
Supplementary Materials for Bandits Dueling on Partially Ordered Sets

A Appendix : Extended Proofs for social poset

A.1 Generalization from Poset to social poset.

Additional notations. Let S,� be a social poset, p 2 S and n 2 N. Let S0 ⇢ S. In the following,
we define

�

n

p

(S0
)

.
= {q 2 S0, 9q

1

, . . . q
n

2 S0 p < q
1

< . . . < q
n

< q}.
From the definition we immediately have the following Lemmas.
Lemma A.1 (Characteristics of �). Let S,� be a social poset, p 2 S and n 2 N. Let S0 ⇢ S. We
have

1. �

n

p

(S0
) ⇢ �

n+1

p

(S0
)

2. if S0 ⇢ S00 ⇢ S , then �

n

p

(S0
) ⇢ �

n

p

(S00
)

3. �

p

(S0
) =

S
n�0

�

n

p

(S0
) is well defined.

4. if q 2 S0 and p < q, then �

n

q

(S0
) ⇢ �

n+1

p

(S0
).

5. p 2 P if and only if 8q 6= p, p /2 �

q

(S) if and only if 8q 2 S , p < q or p k q.

Proof. Immediate by definition.

Lemma A.2 (Poset and �). Let S be a social poset. S is a poset if and only if

8p 2 S, 8S0 ⇢ S �

p

(S0
) = �

0

p

(S0
)

Proof. If S is a poset, then 8q 2 �

p

(S0
), 9n � 0, 9q

1

, . . . q
n

such that p < q
1

< . . . < q
n

< q.
Hence p < q by transitivity, i.e. q 2 �

0

p

(S0
).

Conversely, let p, q, r such that p < q and q < r. Then r 2 �

0

q

(S) ⇢ �

1

p

(S) ⇢ �

p

(S) = �

0

p

(S).
Hence p < r

A.2 Proof of Proposition 4.2.

Proof. Let us assume that a < b. The third point of Definition 4.1 implies that �
a,b

0 � �, hence
a < b0. The rest follows from point 2 of Definition 4.1.

A.3 Proof of Proposition 4.3.

Proof. This proposition immediately follows from Proposition 4.2 and Hoeffding inequality.

A.4 Proof of Proposition 4.4.

Proof. The result naturally follows from the definition of a social poset (resp. a Poset) and Defini-
tion 4.1.

A.5 Proof of Theorem 1.

The proof of Theorem 1 relies on the following intermediate result :
Proposition A.3. Algorithm 3 called at epoch t on S

t

with parameter "
t

> 0, �0 > 0 and A =
Algorithm 1 returns an "

t

�approximation of the Pareto front of S
t

with probability at least 1� �0

after at most

T  2|S
t

|width

"t(St

)log(2|S
t

|2/�0)
✓

1

"2
t

� 1
t>1

1

"2
t�1

◆

additional comparisons, where 1 is the indicator function.

1

Proof. In this setting Algorithm 1 is used for comparisons purpose. We first tackle the case t = 1, i.e.
the first epoch, since in this case, there is no previous observations, and thus no negative term in the
upper bound.
Case t = 1. The proof for t = 1 unfolds similarly to the previous case, with a different invariant.

Let E
1

be the event where during the execution of Algorithm 5, each call to A, Algorithm 1 returns
the correct answer:

• A(i, j) = i k
"

j =) |�
ij

| < ".

• A(i, j) = i � j =) �
ij

> 0.

• A(i, j) = j � i =) �
ij

< 0.

We are going to prove the following invariant for the principal loop of the Algorithm on E
1

.

Invariant: At the iteration n, Let Sn

t

the subset of element of S
t

already considered, bPn the current
set of pivot. Then

8c0 2 Sn

t

9c 2 bPn, c0 2 �

c

(Sn

t

) (5)

8c, c0 2 bP
t

, c k
"

c0 (6)

It is easy to see that the invariant is true at the beginning of the algorithm because S0

t

=

bP0 and
| bP0| = 1. Suppose that the invariant is true at the n-th iteration. Let p be the new element considered,
i.e. Sn+1

t

= Sn

t

[{p}.

1. Case 1. 9q 2 bPn s.t. q � p and �
qp

> ". In this case, bPn+1 ⇢ bPn, hence (6) at iteration n
immediatly implies (6) at iteration n+ 1. Let let p’ be a pivot eliminated by p, i.e. p � p0.
Since q � p, we have by Lemma A.2,

�

p

0
(Sn

t

) ⇢ �

p

(Sn

t

) ⇢ �

q

�Sn+1

t

�
.

Hence (5) at iteration n implies (5) at iteration n+ 1.

