
APPENDIX: On Blackbox Backpropagation and Jacobian Sensing

In the Appendix we prove theoretical results from the main body of the paper and add technical discussion
regarding presented coloring algorithm. We denote by ‖ · ‖ the L2-norm of the vector.

We will show a strengthened version of Theorem 3.3 proving that there are many more classes of distributions
than: Gaussian, Poissonian and bounded with positive variance for the choice of the measurement directions.
We need to introduce the following definition.

Definition 4.1 (regular distributions). We say that a random variable φ is A(n)-regular for some function A if
there exists a constant τ > 0 such that for any x ∈ R+ and n large enough the following holds:

min
s∈R+

fn,φ(s) < sx− (2 + τ) log(x), (4)

where fn,φ(s) = nmaxξ:|ξ|≤2sA(n) logE[eξ(φ−E[φ])].

4.1 Proof of Theorem 3.3

Before we give the proof of the result, we prove the following lemma that turns out to play crucial role in the
entire analysis.

Lemma 4.2 (random measurement directions lemma). Assume that each dij ∼ φ is chosen independently, where

• φ is Gaussian, Poissonian or bounded with finite positive variance or

• φ is M(n)
D(n)

-regular for some functions M(n), D(n) > 0.

Let A,B ∈ Rm×n and assume that maxi,j |Ai,j |,maxi,j |Bi,j | ≤ M(n) (this condition is required only
if we consider regular distributions that are not: Gaussian, Poissonian or bounded with positive variance).
If furthermore ‖A − B‖F > D(n), where ‖ · ‖F stands for the Frobenius norm and we take η(n) =

o(D(n)
√
V ar(φ)), then there exists δ > 0 such that for n large enough:

P[‖(A−B)d‖ > 2η(n) + 1] > δ,

where the probability is chosen with respect to the random choices of the random direction d = (d1, ..., dn)>.

Proof. Denote Vi = (Ai − Bi)di for i = 1, ..., n, where Xi for X ∈ Rm×n stands for the ith column of
X. Denote V =

∑n
i=1 Vi. Note that V = (A − B)d and V ∈ Rm. Denote P = ‖V − E[V]‖22, where

E[V] ∈ Rm stands for the mean vector of the vector random variable V. We need to prove that

P[‖V‖ > 2η(n) + 1] > δ. (5)

Take a constant T > 0 (its exact value will be determined later).

We will consider the following cases.

Case 1: ‖E[V]‖ ≤ T
√

E[P ]

In that setting it suffices to show that P[‖V − E[V]‖ > 2T
√

E[P ]] > δ for δ from the statement of the lemma.
Indeed, from the latter inequality and the triangle inequality, we get:

P[‖V‖ > T
√

E[P ]] > δ. (6)

Thus our claims is correct if T
√

E[P ] ≥ 2η(n)+1. Denote C = A−B. We have V−E[V] =
∑n
i=1 C

i(di−
E[di]). Thus, from the independence of dis we get: E[‖

∑n
i=1 C

i(di − E[di])‖2] = ‖C‖2FV ar(φ), thus√
E[P ] = ‖C‖F

√
V ar(φ). Therefore, since η(n) = o(D(n)

√
V ar(φ)), the claim is correct.

Now we partition the probabilistic space into three regions:

• R1 = {P < αE[P ]}

• R2 = {αE[P ] ≤ P ≤ βE[P ]}

• R3 = {P > βE[P ]},

where again as in the case of T , constants α and β will be given explicitly later.

The following is trivially true:

E[P ] = P[R1]E(P |R1) + P[R2]E(P |R2) + P[R3]E(P |R3). (7)
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We obtain:
E[P ] ≤ αE[P ] + P[R2] · βE[P ] + P[R3]E(P |R3). (8)

Our next goal is to show that for a sufficiently large constant β, we obtain:

P[R3]E(P |R3) ≤ αE[P ]. (9)

To see, why it completes our analysis in Case 1, notice that from Equation 8 we then know that:

P[R2] ≥ 1− 2α

β
> 0 (10)

for α < 1
2

. Take T =
√

α
4

. We obtain:

P[‖V − E[V]‖ > 2T
√

E[P ]] = P[P > αE[P ]] ≥ P[R2] ≥ 1− 2α

β
(11)

and thus for δ = 1−2α
β

the proof is completed.

