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Abstract

This supplementary document contains the proofs of propositions, lemmas, and1

theorems.2

A Extended proofs3

A.1 Additional notation4

In the following proofs we will use some additional notation which we introduce here. Define the5

random variables6

Zs(j1, j2) = logHs(j1, j2), Hs(j1, j2) =
f(Y (s), j1, w(s))

f(Y (s), j2, w(s))

so as that7

St(j1, j2) = log
νj1(t)

νj2(t)
=
∑
s<t

Zs(j1, j2),

Let V (j1, j2) denote the variance of Zs(j1, j2), and8

V = max
j1,j2∈J

V (j1, j2).

Note that ∆w ≤ ∆M < 1, implies that V <∞.9

The quantity I(j∗) captures the maximal information attainable from the system when the incoming10

job type is j∗,11

I(j∗) = max
w∈W
{
∑
j∈J

I(j∗, j, w)}, I(j∗, j, w) =

{
∆w log

(
1+∆w

1−∆w

)
, j ∈ Jw,−j∗ ,

0, j ∈ Jw,+j∗ .

The term σ(j∗) is the maximal slack given that the incoming job type is j∗, and denotes how12

accurately αw approximates qw,j∗ , specifically13

σ(j∗) = max
w∈W
{qw,j∗ − αw}.

A.2 Proof of Theorem 114

As stated in Section 3, the proof is based on showing that15

• If P{ĵ 6= j∗} is small, then
∑
j 6=j∗ S(j∗, j) is large with high probability.16
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• If t is small, then
∑
j 6=j∗ St(j

∗, j) is small with high probability.17

These properties will be shown respectively in Proposition 1(S) and 2(S).18

Proposition 1 (S). It holds that19

P
{ ∑
j 6=j∗

S(j∗, j) < (J − 1) log
1− δ
δ

}
≤ P{νj∗(T ∗) ≤ δ} =: γ(δ).

Proof. Denote the event B =
{∑

j 6=j∗ S(j∗, j) < (J − 1) log 1−δ
δ

}
, and we aim to show that20

P{B|ĵ = j∗} = 0. It holds that21

ĵ = j∗ ⇒ νj∗(T
∗)

νj(T ∗)
>

1− δ
δ

, ∀j 6= j∗

⇒ Sj∗,j > log
1− δ
δ

, ∀j 6= j∗

⇒
∑
j 6=j∗

Sj∗,j > (J − 1) log
1− δ
δ
⇒ B̄,

and therefore P{B|ĵ = j∗} = 0. We conclude, since22

P{B} = P{B|ĵ 6= j∗}P{ĵ 6= j∗}+ P{B|ĵ = j∗}︸ ︷︷ ︸
=0

P{ĵ = j∗}

= P{B|ĵ 6= j∗}P{ĵ 6= j∗} ≤ P{ĵ 6= j∗} ≤ P{νj∗(T ∗) ≤ δ}.
23

Before the proof of Proposition 2(S), observe that the notation in Appendix A.1 are required.24

Proposition 2 (S). Given ε > 0, it holds that25

P
{

max
t≤T

∑
j 6=j∗

St(j
∗, j) ≥ TK(ε)

}
≤ (J − 1)2V

Tε2
,

for every T > 0, where26

K(ε) = I(j∗) + 2σ(j∗)(J − 1) log
(1 + ∆M

1−∆M

)
+ ε.

Proof. Let us rewrite St(j∗, j) as follows27

St(j
∗, j) =

∑
s≤t

(
Zs(j

∗, j)− E[Zs(j
∗, j)]

)
+
∑
s≤t

(
E[Zs(j

∗, j)]− I(j∗, j, w(s))
)

+
∑
s≤t

I(j∗, j, w(s))

=M1,t(j
∗, j) +M2,t(j

∗, j) +M3,t(j
∗, j),

and we analyze these three terms separately.28

The last term, by definition of I(j∗) is such that29 ∑
j 6=j∗

M3,t(j
∗, j) =

∑
s≤t

∑
j 6=j∗

I(j∗, j, w(s)) ≤ tI(j∗) ≤ TI(j∗).

