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A Proof for Theorem 1

A.1 Local approximation objective with bounded bias

In the main paper, we introduced the approximate objective J̃(π, π̃) to J(π) during our theoretical
analysis. In this section, we discuss the motivations behind this choice, referencing the prior
work (Kakade & Langford, 2002; Schulman et al., 2015).

First, the expected return J(π) of a policy π can be written as the sum of the expected return J(π̃) of
another policy π̃ and the expected advantage term between the two policies in the equation, where
Aπ̃(st, at) is the advantage of policy π̃,

J(π) = J(π̃) + Eρπ,π[Aπ̃(st, at)].

For the proof, see Lemma 1 in (Schulman et al., 2015). This expression is still not tractable to
analyze because of the dependency of unnormalized state sampling distribution ρπ on π. Kakade &
Langford (2002); Schulman et al. (2015) thus introduce a local approximation by replacing ρπ with
ρπ ,

J(π) ≈ J(π̃) + Eρπ̃,π[Aπ̃(st, at)] , J̃(π, π̃).

We can show that J(π) = J̃(π, π̃ = π) and ∇πJ(π) = ∇πJ̃(π, π̃ = π), meaning that the J(π)

and J̃(π, π̃) match up to the first order terms. Schulman et al. (2015) then uses this property,
in combination with minorization-maximization Hunter & Lange (2004), to derive a monotonic
convergence proof for a variant of policy iteration algorithm. To start our proof for Theorem 1, we
first derive the following lemma,

Lemma 1. If ζ = maxs |Āπ,π̃(s)|, then∥∥∥J(π)− J̃(π, π̃)
∥∥∥
1
≤ 2ζ

γ

(1− γ)2
Dmax
TV (π̃, π) ≤ 2ζ

γ

(1− γ)2

√
Dmax

KL (π̃, π)

Proof. We define ρπt (st) as the marginal state distribution at time t assuming that the agent follows
policy π from initial state ρ0(st) at time t = 0. Note that from the definition of ρπ, ρπ(s) =∑∞
t=0 γ

tρπt (st = s). We can use the following lemma from Kahn et al. (2016), which is adapted
from Ross et al. (2011) and Schulman et al. (2015).

Lemma 2. (Kahn et al., 2016)∥∥∥ρπt − ρβt ∥∥∥
1
≤ 2tDmax

TV (π, β) ≤ 2t
√
Dmax

KL (π, β) (1)
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Using Lemma 2, the full proof for Lemma 1 is provided below, where Āπ,π̃(s) = Eπ[Aπ̃(st, at)] and
Aπ̃(st, at) is the advantage function of π̃,∥∥∥J(π)− J̃(π, π̃)

∥∥∥
1

=
∥∥Eρπ̃ [Āπ,π̃(s)]− Eρπ [Āπ,π̃(s)]

∥∥
1

≤
∞∑
t=0

γt
∥∥∥Eρπ̃t [Āπ,π̃(s)]− Eρπt [Āπ,π̃(s)]

∥∥∥
1

≤ ζ
∞∑
t=0

γt
∥∥ρπ̃t − ρπt ∥∥1

≤ 2ζ(

∞∑
t=0

γtt)Dmax
TV (π̃, π)

= 2ζ
γ

(1− γ)2
Dmax
TV (π̃, π)

≤ 2ζ
γ

(1− γ)2

√
Dmax

KL (π, π̃).

(2)

This lemma is crucial in our theoretical analysis, as it allows us to tractably bound the biases of the
full spectrum of local IPG objectives J̃β,ν,CV (π, π̃) against J(π).