Thus it remains to prove that P[R3]E(P |R3) ≤ αE[P ] for constant β large enough. Therefore it suffices to
prove that

E[
P

E[P ]
I{ P

E[P ]
> β}] < α, (12)

where I(·) stands for the indicator random variable. Note that we have:

E[
P

E[P ]
I{ P

E[P ]
> β}] = βP[

P

E[P ]
> β] +

∫ ∞
β

P[
P

E[P ]
> y]dy. (13)

Note that for any c > 0

P[
P

E[P ]
> c] = P[P > cE[P ]] = P[

m∑
j=1

Pj > cE[P ]], (14)

where Pj = (
∑n
i=1 C

i
j(di − E[di]))

2 and Cij stands for the jth element of Ci ∈ Rm.

Therefore, we obtain:

P[
P

E[P ]
> c] ≤ P[∃j∈{1,...,m}Pj ≥

cE[P ]

m
] ≤ m · sup

j∈{1,...,m}
P[Pj ≥

cE[P ]

m
], (15)

where the last inequality comes from the union bound. Now fix some j ∈ {1, ...,m}. Our goal will be to find an
upper bound on P[Pj ≥ cE[P ]

m
].

Note that

P[Pj >
cE[P ]

m
] = P[|

n∑
i=1

Cij(di−E[di])| >
√

c

m

√
E[P ]] ≤ P[|

n∑
i=1

Cij(di−E[di])| > D(n)

√
cV ar(φ)

m
],

(16)
where the last inequality comes from the derived earlier formula for E[P ] and the definition of function D(n).

We conclude that

P[Pj >
cE[P ]

m
] ≤ P[

n∑
i=1

Xi >

√
cV ar(φ)

m
] + P[

n∑
i=1

(−Xi) >
√
cV ar(φ)

m
], (17)

where Xi =
Cij
D(n)

(di −E[di]). Notice that random variables Xi are independent since dis are independent, and
furthermore, E[Xi] = 0 for i = 1, ...., n.

Assume first that each di is bounded, i.e. there exists some constant U > 0 such that |di| ≤ U for i = 1, ..., n.

Then we have: |Xi| ≤
2U|Cij |
D(n)

. We will use Azuma’s inequality:

Lemma 4.3 (Azuma’s Inequality). If X =
∑n
i=1 Xi, where Xis are independent with zero mean and further-

more |Xi| ≤ ci then the following holds:

P[|X| > t] ≤ 2e
− t2∑n

i=1
c2
i . (18)
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Thus we obtain:

P[

n∑
i=1

Xi >

√
cV ar(φ)

m
] + P[

n∑
i=1

(−Xi) >
√
cV ar(φ)

m
] ≤ 2e

−
cV ar(φ)

m

4U2 ∑n
i=1

|Ci
j
|2

D2(n) . (19)

Note that
∑n
i=1

|Cij |
2

D2(n)
≤ 1, thus we get:

P[

n∑
i=1

Xi >

√
cV ar(φ)

m
] + P[

n∑
i=1

(−Xi) >
√
cV ar(φ)

m
] ≤ 2e

− cV ar(φ)
4mU2 . (20)

Thus we get

P[
P

E[P ]
> c] ≤ 2e

− cV ar(φ)
4mU2 . (21)

Plugging in this formula for c = β and c = y to Equation 13, we conclude that for β large enough the RHS of
the equation is arbitrarily close to 0 and that completes Case 1 of the proof for bounded dis.

Now let us assume that dis are Gaussian or Poissonian with constant variance. But then each Xi is also

Gaussian/Poissonian with constant variance, where the latter comes from the fact that
∑n
i=1

|Cij |
2

D2(n)
≤ 1 and

the fact that the sum of independent Gaussian/Poissonian random variables is a Gaussian/Poissonian random
variable with variance which is equal to the sum of variances of the random variables in the sum. Therefore,
we can repeat the second part of the analysis of the bounded case (using standard upper bounds on tails of the
Gaussian and Poissonian distributions) and complete the proof for Case 1.

To obtain strong bounds for a wide variety of other random variables di for probabilities from Inequality 17, we
will apply Chernoff-Cramer method.