The second term is such that30

M2,t(j
∗, j) =

∑
s≤t

(
E[Zs(j

∗, j)]− I(j∗, j, w(s))
)

≤
∑
s≤t

(2qw(s),j∗ − 1−∆w(s)) log
1 + ∆w(s)

1−∆w(s)

≤ 2tσ(j∗) log
1 + ∆M

1−∆M
≤ 2Tσ(j∗) log

1 + ∆M

1−∆M
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hence31 ∑
j 6=j∗

M2,t(j
∗, j) ≤ T (J − 1)2σ(j∗) log

1 + ∆M

1−∆M

It then holds that32 ∑
j 6=j∗

M1,t(j
∗, j) +M2,t(j

∗, j) +M3,t(j
∗, j) ≥ TK(ε)

implies that
∑
j 6=j∗M1,t(j

∗, j) ≥ Tε, and therefore33

P{max
t≤T

∑
j 6=j∗

St(j
∗, j) ≥ TK(ε)} ≤ P

{
max
t≤T

∑
j 6=j∗

M1,t(j
∗, j) ≥ Tε

}
Now, observe that

∑
j 6=j∗M1,t(j

∗, j) is a L2-martingale. Hence, we can apply Doob’s inequality to34

obtain35

P
{

max
t≤T

∑
j 6=j∗

M1,t(j
∗, j) ≥ Tε

}
≤ H

T 2ε2

where36

H = E
[(∑

t≤T

∑
j 6=j∗

(
zs(j

∗, j)− E[zs(j
∗, j)]

))2]
≤ T (J − 1)2V.

Hence, we conclude that37

P{max
t≤T

∑
j 6=j∗

St(j
∗, j) ≥ TK(ε)} ≤ (J − 1)2V

Tε2
.

38

Proof. (of Theorem 1.) Fix ε > 0 and define39

tδ =
(J − 1)

K(ε)
log

1− δ
δ

where K(ε) is defined in Proposition 2(S). Due to the law of total probability, it holds that40

P{T ∗ ≤ tδ} ≤P{T ∗ ≤ tδ,
∑
j 6=j∗

S(j∗, j) ≥ (J − 1) log
1− δ
δ
}

+ P{
∑
j 6=j∗

S(j∗, j) < (J − 1) log
1− δ
δ
}.

By means of Proposition 2(S), the first term can be bounded as follows41

P{T ∗ ≤ tδ,
∑
j 6=j∗

S(j∗, j) ≥ (J − 1) log
1− δ
δ
} ≤ P

{
max
t≤tδ

∑
j 6=j∗

St(j
∗, j) ≥ tδK(ε)

}
≤ (J − 1)2V

tδε2
,

where the first inequality follows from the definition of tδ . Further, the second term can be bounded42

via Proposition 1(S)43

P{
∑
j 6=j∗

S(j∗, j) < log(J − 1)
1− δ
δ
} ≤ P{νj∗(T ∗) ≤ δ} = γ(δ).

These bounds together yield44

P{T ∗ ≤ tδ} ≤ κ(δ), κ(δ) := γ(δ) +
(J − 1)2V

tδε2
,
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and we conclude by observing that45

E[T ∗] ≥ E[T ∗|T ∗ > tδ]P{T ∗ > tδ}
≥ tδ(1− P{T ∗ ≤ tδ}) ≥ tδ

(
1− κ(δ)

)
.

Note that since limδ→0 γ(δ) = 0 and limδ→0 tδ =∞, it holds that46

lim
δ→0

κ(δ) = 0.

Therefore there exists δ̄ > 0 such that for every δ < δ̄, it holds that κ(δ) < 1/2. Hence, for every47

δ < δ̄, it holds that48

E[T ∗] ≥ 1

2
tδ =

(J − 1)

2K(ε)
log

1− δ
δ
≥ 1

2
(
∆M + 2σ(j∗)

)
log
(

1+∆M

1−∆M

)
+ 2ε

J−1

) log
1− δ
δ

since49

K(ε) ≤ (J − 1)
(
∆M + 2σ(j∗)

)
log
(1 + ∆M

1−∆M

)
+ ε.

50

A.3 Control of the belief vector evolution51

We now control the ratio between coordinates of the belief vector under the IB policy. Specifically, at52

a certain time t, we bound the probability that νj(t) > νj∗(t), and investigate how this probability53

evolves with t.54

The first proposition presents the bound and is based on a coupling argument.55

Proposition 3 (S). Under the IB update policy, for every j 6= j∗, it holds that56

P{νj
∗(t)

νj(t)
≤ ε} ≤ ε, ∀ε > 0, t > 0.