A.2 Main proof for Theorem 1

Proof. We first prove the bound for
∥∥∥J̃(π, π̃)− J̃β,ν=0,CV (π, π̃)

∥∥∥
1
. Using Lemma 2, the bound is

given below, with a similar derivation process as in Lemma 1.∥∥∥J̃(π, π̃)− J̃β,ν=0,CV (π, π̃)
∥∥∥
1

=
∥∥J(π̃) + Eρπ̃,π[Aπ̃(st, at)]− J(π̃)− Eρπ̃,π[Aπ̃(st, at)−Aπ̃w(st, at)]− Eρβ [Āπ,π̃w (st)]

∥∥
1

=
∥∥Eρπ̃ [Āπ,π̃w (s)]− Eρβ [Āπ,π̃w (s)]

∥∥
1

≤
∞∑
t=0

γt
∥∥∥Eρπ̃t [Āπ,π̃w (s)]− Eρβt [Āπ,π̃w (s)]

∥∥∥
1

≤ ε
∞∑
t=0

γt
∥∥∥ρπ̃t − ρβt ∥∥∥

1

≤ 2ε(

∞∑
t=0

γtt)Dmax
TV (π̃, β)

= 2ε
γ

(1− γ)2
Dmax
TV (π̃, β)

≤ 2ε
γ

(1− γ)2

√
Dmax

KL (π̃, β).

(3)

Given this bound, we can directly derive the bound for
∥∥∥J̃(π, π̃)− J̃β,ν=0,CV (π, π̃)

∥∥∥
1

by combining
with Lemma 1, ∥∥∥J(π)− J̃β,ν=0,CV (π, π̃)

∥∥∥
1∥∥∥J(π)− J̃(π, π̃) + J̃(π, π̃)− J̃β,ν=0,CV (π, π̃)

∥∥∥
1

≤
∥∥∥J̃(π, π̃)− J̃β,ν=0,CV (π, π̃)

∥∥∥
1

+
∥∥∥J(π)− J̃(π, π̃)

∥∥∥
1

≤ 2
γ

(1− γ)2

(
ε
√
Dmax

KL (π̃, β) + ζ
√
Dmax

KL (π, π̃)

)
(4)
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B Algorithm with Monotonic Convergence Property and its Proof

Algorithm 1 Policy iteration with non-decreasing returns J(π) and bounded off-policy sampling
1: Initialize policy π0, and critic Qw
2: repeat
3: Compute all advantage values Aπi(s, a), and choose any off-policy distribution βi
4: Update critic Qw using any method (no requirement for performance)
5: Solve the constrained optimization problem:

6: πi+1 ← arg maxπ J̃
βi,ν=0,CV (π, πi)− C

(
ζ
√
Dmax
KL (π, πi) + ε

√
Dmax
KL (πi, βi)

)
7: subject to

∑
a π(a|s) = 1 ∀s

8: where C = 2γ
(1−γ)2 , ζ = maxs |Āπ,π̃(s)|, ε = maxs |Āπ,π̃w (s)|

9: until πi converges.

Algorithm 1 is a special case of IPG, J̃βi,ν=0,CV (π, πi). We can prove that Algorithm 1 guarantees
monotonic improvement, even with off-policy sample usage and imperfect critic Qw or Aw. This is
an interesting result, since most of the prior work have shown such property only for purely on-policy
policy gradient methods Kakade & Langford (2002); Schulman et al. (2015). We begin by first
introducing the following corollary,
Corollary 1.

J(π) ≥M(π, π̃) ≥Mβ,ν=0,CV (π, π̃), J(π̃) = M(π̃, π̃) = Mβ,ν=0,CV (π̃, π̃) (5)
where

M(π, π̃) = J̃(π, π̃)− Cζ
√
Dmax
KL (π, π̃)

Mβ,ν=0,CV (π, π̃) = J̃β,ν=0(π, π̃)− C(ζ
√
Dmax
KL (π, π̃) + ε

√
Dmax
KL (π̃, β))

C =
2γ

(1− γ)2
, ζ = max

s
|Āπ,π̃(s)|, ε = max

s
|Āπ,π̃w (s)|

Proof. It follows from Theorem 1 in the main text and Theorem 1 in Schulman et al. (2015).
J(π̃) = Mβ,ν=0,CV (π̃, π̃) since ζ = ε = 0 when π = π̃.