The following is true

Theorem 4.4 (Chernoff-Cramer method). Let X be a centered random variable such that MX(s) < +∞ on
s ∈ (−s0, s0) for some s0 > 0, where MX(s) = E[esX ]. Then for any β > 0 the following holds:

P[X ≥ β] ≤ e−Ψ∗X (β), (22)

where
Ψ∗X(β) = sup

s∈R+

(sβ − log(MX(s))). (23)

Applying the above inequality to our random variables Xi and taking d = cV ar(φ)
m

, we obtain:

P[

n∑
i=1

Xi >
√
d] ≤ e−γ

1
φ(
√
d), (24)

and

P[

n∑
i=1

(−Xi) >
√
d] ≤ e−γ

2
φ(
√
d), (25)

where

γ1
φ(x) = sup

s∈R+

(sx−
n∑
i=1

log(E[e
s
Cij
D(n)

(di−E[di])])) (26)

and

γ2
φ(x) = sup

s∈R+

(sx−
n∑
i=1

log(E[e
−s

Cij
D(n)

(di−E[di])])), (27)

where we use the fact that dia are independent random variables. Now note that if di is taken from the class
of M(n)

D(n)
-regular distributions then γ1

φ, γ
2
φ ≥ (2 + χ) log(x) for n, x large enough and some constant χ > 0.

Therefore we obtain:

P[

n∑
i=1

Xi >
√
d] ≤ 1

d1+χ
2

(28)

and

P[

n∑
i=1

(−Xi) >
√
d] ≤ 1

d1+χ
2

. (29)

12



Then we continue as before and from Equation 13 we obtain:

E[
P

E[P ]
I{ P

E[P ]
> β}] ≤ 2β

1

(βV ar(φ)
m

)1+χ
2

+ 2

∫ ∞
β

1

( yV ar(φ)
m

)1+χ
2

dy. (30)

Both expressions on the RHS of the inequality above are arbitrarily close to 0 for β large enough since the
integral

∫∞
1

dy

y
1+

χ
2

is finite. Thus Case 1 of the proof is completed, provided that the explicit value of α is given

(notice that α determines T ).

Now let us consider the remaining case.

Case 2: ‖E[V]‖ > T
√

E[P ]

Notice that if ‖E[V]‖ > T
√

E[P ] then there exists j ∈ {1, ...,m} such that |(E[V])j | ≥
T
√

E[P ]
√
m

.

Without loss of generality, we will assume that |(E[V])1| ≥
T
√

E[P ]
√
m

. Analysis of the other cases is exactly the

same. Without loss of generality, we can assume further that (E[V])1 ≥
T
√

E[P ]
√
m

.

As before, we observe that it suffices to show that

P[‖V‖ > τ
√

E[P ]] > δ (31)

for some constants δ, τ > 0.

Note that

P[‖V‖ ≤ τ
√

E[P ]] ≤ P[|V1| ≤ τ
√

E[P ]] ≤ P[V1 − E[V1] ≤ −(
T√
m
− τ)

√
E[P ]]. (32)

Thus we conclude that

P[‖V‖ > τ
√

E[P ]] ≥ 1− P[V1 − E[V1] ≤ −(
T√
m
− τ)

√
E[P ]]. (33)

Note that

P[V1 − E[V1] ≤ −(
T√
m
− τ)

√
E[P ]] = P[

n∑
i=1

Ci1(di − E[di]) ≤ −(
T√
m
− τ)

√
E[P ]] (34)

Take α = 1
3

and T =
√

α
4

=
√

1
12

. We will take λ =
√

1
13

and τ = T
2
√
m

.

Note that if we take:
√

c
m

= T√
m−τ then we can apply previous upper bounds on the probability from the

inequality above. Those for φ being Gaussian, Poissonian or bounded are clearly separated from p = 1. The one
obtained via the Chernoff-Cramer method also is, provided that V ar(φ) > 48m, because if this condition is
satisfied then d > 1, where d = cV ar(φ)

m
. That completes the proof of the lemma.

We are ready to prove our main result in this section.

Proof. Define: A′ = dint log(C
√
mn

E(n)
), B′ = mρ(J, Gweak

int ) log(
C
√
mρ(J,Gweak

int
E(m)

) Consider a solution Ĵ to the
proposed LP program. Consider the set of N balls covering the feasibility region of the convex optimization
problem that is not defined by the random directions di and such that any element of that region is within a
distance D(n) from one of the balls. We call this set a grids since its goal is to accurately cover the entire
feasibility region.