A Bayesian coupled system. We first introduce an alternative way to describe the IB update rule. At57

time t, sample a value U(t) from a uniform random variable in [0, 1]. Assume to have chosen the58

worker-class w(t) ∈ W , then59

νj(t+ 1) =
f(y(t), j, w(t))νj(t)∑
i∈J f(y(t), i, w(t))νi(t)

,

where60

f(y(t), j, w(t)) =

{
αw(t), y(t) = gw(t),j ,

1− αw(t), y(t) = −gw(t),j ,
y(t) =

{
gw(t),j∗ , U(t) < qw(t),j∗ ,

−gw(t),j∗ , U(t) ≥ qw(t),j∗ .

We now introduce a coupled belief-process µ(t), which evolves in parallel with ν(t) according to the61

following rule62

µj(t+ i) =
f(yp(t), j, w(t))µj∑
i∈J f(yp(t), i, w(t))µi

, (1)

where63

yp(t) =


y(t), U(t) < αw(t),

−y(t), U(t) ∈ [αw(t), qw(t),j∗),

y(t), U(t) ≥ qw(t),j∗ .

=

{
gw(t),j∗ , U(t) < αw(t),

−gw(t),j∗ , U(t) ≥ αw(t).

The peculiarity of the µ(t) belief vector is that f(yp(t), j, w(t)) is the probability of having response64

yp(t) in the pessimistic system given where qw,j = αw for every w ∈ W and j ∈ J . Hence, µ(t) is65

updated according to the Bayesian update rule and therefore it represents the real posterior probability66

vector in the pessimistic fictitious scenario.67

This parallel process is introduced due to the following Lemma.68
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Lemma 1 (S). If ν(0) = µ(0), then69

νj∗(t)

νj(t)
≥ µj∗(t)

µj(t)
, ∀ t ≥ 0.

Proof. Observe that if w(t) ∈ Wj∗,j70

νj∗(t+ 1)

νj(t+ 1)
=
νj∗(t)

νj(t)
×

{ 1+∆w(t)

1−∆w(t)
, if U(t) ≤ qw(t),j∗

1−∆w(t)

1+∆w(t)
, if U(t) > qw(t),j∗

and71

µj∗(t+ 1)

µj(t+ 1)
=
µj∗(t)

µj(t)
×

{ 1+∆w(t)

1−∆w(t)
, if U(t) ≤ αw(t)

1−∆w(t)

1+∆w(t)
, if U(t) > αw(t).

on the other hand, if w(t) /∈ Wj∗,j , it holds that72

νj∗(t+ 1)

νj(t+ 1)
=
νj∗(t)

νj(t)
,

µj∗(t+ 1)

µj(t+ 1)
=
µj∗(t)

µj(t)
.

These relations conclude the proof together with the initial condition ν(0) = µ(0).73

Proof of Proposition 3(S). From Lemma 1(S) it follows immediately that74

P{νj
∗(t)

νj(t)
≤ β} ≤ P{µj

∗(t)

µj(t)
≤ β},

and define Bt,j∗,j the event75

Bt,j∗,j =
{µj∗(t)
µj(t)

≤ β
}
.

Observe that, over Bt,j∗,j , it holds that76 ∏
s<t

f(yp(s), j∗, w(s)) ≤ β
∏
s<t

f(yp(s), j, w(s)).

Hence,77

P{Bt,j∗,j |j∗} =

∫
Bt,j

∏
s<t

f(yp(s), j∗, w(s))d
(

(yp(1), w(1)), . . . , (yp(t− 1), w(t− 1))
)

≤β
∫
Bt,j

∏
s<t

f(yp(s), j, w(s))d
(

(yp(1), w(1)), . . . , (yp(t− 1), w(t− 1))
)

=βP{Bt,j∗,j |j} ≤ β.

This result indicates how likely it is that we are on the wrong path, i.e., νj∗(t) should not be lower78

than νj(t). The next proposition gives us a more explicit bound, however it depends on the sequence79

of actions chosen up to time t.80

Proposition 4 (S). Under the IB update policy, for every j 6= j∗, it holds that81

P{νj
∗(t)

νj(t)
< M} ≤ (1 +M)

(
1−∆2

m

)|Wj∗,j(t)|/2, ∀M > 0. (2)

where82

|Wj∗,j(t)| = |{s < t, w(s) ∈ Wj∗,j}|.