Given Corollary 1, we use minorization-maximization (MM) (Hunter & Lange, 2004) to de-
rive Algorithm 2, a policy iteration algorithm that allows using off-policy samples while guar-
anteeing monotonic improvement on J(π). MM suggests that at each iteration, by maximiz-
ing the lower bound, or the minorizer, of the objective, the algorithm can guarantee mono-
tonic improvement: J(πi+1) ≥ Mβi,ν=0,CV (πi+1, πi) ≥ Mβi,ν=0,CV (πi, πi) = J(πi), where
πi+1 ← arg maxπM

βi,ν=0,CV (π, πi). Importantly, the algorithm guarantees monotonic improve-
ment regardless of the off-policy distribution βi or the performance of the critic Qw. This result is a
step toward achieving off-policy policy gradient with convergence guarantee of on-policy algorithms.1

We compare our theoretical algorithm with Algorithm 1 in Schulman et al. (2015), which guarantees
monotonic improvement in a general on-policy policy gradient algorithm. The main difference is the
additional term, −Cε

√
Dmax
KL (π̃, β) to the lower bound. Dmax

KL (π̃, β) is constant with respect to π,
while ε = 0 if π = π̃ and ε ≥ 0 if otherwise. This suggests that as β becomes more off-policy, the
gap between the lower bound and the true objective widens, proportionally to

√
Dmax
KL (π̃, β). This

may make each majorization step end in a place very close to where it started, i.e. πi+1 very close to
πi, and slow down learning. This again suggests a trade-off that comes in as off-policy samples are
used.

C Proof for Theorem 2

We follow the same procedure as the proof for Theorem 1, where we first derive bounds between
J̃(π, π̃) and the other local objectives, and then combine the results with Lemma 1.

1Schulman et al. (2015) applies additional bound, ε ≥ 2ε′
√
Dmax
KL (π, π̃) where ε′ = maxs,a |Aπ̃w(s, a)| to

remove dependency on π. In our case, we cannot apply such bound on ζ, since then the inequality in Theorem 1
is still satisfied but the equality is violated, and thus the algorithm no longer guarantees monotonic improvement.
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To begin the proof, we first derive the bound for the special case where ν = 1. Having ν = 1, we
remove the likelihood ratio policy gradient term, and get the following gradient expression,

∇θJ(θ) ≈ Eρβ [∇θQ̄πw(st)]. (6)

This is an off-policy actor-critic algorithm, and is closely connected to DDPG (Lillicrap et al., 2016),
except that it does not use target policy network and its use of a stochastic policy enables on-policy
exploration, trust-region policy updates, and no heuristic additive exploration noise.

We can introduce the following bound on the local objective J̃β,ν=1(π, π̃), whose policy gradient
equals 6 at π = π̃, similarly to the proof for Theorem 1 in the main text.

Corollary 2. If δ = maxs,a |Aπ̃(s, a)−Aπ̃w(s, a)|, ε = maxs |Āπ,π̃w (s)|, and

J̃β,ν=1(π, π̃) = J(π̃) + Eρβ [Āπ,π̃w (st)] (7)

then,

∥∥∥J̃(π, π̃)− J̃β,ν=1(π, π̃)
∥∥∥
1
≤ δ

1− γ
+ 2ε

γ

(1− γ)2

√
Dmax

KL (π̃, β) (8)

Proof. We note that

∥∥∥J̃(π, π̃)− J̃β,ν=1(π, π̃)
∥∥∥
1

=
∥∥∥Eρπ̃,π[Aπ̃(st, at)−Aπ̃w(st, at)] + J̃(π, π̃)− J̃β,ν=0(π, π̃)

∥∥∥
1

≤
∥∥Eρπ̃,π[Aπ̃(st, at)−Aπ̃w(st, at)]

∥∥
1

+
∥∥∥J̃(π, π̃)− J̃β,ν=0(π, π̃)

∥∥∥
1

≤
∞∑
t=0

γt
∥∥∥Eρπ̃t ,π[Aπ̃(st, at)−Aπ̃w(st, at)]

∥∥∥
1

+
∥∥∥J̃(π, π̃)− J̃β,ν=0(π, π̃)

∥∥∥
1

≤ δ
∞∑
t=0

γt +
∥∥∥J̃(π, π̃)− J̃β,ν=0(π, π̃)

∥∥∥
1

=
δ

1− γ
+
∥∥∥J̃(π, π̃)− J̃β,ν=0(π, π̃)

∥∥∥
1

≤ δ

1− γ
+ 2ε

γ

(1− γ)2

√
Dmax

KL (π̃, β),

(9)

where the proof uses Theorem 1 at the last step.

