⎜
⎝
−µ̂Lt+2(t) +

¿
Á
ÁÀ2β(NLt+2(t), δ)

2NLt+2(t)
> ε − γ

⎞
⎟
⎠
∩ (ULt+2(t) ≥ γ)

⇒ (ULt+2(t) − LLt+2(t) > ε) ,

where the third implication uses the fact that µ̂Lt+2(t) ≤ µ̂Lt+1(t).

E Proof of the lower bounds

E.1 Proof of Theorem 7

Theorem 7 follows from considering the best possible change of distribution λ ∈ Alt(µ). The
expected log-likelihood ratio of the observations until τ under a model parameterized by µ and a
model parameterized by λ is

Eµ[Lτ(µ,λ)] = ∑
`∈L

Eµ[N`(τ)]d(µ`, λ`),

where N`(t) is the number of draws of the leaf ` until round t. Using Lemma 1 of [15], for any event
E in the filtration generated by τ ,

Eµ[Lτ(µ,λ)] ≥ d(Pµ(E),Pλ(E)).
As the strategy is δ-correct, letting E = (ŝτ = s

∗(µ)) one has Pµ(E) ≥ 1 − δ and Pλ(E) ≤ δ (under
this model, s∗(µ) is not the best action at the root under the model parameterized by λ). Using
monotonicity properties of the Bernoulli KL-divergence, one obtains, for any λ ∈ Alt(µ),

∑
`∈L

Eµ[N`(τ)]d(µ`, λ`) ≥ d(1 − δ, δ).

Then, one can write

inf
λ∈Alt(µ)

∑
`∈L

Eµ[N`(τ)]d(µ`, λ`) ≥ d(1 − δ, δ)

Eµ[τ] inf
λ∈Alt(µ)

∑
`∈L

Eµ[N`(τ)]
Eµ[τ]

d(µ`, λ`) ≥ d(1 − δ, δ)

Eµ[τ]
⎛

⎝
sup
w∈Σ∣L∣

inf
λ∈Alt(µ)

∑
`∈L

Eµ[N`(τ)]
Eµ[τ]

d(µ`, λ`)
⎞

⎠
≥ d(1 − δ, δ),

using that ∑`∈L
Eµ[N`(τ)]

Eµ[τ]
= 1. This concludes the proof.

One can also note that for an algorithm to match the lower bound, all the inequalities above should
be equalities. In particular one would need w∗

` (µ) ≃
Eµ[N`(τ)]

Eµ[τ]
, where w∗

` (µ) is a maximizer in the
definition of T ∗(µ)−1 in (4).

E.2 Proof of Lemma 8

In the particular case of a depth-two tree with K actions for player A and M actions for player B,

T ∗(µ)−1
= sup
w∈ΣK×M

inf
λ∈Alt(µ)

K

∑
k=1

K

∑
m=1

wk,md(µk,m, λk,m).

From the particular structure of µ, the best action at the root is action i = 1. Hence

Alt(µ) = {λ ∶ ∃a ∈ {1, . . . ,M},∃i ∈ {2, . . . ,K} ∶ ∀j ∈ {1, . . . ,M}, λ1,a < λi,j}.
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It follows that

T ∗(µ)−1
= sup

w∈ΣK×M

min
a∈{1,...,M}

i∈{2,...,K}

inf
λ∶∀j,λ1,a<λi,j

K

∑
k=1

M

∑
m=1

wk,md(µk,m, λk,m)

= sup
w∈ΣK×M

min
a∈{1,...,M}

i∈{2,...,K}

inf
λ∶∀j,λ1,a<λi,j

⎡
⎢
⎢
⎢
⎣
w1,ad(µ1,a, λ1,a) +

M

∑
j=1

wi,jd(µi,j , λi,j)
⎤
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=Fa,i(µ,w)

.(15)

Indeed, in the rightmost constrained minimization problem, all the λk,m on which no constraint lie
can be set to µk,m to minimize the corresponding term in the sum. Using tools from constrained
optimization, one can prove that

Fa,i(µ,w) = inf
(λ1,a,(λi,j)j)∈C

⎡
⎢
⎢
⎢
⎣
w1,ad(µ1,a, λ1,a) +

M

∑
j=1

wi,jd(µi,j , λi,j)
⎤
⎥
⎥
⎥
⎦
,

where C is the set

C = {(µ′,µ′) ∈ [0,1]M+1
∶ ∃j0 ∈ {1, . . . ,K},∃c ∈ [µi,j0 , µ1,a] ∶ µ

′
= µ′1 = ⋅ ⋅ ⋅ = µ

′
j0 = c and µ′j = µi,j for j > j0}.