2. Case 2. 8q 2 bPn, (p � q and �
pq

> ") or |�
pq

| < ". Then

bPn+1

= {p} [bPn \ �0

p

(

bPn

),

and is it easy to see that (5) is still true iteration n+ 1. Now we are going to prove that (6)
is still true by RAA. Assume that 9q 2 bPn+1 s.t. q is comparable to p and |�

qp

| > ". By
definition of �0

p

, it implies that q � p, and the order compatibility of the poset implies that
�
qp

> " which contradicts the initial assumption of the case.

After the last iteration n, we have Sn+1

t

= S
t

, since all the elements have been examined. We now
prove by RAA that the invariant implies that bPn+1 is an "-approximation of P . We drop the n+ 1 in
bPn+1 for the sake of alleviating the notations.

Now assume that P 6⇢ bP and let p 2 P \ bP . Hence (5) implies that 9q 2 bP s.t. p 2 �

q

which
contradicts point 5 of Lemma A.2. Hence P ⇢ bP.

Now suppose that 9q 2 bP such that 9p 2 P s.t. p � q and �
pq

> ". Since P ⇢ bP , we have p 2 bP
and thus �

pq

> ". contradicts (6). Hence bP is a "-approximation of P.

A consequence of (6) is that at each step, bPn is an "-antichain. Since during the execution of the
algorithm all the elements of S

t

are compared to all the element of the current bP , the algorithm do at
most

|S
t

|max

n

| bPn|  |S
t

|width
"

(S
t

)

2

comparisons, and as a consequence

P(EC

1

)  |S
t

|width
"

(S
t

)

�

|S
t

|2  �.

The upper bound on the number of comparisons results with the same remark combined with the fact
that Algorithm 2 uses Hoeffding inequality.

Case 1 < t < N .
To conclude, we only need to lower bound the number of previous comparisons that can be reused.
Once again, consider the event E

1

be the event where during the execution of UBSRoutine, each
call to Algorithm 1 returns the correct answer. Let i and j 2 S

t

such that i and j are compared at
epoch t (i.e. during the call number t of Algorithm 2). Note that S

t

=

bPn

t�1

and let assume without
any loss of generality that i was added before j into bPn

t�1

. Since i is a pivot at the end of the epoch
t� 1, it was compared to all the arm considered after i, including j.

Since both i and j are pivots at the end of epoch t� 1, it implies that i k j or �
ij

< "
t�1

. In both
cases, Algorithm the algorithm does exactly log(K

2
/�

0
)

"

2
t�1

comparisons to reach this conclusion. The
result follows from the reuse of information.

Proof of Theorem 1. First note that if P 0 is a "- approximation of P , then P ⇢ P 0. Additionally, it
is easy to see that if S is a poset and P is its Pareto set, then 8S 0 ⇢ S such that P ⇢ S 0, the Pareto
front of S 0 is P.

Hence, Proposition A.3 implies that with probability at least 1�N�/N = 1� �, Algorithm 2 returns
an "� approximation of the pareto front of S . in at most T comparisons, where

T  2

NX

t=1

|S
t

|width
"t(St

)log(2N |S
t

|2/�)
✓

1

"2
t

� 1
t>1

1

"2
t�1

◆

 2

N�1X

t=1

1

"2
t

�|S
t

|width
"t(St

)log(2N |S
t

|2/�)

�|S
t+1

|width
"t+1(St+1

)log(2N |S
t+1

|2/�)�

+

2

"2
N

|S
N

|width
"N (S

N

)log(2N |S
N

|2/�)

The upper bound (1) follows from the fact that |S
t

|width
"t(St

)log(N |S
t

|2/�) is decreasing in t.

Now we focus on proving the regret upper bound (2). Let i be an arm, and N
i

be the last peeling step
before i

p

is eliminated. If i is not eliminated at the end of the peeling, then we set N
i

= N � 1. In
other words,

N
i

= max{1  t  N, i 2 bP
t

}

= 1 +max

✓
0,min

✓⇠
log(�

i

)

log(�)

⇡
, N

◆◆
.

Let j  N
i

. During the j-th phase of peeling, the arm i is compared to at most |S
j

� 1| other arms.
Hence, with the same argument as in Proposition A.3, we have

R  2

KX

i=1

�

i

NiX

t=1

|S
t

|log(2N |S
t

|2/�)
✓

1

"2
t

� 1
t>1

1

"2
t�1

◆
.

Now since "
t

< "
t�1

, and |S
t

|  K, we have

3

R  2K log

✓
2NK2

�

◆
KX

i=1

�

i

NiX

t=1

✓
1

"2
t

� 1
t>1

1

"2
t�1

◆

 2K log

✓
2NK2

�

◆
KX

i=1

�

i

"2
Ni

.