Given Corollary 2 and Theorem 1, we are ready to prove the two bounds in Theorem 2.
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Proof.∥∥∥J̃(π, π̃)− J̃β,ν(π, π̃)
∥∥∥
1

=
∥∥J(π̃) + Eρπ̃,π[Aπ̃(st, at)]− J(π̃)− (1− ν)Eρπ̃,π[Aπ̃(st, at)]− νEρβ [Āπ,π̃w (st)]

∥∥
1

= ν
∥∥Eρπ̃,π[Aπ̃(st, at)]− Eρβ [Āπ,π̃w (st)]

∥∥
1

= ν
∥∥Eρπ̃,π[Aπ̃(st, at)]− Eρπ [Āπ,π̃w (st)] + Eρπ [Āπ,π̃w (st)]− Eρβ [Āπ,π̃w (st)]

∥∥
1

≤ ν
∥∥Eρπ̃,π[Aπ̃(st, at)]− Eρπ [Āπ,π̃w (st)]

∥∥
1

+ ν
∥∥Eρπ [Āπ,π̃w (st)]− Eρβ [Āπ,π̃w (st)]

∥∥
1

= ν
∥∥Eρπ̃,π[Aπ̃(st, at)− Āπ̃w(st, at)]

∥∥
1

+ ν
∥∥Eρπ [Āπ,π̃w (st)]− Eρβ [Āπ,π̃w (st)]

∥∥
1

≤ νδ

1− γ
+ 2ε

νγ

(1− γ)2

√
Dmax

KL (π̃, β)∥∥∥J̃(π, π̃)− J̃β,ν,CV (π, π̃)
∥∥∥
1

=
∥∥J(π̃) + Eρπ̃,π[Aπ̃(st, at)]− J(π̃)− (1− ν)Eρπ̃,π[Aπ̃(st, at)− Āπ̃w(st, at)]− Eρβ [Āπ,π̃w (st)]

∥∥
1

=
∥∥ν(Eρπ̃,π[Aπ̃(st, at)]− Eρπ [Āπ,π̃w (st)]) + Eρπ [Āπ,π̃w (st)]− Eρβ [Āπ,π̃w (st)]

∥∥
1

≤ ν
∥∥Eρπ̃,π[Aπ̃(st, at)]− Eρπ [Āπ,π̃w (st)]

∥∥
1

+
∥∥Eρπ [Āπ,π̃w (st)]− Eρβ [Āπ,π̃w (st)]

∥∥
1

≤ νδ

1− γ
+ 2ε

γ

(1− γ)2

√
Dmax

KL (π̃, β).

(10)

We combine these bounds with Lemma 1 to conclude the proof.

D Control Variates for Policy Gradient

In this Section, we describe control variate choices for policy gradient methods other than the linear
case presented in Q-Prop (Gu et al., 2017).

D.1 Reparameterized Critic Control Variate

If the action is continuous and the policy is a simple distribution such as a Gaussian, one option
is to use the full Qw as the control variate and use Monte Carlo to estimate its expectation with
respect to the policy. A significant reduction in the variance could still be possible by applying the
reparameterization trick (Kingma & Welling, 2014) on the correction term. For example, given a
univariate Gaussian policy πθ(at|st) = N (µθ(st), σθ(st)),

Q̄πw(st) = Eπ[Qw(st, at)] = Eε∼N (0,1)[Qw(st, µθ(st) + εσθ(st))]

≈ 1

m

m∑
i=1

Qw(st, µθ(st) + εiσθ(st)).
(11)

This can be applied for multivariate Gaussian policies and any other reparametrizable action distribu-
tions (Kingma & Welling, 2014).

