Supplementary Material for ''"Train longer, generalize
better: closing the generalization gap in large batch
training regime of neural networks''

Appendix

A Derivation of eq. (6)

Note that we can write the mini-batch gradient as
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First, we consider the simpler case of sampling with replacement. In this case it easy to see that
different minibatches are uncorrelated, and we have
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and therefore

which confirms eq. (6).

Next, we consider the case of sampling without replacement. In this case the selector variables are
now different and correlated between different mini-batches (e.g., with indices ¢ and ¢ + k), since we
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cannot select previous samples. Thus, these variables s, and s:* have the following second-order
statistics
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so, if & = 0 the covariance is
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while the covariance between different minibatches (k # 0) is much smaller for M < N
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this again confirms eq. (6).

B Estimating o from random potential

The logarithmic increase in weight distance (Figure 2 in the paper) matches a “random walk on
a random potential” model with o = 2. In such a model the loss auto-covariance asymptotically
increases with the square of the weight distance, or, equivalently (Marinari et al.| |1983)), the standard
deviation of the loss difference asymptotically increases linearly with the weight distance

std 2 \JE (L (w) — L (w))? ~ [w — wol| . (1)

In this section we examine this behavior: in Figure we indeed find such a linear behavior, confirming
the prediction of our model with oo = 2.

To obtain the relevant statistics to plot eq. [I] we conducted the following experiment on Resnet44
model (He et al.} 2016). We initialized the model weights, wq, according to |Glorot & Bengio| (2010),
and repeated the following steps a 1000 times, given some parameter c:

e Sample a random direction v with norm one.

e Sample a scalar z uniformly in some range [0, ¢].

e Choose w = wg + 2v.

Save ||w — wql| and L(w).

We have set the parameter ¢ so that the maximum weight distance from initialization ||w — w|| is
equal to the same maximal distance in Figure 2 in the paper, i.e., ¢ = 10.
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Figure 1: The standard deviation of the loss shows linear dependence on weight distance (eq.
[1) as predicted by the '"random walk on a random potential" model with & = 2 we found in
the main paper. To approximate the ensemble average in eq. [I|we divided the x-axis to b bins and
calculated the empiric average in each bin. Each panel shows the resulting graph for a different value
of b.

Regime adaptation - validation error by batch size (resnet44, cifar10)
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Figure 2: Comparing regime adapted large batch training vs. a 2048 batch with no adaptation.
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Adapting batch size - learning rate vs gradient noise (resnet44, cifar10)
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Figure 3: Comparing a learning scale fix for a 2048 batch, to a multiplicative noise to the gradient of
the same scale

Baseline - distance from initial weight (resnet44, cifar10)
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Figure 4: Comparing L, distance from initial weight for different batch sizes
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