Proof. According to the definitions in Appendix A.1, it holds that83

P{νj
∗(t)

νj(t)
≤M} = P{St(j∗, j) ≤ logM}.
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For γ ∈ [−1, 0], it holds that84

P{St(j∗, j) ≤ logM} = P{St(j∗, j) ≤ 0}+ P{St(j∗, j) ∈ (0, logM ]}

≤ E[eγSt(j
∗,j)]

E[eγSt(j∗,j)|St(j∗, j) ≤ 0]
+

E[eγSt(j
∗,j)]

E[eγSt(j∗,j)|St(j∗, j) ∈ (0, logM ]]

≤ E[eγSt(j
∗,j)] +

E[eγSt(j
∗,j)]

e− logM
= E[eγSt(j

∗,j)](1 +M).

We now consider H̃s(γ; j∗, j) = E
[(
Hs(j

∗, j)
)γ]

. In casew(s) /∈ Wj∗,j , it holds thatHs(j
∗, j) = 185

with probability 1, and therefore H̃s(γ; j∗, j) = 1 for every γ ∈ [−1, 0]. On the other hand, consider86

the case where w(s) = w ∈ Wj∗,j . Then, for γ = −1, it holds that87

H̃s(−1; j∗, j) =qw,j∗
( αw

1− αw
)−1

+ (1− qw,j∗)
(1− αw

αw

)−1

which is lower or equal than 1 since qw,j∗ ≥ αw > 1/2. Moreover, note that H̃s(0; j∗, j) = 1 and88

since H̃s(·; j∗, j) is a convex function, it holds that H̃s(−1/2; j∗, j) < 1. Hence, if w(s) ∈ Wj∗,j ,89

it holds90

E
[(
Hs(j

∗, j)
)−1/2]

= qw,j∗

√
1− αw
αw

+ (1− qw,j∗)
√

αw
1− αw

≤ αw
√

1− αw
αw

+ (1− αw)

√
αw

1− αw
= 2
√
αw
√

1− αw.

Finally, observe that91

2
√
αw
√

1− αw =
√

1−∆2
w ≤

√
1−∆2

m

The proof is concluded by observing that92

1

1 +M
P{νj

∗(t)

νj(t)
≤M} ≤ E[e−St(j

∗)/2] =
∏
s<t

E
[(
Hs(j

∗, j)
)−1/2

]
=
∏
s<t

H̃s(1/2; j∗, j) =
∏

s<t,w(s)∈Wj∗,j

H̃s(1/2; j∗, j)

≤
(
1−∆2

m

)|Wj∗,j(t)|/2.

93

The argument in the above proof is similar to [1, Lemma 1]. The important difference is that in [1]94

every action is able to distinguish hypotheses j∗ and j, and therefore the exponent on the right-hand-95

side of (2) is t in that case, instead of |Wj∗,j(t)|. Our model only satisfies Assumption 2; however if96

a given action selection policy continues exploring each pairs of hypotheses, we deduce the following97

corollary.98

Corollary 1. It holds that99

lim
t→∞

|Wj∗,j(t)| =∞ ⇒ lim
t→∞

P{νj
∗(t)

νj(t)
< M} = 0 ∀M > 0.

As a consequence of Corollary 1, we deduce that any candidate policy for action selection shouldn’t100

have the property where there exists t̄ > 0 and j̄ ∈ J such that w(s) /∈ Wj̄,j∗ for all s ≥ t̄. Indeed,101

in such a case that policy would not be able to completely distinguish j̄ from the true hypothesis j∗.102

A.4 Proof of Theorem 2103

Before the actual proof of Theorem 2 we need to show that, by using the IBAG algorithm, the decision104

maker is expected to obtain a positive amount of information at each step.105
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Proposition 5 (S). Under the IBAG, there exists K > 0 such that106

E[Ut+1 − Ut] ≥ K,
where107

Ut = log
νj∗(t)

1− νj∗(t)
.