D.2 Discrete Critic Control Variate

For a simple categorical action distribution, computing the expectation of the Q-function under the
stochastic policy is straight-forward. Let πθ(st) ∈ Rk denote a probability vector over k discrete
actions, andQw(st) ∈ Rk denote the action-value function for the k actions, as in DQN (Mnih et al.,
2015), the correction term to be differentiated is,

Q̄πw(st) = πθ(st)
T ·Qw(st). (12)

D.3 NAF Critic Control Variate

Continuous control problems often parametrize the policy as a multivariate Gaussian. In such case,
we may propose a critic that is quadratic with respect to the action, and get analytic expectation.
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For example, given πθ(at|st) = N (µθ(st),Σθ(st)), the quadratic Qw from Normalized Advantage
Function (NAF) (Gu et al., 2016) can be used as the Q-function parametrization,

Qw(st, at) = Aw(st, at) + Vw(st)

Aw(st, at) = −1

2
(at − µw(st))

TPw(st)(at − µw(st)).
(13)

The correction term can then be computed analytically, without sampling required as in reparametrized
critic control variates in Section D.1.

Q̄πw(st) = Vw(st)−
1

2
Tr(Pw(st)Σθ(st))

− 1

2
(µθ(st)− µw(st))

TPw(st)(µθ(st)− µw(st)).

(14)

E Supplementary Experimental Details

E.1 Hyperparameters

GAE(λ = 0.97) (Schulman et al., 2016) is used for Â estimation. Trust-region update in TRPO is used
as the policy optimizer (Schulman et al., 2015). The standard Q-fitting routine from DDPG (Lillicrap
et al., 2016) is used for fitting Qw, where Qw is trained with batch size 64, using experience replay of
size 1e6, and target network with τ = 0.001. ADAM (Kingma & Ba, 2014) is used as the optimizer
for Qw. Policy network parametrizes a Gaussian policy with πθ(at|st) = N (µθ(st),Σθ), where µθ
is a two-hidden-layer neural network of size 100− 50 and tanh hidden nonlinearity and linear output,
and Σθ is a diagonal, state-independent variance. For DDPG, the policy network is deterministic
and additionally has tanh activation at the output layer. The critic function Qw is a two-hidden-layer
neural network of size 100−100 with ReLU activation. For IPG methods with the control variates, we
further explored the standard and conservative variants, the technique proposed in Q-Prop (Gu et al.,
2017), and the Taylor expansion variant with the reparametrized variant discussed in Section D.1.
For the reparameterized control variates, we use Monte Carlo sample size m = 1.

The trust-region step size for policy update is fixed to 0.1 for HalfCheetah-v1 and Humanoid-v1, and
0.01 for Ant-v1 and Walker2d-v1, while the learning rate for ADAM in critic update is fixed to 1e−4

for HalfCheetah-v1, Ant-v1, Humanoid-v1, and 1e−3 for Walker2d-v1. Those two hyperparameters
are found by first running TRPO and DDPG on each domain, and picking the ones that give best
performance for each domain. These parameters are fixed throughout the experiment to ensure fair
comparisons.

As in the Q-Prop implementation (Gu et al., 2017), the residual learning signal in the first term
is normalized to be zero mean and unit variance. This introduces additional bias to the gradient
estimator, but the bias can be theoretically analyzed by substituting the bounds with new ν′ = 1− 1−ν

σ
in the IPG expressions where σ is the empirical standard deviation of the (residual) learning signal.

The plots in the main text present the mean returns as solid lines, scatter plots of all runs in the
background to visualize variability. For X-axis, one “episode" corresponds to 1000 transitions, which
is the default maximum episode length for all domains in our experiments. Importantly, “Episodes”
do not correspond to actual numbers of episodes taken for Ant-v1, Walker-v1, and Humanoid-v1,
since these environments have termination conditions.

E.2 Additional Plot

Figure 1 shows additional plot on Humanoid-v1.

6



Figure 1: IPG-ν = 0.2-π-CV vs Q-Prop and TRPO on Humanoid-v1 with batch size 10000 in the
first 10000 episodes. IPG-ν = 0.2-π-CV, with a small difference of ν = 0.2 multiplier, out-performs
Q-Prop. All these methods have stable, monotonic policy improvement. The experiment is cut at
10000 episodes due to heavy compute requirement of Q-Prop and IPG methods, mostly from fitting
the off-policy critic.
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