Letting H(µ′,µ′,w,w) = w1,ad(µ1,a, µ
′) +∑

M
j=1wi,jd(µi,j ,µ

′
j) one can easily show that for all

(µ′,µ′) ∈ C,
H(µ′,µ′,w,w) ≤H(µ′,µ′,w, w̃),

where w̃ is constructed from w by putting all the weight on the smallest arm:

w̃i,1 =∑
j≥1

w1,j and w̃i,j = 0 for j ≥ 2.

This is because the largest d(µi,j , c) is d(µi,1, c) as µi,1 ≤ µi,j ≤ c for j ≤ j0. Hence taking the
infimum, one obtains

Fa,i(µ,w) ≤ Fa,i(µ, w̃).

Repeating this argument for all i, one can construct w̃ such that

∀i ≥ 2, w̃i,1 =∑
j≥1

wi,j and w̃i,j = 0 for j ≥ 2

and Fa,i(µ,w) ≤ Fa,i(µ, w̃) for all a, i. Thus, the supremum in 15 is necessarily attained forw in
the set Σ̃K×M = {w ∈ ΣK,M ∶ wi,j = 0 for i ≥ 2, j ≥ 2}. It follows that

T ∗(µ)−1
= sup

w∈Σ̃M+K−1

min
a∈{1,...,M}

i∈{2,...,K}

inf
λ∶∀j,λ1,a<λi,1

[w1,ad(µ1,a, λ1,a) +wi,1d(µi,1, λi,1)]

= sup
w∈Σ̃K+M−1

min
a=1,...,M
i=2,...,K

[w1,ad(µ1,a,
w1,aµ1,a +wi,1µi,1

w1,a +wi,1
) +wi,1d(µi,1,

w1,aµ1,a +wi,1µi,1

w1,a +wi,1
)] ,

which concludes the proof.

F Inverting Bounds

Consider the exploration rate

β(s) = C +
3

2
ln (1 + ln s) where C = ln

∣L∣

δ
+ 3 ln ln

∣L∣

δ

where we assume C ≥ 1, so that β(1) = C ≥ 1. Now fix some a ≥ 1, and let us define

S = sup{s ≥ 1∣aβ(s) ≥ s} .

The goal is to get a tight upper bound on S. We claim that
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Theorem 16.

aC +
3

2
a ln(1 + ln(aC)) ≤ S ≤ aC +

3

2
a ln(1 + ln(aC))

C(1 + ln(aC))

C (1 + ln(aC)) − 3
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→1

,

where the upper bound is only non-trivial if C (1 + ln(aC)) > 3
2

, which, for example, is implied by
C > 1.23696.

Proof. The requirement aβ(s) ≥ s is monotone in s, in that it holds for small s (including s = 1) and
fails for large s. So to show the theorem it suffices to show that aβ(s) ≥ s holds at s given by the
left-hand-side, while it fails for s equal to the right-hand side.

First, we need to establish that aβ(s) ≥ s for s equal to the left-hand side expression of the theorem.
That is, we need to show

a(C +
3

2
ln(1 + ln(a(C +

3

2
ln(1 + ln(aC)))))) ≥ a(C +

3

2
ln(1 + ln(aC)))

which is equivalent (the simplification is entirely mechanical) to

aC ≥ 1

which holds by assumption. Then we need to plug in the right hand side. Here we need to show that

a(C +
3

2
ln(1 + ln(aC +

3

2
a ln(1 + ln(aC))

C(1 + ln(aC))

C (1 + ln(aC)) − 3
2

)))

≤ aC +
3

2
a ln(1 + ln(aC))

C(1 + ln(aC))

C (1 + ln(aC)) − 3
2

,

that is

ln(1 + ln(aC +
3

2
a ln(1 + ln(aC))

C(1 + ln(aC))

C (1 + ln(aC)) − 3
2

)) ≤ ln(1+ln(aC))
C(1 + ln(aC))

C (1 + ln(aC)) − 3
2

.

To show this, we use ln(1 + x) ≤ x twice to show

ln(1 + ln(aC +
3

2
a ln(1 + ln(aC))

C(1 + ln(aC))

C (1 + ln(aC)) − 3
2

))

= ln(1 + ln(aC) + ln(1 +
3

2
ln(1 + ln(aC))

(1 + ln(aC))

C (1 + ln(aC)) − 3
2

))

≤ ln(1 + ln(aC) +
3

2
ln(1 + ln(aC))

(1 + ln(aC))

C (1 + ln(aC)) − 3
2

)

= ln (1 + ln(aC)) + ln(1 +
3
2

ln(1 + ln(aC))

C (1 + ln(aC)) − 3
2

)

≤ ln (1 + ln(aC)) +

3
2

ln(1 + ln(aC))

C (1 + ln(aC)) − 3
2

=
C (1 + ln(aC))

C (1 + ln(aC)) − 3
2

ln (1 + ln(aC))

as desired.
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