Proof. Denote by wD = wD(t) the class of workers chosen by the IBAG algorithm at step t, and by108

νj∗ = νj∗(t). Observe that109

E[Ut+1 − Ut]

= E[log
f(Yt, j

∗, wD)∑
j 6=j∗ f(Yt,j,wD)νj(t)∑

j 6=j∗ νj(t)

]

= qwD,j∗ log
αwD

αwD −
∆wDνwD,−j∗

1−νj∗

+ (1− qwD,j∗) log
1− αwD

1− αwD +
∆wDνwD,−j∗

1−νj∗

≥ αwD log
αwD

αwD −
∆wDνwD,−j∗

1−νj∗

+ (1− αwD ) log
1− αwD

1− αwD +
∆wDνwD,−j∗

1−νj∗
110

=DKL

((1 + ∆wD

2
,

1−∆wD

2

)
‖
(1 + ∆wD

2
−

∆wDνwD,−j∗

1− νj∗
,

1−∆wD

2
+

∆wDνwD,−j∗

1− νj∗
))

≥DKL

((1 + ∆m

2
,

1−∆m

2

)
‖
(1 + ∆m

2
−∆m νwD,−j∗

1− νj∗
,

1−∆m

2
+ ∆m νwD,−j∗

1− νj∗
))

=:K(νwD,−j∗ , νj∗) ≥ 0

where DKL(·‖·) denotes the Kullback-Leibler divergence. Observe that111

∂K(x, y)

∂x
≥ 0,

∂K(x, y)

∂y
≥ 0,

and we aim to bound K(x, y) away from zero with high probability. We fix ν̃ < 1/J and distinguish112

two possible cases:113

114

Case 1: The decision maker is in an explorative phase, i.e., it does not have a clear feeling about115

which type the incoming job is. In this phase, there exists w̄ ∈ W such that116

ν−w̄ ≥ ν̃.
This yields that117

νj∗ ≥ 0, νwD,−j∗ ≥ ν−wD ≥ b̃ν−w̄ ≥ b̃ν̃,
where b̃ is defined in Lemma 3(S) which is proved in Appendix B. Therefore118

K(νwD,−j∗ , νj∗) ≥ K(b̃ν̃, 0) > 0.

Case 2: The decision maker is in an exploitative phase, i.e., it does have a clear feeling about which119

type the incoming job is. In this phase, for every w ∈ W , it holds that120

ν−w < ν̃.

The following lemma states that indeed in this case there is a job-type which is clearly the most likely121

type of the incoming job. The proof is provided in Appendix B.122

Lemma 2 (S). If ν−w < 1
J for every w ∈ W , then there exists j̄ ∈ J such that123 ⋂

J+w = {j̄}, J+w =

{
Jw, if

∑
j∈Jw νj ≥

∑
j /∈Jw νj ,

J \ Jw, if
∑
j∈Jw νj <

∑
j /∈Jw νj .

7



At this point, we distinguish two subcases:124

2a) Assume j̄ = j∗. It means that we are on the correct path towards the end of the learning125

process, and126

νwD,−j∗ = ν−wD , νj∗ ≥ 1− J − 1

b̃
ν−wD ,

where the second relation holds due to Lemma 3(S) and127

1 = νj∗ +
∑
j 6=j∗

νj ≤ νj∗ +
∑
j 6=j∗

ν−w(j) ≤ νj∗ + (J − 1)
ν−wD

b̃
.

Hence,128

K(νwD,−j∗ , νj∗(t)) ≥ K(ν−wD , 1−
J − 1

b̃
ν−wD ) = K(1, 1− J − 1

b̃
) > 0.

2b) Assume j̄ 6= j∗. It means that we are on the wrong path towards the end of the learning129

process, and we would like to show that this is unlikely to happen. Denote by w(j) a class130

of workers belonging toWj,j̄ , it holds that131

νj∗(t) < ν−w(j∗) ≤ ν̃, νj̄(t) ≥ 1− (J − 1)ν̃,

since132

1 = νj̄ +
∑
j 6=j̄

νj ≤ νj̄ +
∑
j 6=j̄

ν−w(j) ≤ νj̄ + (J − 1)ν̃.

Therefore133
νj∗(t)

νj̄(t)
≤ ν̃

1− (J − 1)ν̃

and Proposition 1 yields that134

P
{νj∗(t)
νj̄(t)

≤ ν̃

1− (J − 1)ν̃

}
≤ ν̃

1− (J − 1)ν̃

Hence in this second phase, we obtain that135

E[Ut+1 − Ut] = E[Ut+1 − Ut|j̄ = j∗]P{j̄ = j∗}+ E[Ut+1 − Ut|j̄ 6= j∗]P{j̄ 6= j∗}
≥ E[Ut+1 − Ut|j̄ = j∗]P{j̄ = j∗}

≥ E[Ut+1 − Ut|j̄ = j∗](1− P
{νj∗(t)
νj̄(t)

≤ ν̃

1− (J − 1)ν̃

}
)

≥ K
(
1, 1− J − 1

b̃

) 1− Jν̃
1− Jν̃ + ν̃

.