Assume first that the algorithm explores the sparsity structure of the Jacobian via its weak-intersection graph
Gweak

int . Notice that the coloring uses O(ρ(J, Gweak
int )) number of colors, thus the compressed problem has this

many vector variables (see: proof of Lemma 3.1 for the explanation). Then the intrinsic dimensionality of the
space is clearly mρ(J, Gweak

int ) since the number of vector variables is exactly ρ(J, Gweak
int ). Thus, from the

definition of intrinsic dimensionality, we conclude that one can take N = B′. On the other hand, if the algorithm
just explores the structure given by C, then one can take N = A′ (again, by exploiting intrinsic dimensionality,
this time of the set C).

Denote by Ĵround the element of the grid that is closest to Ĵ in the Frobenius norm sense. Denote by J the true
Jacobian. Consider some random direction d ∈ Rn and the corresponding measurement r ∈ Rm. We have:

‖Ĵroundd− Jd‖ ≤ ‖Ĵroundd− Ĵd‖+ ‖Ĵd− r‖+ ‖r− Jd‖ ≤ ε‖d‖+ 2Eδ(p), (35)

for δ(p) = 1 if p = 1 and δ(p) =
√
m if p = +∞, where the latter inequality comes from the fact that:
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• ‖Ĵd− r‖p ≤ E since each solution satisfies all LP constraints,

• ‖r− Jd‖p ≤ E from the assumptions regarding noise,

• for any x ∈ Rm: ‖x‖2 ≤ ‖x‖1 and ‖x‖2 ≤
√
m‖x‖1,

• for any x ∈ Rn and any A ∈ Rm×n: ‖Ax‖ ≤ ‖A‖F ‖x‖.

Consider the following event:

E = {∃Ĵ ∈ Rm×n : ‖Ĵ− J‖F > 2D(n) ∧ A(Ĵ)}, (36)

where A(Ĵ) is the event that Ĵ is a feasible solution of the LP. Note that we have:

E ⊆ {∃Ĵ ∈ Rm×n : ‖Ĵ− J‖F > 2D(n) ∧ C(Ĵ)}, (37)

where
C(Ĵ)) = {∀d[‖d‖ > 1

ε
∨ (‖d‖ ≤ 1

ε
) ∧ ‖Ĵroundd− Jd‖ ≤ ε‖d‖+ 2Eδ(p)]} (38)

Notice that since ‖Ĵround − Ĵ‖F ≤ ε and ε < D(n), we get after substitution: η(n) = Eδ(p)

E ⊆ {∃Ĵround ∈ Rm×n : ‖Ĵround − J‖F > D(n) ∧ F(Ĵround)}, (39)

where
F(Ĵround) = {∀d[‖d‖ > 1

ε
∨ (‖d‖ ≤ 1

ε
) ∧ ‖Ĵroundd− Jd‖ ≤ ε‖d‖+ 2Eδ(p)]}. (40)

Thus, taking the union bound over all N matrices Ĵround, we conclude that

P[E ] ≤ N((κ+ 1− δ)k). (41)

Thus with probability at least 1−N((κ+ 1− δ)k) every solution of the LP is within Frobenius norm 2D(n)
from the exact Jacobian J. Note that κ = on(1), thus there exists some constant ρ > 0 such that with probability
at least 1 − N(1 − ρ)k every solution of the LP is within Frobenius norm distance 2D(n) from the exact
Jacobian J. Thus one can take k = C log(N) measurement vectors and that completes the proof.

Proof of Lemma 3.1

Proof. The proof is based on the Caro-Wei probabilistic analysis. Order the vertices of the graph randomly
and apply GreedyColoring algorithm. Take the first stable set from the list I and call its size X . Notice
that E[X] =

∑
v∈V (G)

1
1+deg(v)

. Indeed, X can be written as the sum of indicator random variables I[v] for
v ∈ V (G) and where I[v] = 0 if v is in the first stable set and is 0 otherwise. Thus E[I[v]] = p(v), where p(v)
is the probability that v is in the first stable set. Notice that this probability is exactly p =

∑
v∈V (G)

1
1+deg(v)

,
since v is in the first stable set only if it is the first vertex in the induced ordering of the set consisting of v and
vertices adjacent to it. This ordering is still random and thus the result follows. Thus there exists a stable set of
size E. This set can be excluded from V (G) and the procedure can be repeated. That immediately leads to the
valid coloring of the vertices of the graph (each stable set is colored with a different color) and the corresponding
chromatic property. Note that the procedure for finding all these stable sets is what GreedyColoring algorithm
is doing. The only difference is that the algorithm computes sets of good sizes just on expectation. To boost the
probability of success, the algorithm can be repeated some number of times even though, as previously reported,
in practice this is not required.
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