Define the following events136

Aν̃(t) = {∃w̄ : ν−w̄(t) ≥ ν̃}, Bν̃(t) = Aν̃(t)C .

We just showed that137

E[Ut+1 − Ut|Aν̃(t)] ≥ K(b̃ν̃, 0) =: KA(ν̃)

and that138

E[Ut+1 − Ut|Bν̃(t)] ≥ K
(
1, 1− J − 1

b̃

) 1− Jν̃
1− Jν̃ + ν̃

=: KB(ν̃).

Observing that139

E[Ut+1 − Ut] = E[Ut+1 − Ut|Aν̃(t)]P(Aν̃(t)) + E[Ut+1 − Ut|Bν̃(t)]P(Bν̃(t))

≥ KA(ν̃)P(Aν̃(t)) +KB(ν̃)P(Bν̃(t))

≥ min{KA(ν̃),KB(ν̃)}.

Define140

Kν̃ = min{KA(ν̃),KB(ν̃)} > 0,
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so as that, for ν̃ = 1
J2 , it holds that141

K 1
J2

= min{K(
b̃

J2
, 0),K(1, 1− J − 1

b̃
)

J2 − J
J2 − J + 1

}.

Note that as J grows large both K( b̃
J2 , 0) and K(1, 1− J−1

b̃
) converges to zero as log( J

1+J ).142

Proof. (of Theorem 2.) Observe that by the definition of T ∗, it holds that T ∗ ≤ T (j∗) where143

T (j∗) = inf
t
{νj∗(t) > 1− δ|j∗}.

Hence,144

E[T ∗] ≤ E[T (j∗)] =
∑
t

P{T (j∗) > t}.

Observe that145

νj∗ ≤ 1− δ ⇒ νj∗

1− νj∗
≤ 1− δ

δ
=

1

δ
− 1 <

1

δ
,

and therefore146

{T (j∗) > t} ⇒ B(t), B(t) = {Ut ≤ − log δ},
where147

Ut = log
νj∗(t)

1− νj∗(t)
.

Note that148

P{B(t)} =P{Ut ≤ − log δ} = P{Ut − E[Ut] ≤ − log δ − E[Ut]},

and from Proposition 5(S) we obtain149

P{B(t)} ≤ P
{
Ut − E[Ut] ≤ − log δ − U0 − tK

}
.

At this point, consider any t ≥ t̄(δ) := 2
K η(δ), with K = K 1

J2
and η(δ) = − log δ − U0 > 0 then150

P{B(t)} ≤ P
{
− Ut + E[Ut] ≥ tK − η(δ)

}
≤ P

{∣∣Ut − E[Ut]
∣∣ ≥ tK − η(δ)

}
≤ e−

(
tK−η(δ)

)2

2Ht

where151

H = 2
1 + ∆M

1−∆M
≥ max

s<t

∣∣Us − Us−1 − E[Us − Us−1]
∣∣.

and the last inequality is due to Azuma’s inequality.152

Hence,153

E[T (j∗)] ≤ t̄(δ) +
∑
t≥t̄

P{T (j∗) > t}

≤ t̄(δ) +
∑
t≥t̄(δ)

e−

(
tK−η(δ)

)2

2Ht

= t̄(δ) +
∑
t≥t̄(δ)

e−
tK2

2H e
Kη(δ)
H e

−η(δ)2

2Ht

≤ t̄(δ) + e
Kη(δ)
H

∑
t≥t̄(δ)

e−
tK2

2H

= t̄(δ) + e
Kη(δ)
H

e−
t̄(δ)K2

2H

1− e−K
2

2H

= t̄(δ) +
1

1− e−K
2

2H

,
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Theorem 2 follows by defining154

Ku
1 =

2

K
, Ku

0 = −2U0

K
+

1

1− e−K
2

2H

.

For the sake of completeness, note that H is constant in J , and155

U0 = − log(J − 1),
1

K
∼ 1

log( J
1+J )

.

156

B Proof of the technical lemmas157

Proof of Lemma 1. Given that at time t we observe the belief vector ν = ν(t) ∈ P(J ), and a response158

is asked to a worker in class w = w(t). For every worker w ∈ W and j ∈ J , define159

νw,+j =
∑

j∈Jw,+j

νj , νw,−j =
∑

j∈Jw,−j

νj .

Then if y = gw,j∗ , i.e., a correct response is observed,160

j ∈ Jw,+j∗ ⇒ νj(t+ 1) =
νj(1 + ∆w)

νw,+j∗(1 + ∆w) + νw,−j∗(1−∆w)
≥ νj ,

j /∈ Jw,+j∗ ⇒ νj(t+ 1) =
νj(1−∆w)

νw,+j∗(1 + ∆w) + νw,−j∗(1−∆w)
≤ νj ,

while, on the other hand, if y = −gw,j∗ , i.e., a wrong response is observed,161

j ∈ Jw,+j∗ ⇒ νj(t+ 1) =
νj(1−∆w)

νw,+j∗(1−∆w) + νw,−j∗(1 + ∆w)
≤ νj ,

j /∈ Jw,+j∗ ⇒ νj(t+ 1) =
νj(1 + ∆w)

νw,+j∗(1−∆w) + νw,−j∗(1 + ∆w)
≥ νj .

The analysis of νj∗(t+ 1)/νj(t+ 1) in the various cases conclude the proof.162

163

Proof of Lemma 4. Lemma 4 is a consequence of the following stronger result.164

Lemma 3 (S). Consider x, y ∈ [0, 1
2 ] such that G(x,∆M ) ≥ G(y,∆m), then165

x ≥ b̃y, b̃ :=
∆m

∆M
. (3)

In fact, from the monotonicity properties of the function G(·, ·), at time t it holds that166

G(ν−wD(t),∆
M ) ≥ G(ν−wD(t),∆wD(t)) ≥ G(ν−w,∆w) ≥ G(ν−w,∆

m),

and Lemma 3(S) yields ν−wD(t) ≥ b̃ν−w for every w ∈ W .167

It remains to prove Lemma 3(S) whose proof is done via a contradiction argument. Assume that168

x < b̃y. In this case, it holds that169

G(x,∆M ) <G(b̃y,∆M )

=
(∆M )2(b̃y)2

1− (∆M )2(1− 2b̃y)2

=
(∆m)2y2

1− (∆M )2(1− 2b̃y)2

=
(∆m)2y2

1− (∆m)2(1− 2y)2
= G(y,∆m),

10



which is a contradiction. Note that the last equality follows since170

1

1− (∆M )2(1− 2b̃y)2
≤ 1

1− (∆m)2(1− 2y)2

⇐⇒ (∆M )2(1− 2b̃y)2 ≤ (∆m)2(1− 2y)2

⇐⇒ ∆M (1− 2b̃y) ≤ ∆m(1− 2y)

⇐⇒ y(∆m − b̃∆M ) ≤ 1

2
(∆m −∆M )

⇐⇒ y ≤ 1

2

(∆m −∆M )

(∆m − b̃∆M )

which is true since y ≤ 1/2 and171

(∆m −∆M )

(∆m − b̃∆M )
≥ 1.

Proof of Lemma 2(S). First of all, observe that |
⋂
J+w(t)| ≤ 1. In fact, assume {j1, j2} ∈

⋂
J+w(t),172

then consider w̄ ∈ Wj1,j2 , it yields a a contradiction since it is not possible that173

{j1, j2} ∈ J+w̄(t).

Now, assume that
⋂
J+w(t) = ∅, then, for every j ∈ J it is possible to identify w(j) ∈ W such that174

j ∈ J−w(t). For this reason, it holds that175

1 =
∑
j∈J

νj(t) ≤
∑
j∈J

ν−w(j)(t) < J
1

J
= 1.

Hence, there exists j̄ ∈
⋂
J+w(t).176

177

C On the effect of the slack178

In this section we investigate how different the choices of the IBAG algorithm would be if, instead179

of αw, we had at our disposal the exact skill parameters qw,j . So as to gain better insights, in this180

section we assume qw,j to be independent from j, i.e.,181

qw,j = qw ∈ [αw, αw + σw],

and we aim to capture the effect of σw on the algorithm decision. Define182

∆q(w) = 2qw − 1 ∈ [∆w, ∆̄w], ∆w = 2αw − 1, ∆̄w = ∆w + 2σw.

With the knowledge of qw, the Incomplete Bayesian updating rule described in Section 3 coincides183

exactly with the classical Bayesian updating rule presented in Section 3 as well. In particular184

E[νj∗(t+ 1)|ν, w(t) = w]− νj∗(t) = 4νj∗(t)
∆2
q(w)νw,−j∗(t)

2

1−∆2
q(w)(1− νw,−j∗(t))2

and denote by wB(t) the class of workers picked by IBAG in this case, i.e.,185

wB(t) = arg max
w∈W
{G(ν−w(t),∆q(w))}, G(v, d) =

d2v2

1− d2
(
1− 2v

)2 .
We recall that the IBAG algorithm, which only knows αw, at time t picks the class of workers wD(t)186

maximizing187

wD(t) = arg max
w∈W
{G(ν−w(t),∆w)},

and we would like to better understand under which condition the choices made in the two cases are188

different, i.e,189

wB(t) 6= wD(t),

and, in case they are different, what is the impact of the error on the performance, i.e.,190

Err
(
ν
)

=E[νj∗(t+ 1)|ν = ν(t), w(t) = wB(t)]− E[νj∗(t+ 1)|ν = ν(t), w(t) = wD(t)].

Note that, it follows from the definition of wB(t) that Err(ν) ≥ 0.191
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Lemma 4 (S). If for every w 6= wD(t) it holds that192

G(ν−wD(t)(t),∆wD(t)) ≥ G(ν−w(t), ∆̄w)

then wD(t) = wB(t).193

Proof. Recall that G(v, d) is increasing in d, hence194

G(ν−wD(t)(t),∆q(wD(t))) ≥ G(ν−wD(t)(t),∆wD(t)),

and195

G(ν−w(t), ∆̄w) ≥ G(ν−w(t),∆q(w)), ∀w ∈ W.

Hence, for every w 6= wD(t), the hypothesis of the lemma holds.196

In particular, this lemma states that if a class of worker is much more convenient than the others when197

only the lower bound αw are known, then the same holds when the probabilities qw are known. Here198

we investigate what kind of threshold determines a worker to be much more convenient than the199

others. For every w ∈ W define the following quantities200

rw =G(ν−wD(t)(t),∆wD(t))−G(ν−w(t),∆w),

sw =G(ν−w(t), ∆̄w)−G(ν−w(t),∆w).

Note that rw represents by how much wD(t) is more convenient than w given that only αw is known,201

in particular202

G(ν−wD(t)(t),∆wD(t)) ≥ G(ν−w(t), ∆̄w) ⇐⇒ rw ≥ sw.
Proposition 6 (S). It holds that203

lim
σw→0

sw = 0, lim
ν−w(t)→0

sw = 0.

Proof. Note that204

sw =G(ν−w(t), ∆̄w)−G(ν−w(t),∆w)

= 4
ν−w(t)2σw(∆w + σw)(

1− (∆w + 2σw)2(1− 2ν−w(t))2
)(

1−∆2
w(1− 2ν−w(t))2

)
≤ 4

ν−w(t)2σw(∆w + σw)(
1− (2σw + ∆w)2(1− 2ν−w(t))2

)2 .
The proposition follows by taking the limits.205

As a consequence of this proposition, it follows that for σw or ν−w(t) sufficiently low, it holds that206

rw ≥ sw. Recall that when this happens for each w 6= wD(t), it follows that wD(t) = wB(t).207

Nevertheless, even when the worker chosen is not the optimal one, the error incurred is not large in208

many circumstances. The following proposition bounds Err(ν) with a linear function of maxw{sw},209

whose dependence on σw has been pointed out in the proof of Proposition 6(S).210

Proposition 7 (S). It holds that211

Err(ν) ≤ 4νj∗(t)swB(t) ≤ 4νj∗(t) max
w
{sw}.

Proof. Observe that due to the definition of G and Err(ν), we only need to to upper bound the212

following difference213

G(ν−w(t),∆q(w))−G(ν−wD (t),∆q(wD))

under the constraint that214

G(ν−w(t),∆w) ≤ G(ν−wD (t),∆wD ).

Observe that215

G(ν−w(t),∆q(w))−G(ν−wD (t),∆q(wD))

≤G(ν−w(t), ∆̄w)−G(ν−wD (t),∆w)

≤G(ν−w(t), ∆̄w)−G(ν−w(t),∆w) = sw.

216
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