Since by construction, we have "
t+1

= �"
t

, then

R  2K

�2

log

✓
2NK2

�

◆
KX

i=1

1

�

i

hence the conclusion since

� ⇡ �

1/Ni

i

.

A.6 Proof of Theorem 2.

We start by recalling Theorem 2 and its related Assumption 2

Assumption 2. 8K > W 2 N+

⇤ , for any poset S such that |S|  K and max (|P
"

(S)|)  W , for
all � > 0, 1/8 > " > 0 A identify the "-approximation of the Pareto front P

"

of S with probability
at least 1� � with at most T �,"

A (K,W) comparisons.

To prove this results, we need the following Lemma, derived from Lemma 4.7.2 from [Robert, 1990]
Lemma A.4 (Lower bound on mistake probability). Let S be a poset and i, j 2 S such that i k

"

j.
Then

P
�
pn
i,j

> 1 + "
� � 1p

2n
e�32n"

2

Proof. It is easy to see that pn
i,j

follows a Binomial law B(0.5 + �
i,j

, n). Since ik
"

j, we have
0.5 + �

i

> 0.5� ". Hence

P
�
pn
i,j

> 1 + "
� � P (B(0.5� ", n) > 1 + ")

� 1p
2n

exp(�n log(2)B(0.5 + "k0.5� "))

where we used Lemma 4.7.2 from [Robert, 1990], and KL denotes the Kullback-Leibler divergence
between two Bernoulli random variables. now,

B(0.5 + "k0.5� ")) =
1 + 2"

2

log

✓
1 + 2"

1� 2"

◆
+

1� 2"

2

log

✓
1� 2"

1 + 2"

◆

= 4" log

✓
1 + 4

"

1� 2"

◆

 16"2

1� 2"
 32"2

The interest of Lemma A.4 is the following : assume that during its execution, A compare i and j
exactly n times before reaching a conclusion on the relation between i and j, i.e i � j, j � i or ik

"

j.
Then it is easy to see that the previous result translates in a lower bound of the probability of the
algorithm reaching the wrong conclusion. This idea is the key component of the proof of Theorem 2,
which is inspired by the work of Feige et al. [1994].

4

Proof. (Theorem 2).

Let S , �, � be a dueling bandit problem on a poset defined as follows :

1. S contains K elements

2. S is the reunion of W disjoint chains C
1

, . . . , C
W

.

3. For every pair of elements such that i � j, then �
i,j

= 3"/2

It is easy to see that this poset satisfies |S| = K, |P(S)| = W . Moreover, the only "�Pareto front of
S is P . Let denote P = {i

1

, . . . , i
W

} and let define

⌧ : S ! [1,W]

i 7! m, s.t. i 2 C
m

.

The construction of S ensure that ⌧ is well defined. Now consider the event E = {T �,"

A (K,W) >

T
max

:= KW log(1/�)

"

2 }. If P(E) � 1/2, then the results follows. In the rest of the proof, we consider
the case P(E) < 1/2.

Now, for any i 2 S, m 2 [1,W] \ {⌧(i)}, we define the poset Sm

i

,�m

i

as follows:

1. S contains the same element as Sm

i

2. 8j, j0 2 Sm

i

\ {i}, (j � j0 if and only if j �m

i

j0).

3. 8j 2 Sm

i

\ C
m

, (j � i if and only if j �m

i

i).

4. 8j 2 C
m

, i �m

i

j

5. For every pair of elements j, j0 2 Sm

i

such that j �m

i

j0, then �0
j,j

0 = 3"/2

Finally, for m = ⌧(i), define :

1. S contains the same element as S⌧(i)

i

2. 8j 2 S⌧(i)

i

\ {i}, jki

3. For every pair of elements j, j0 2 S⌧(i)

i

such that j �⌧(i)

i

j0, then �0
j,j

0 = 3"/2

It is easy to see that this poset satisfies |Sm

i

| = K, W � width(Sm

i

) � W � 1. Note that by
construction in Sm

i

the only modified comparisons are the one between i and the elements of C
m

.
Additionally, P(S) 6= P(Sm

i

). For any Z ⇢ S , let n
i,Z

be the number of time the arm i is compared
with elements of Z during the execution of A on S. Additionally, let A(S) be the result of this
computation, and T the total number of comparison used by the execution of A on S . Then

� � P(A(Sm

i

) 6= P(Sm

i

))

� E

1p
2n

i,Cm

(e�128"

2

)

ni,Cm |A(S) = P(S)
!
P (A(S) = P(S))

� E
✓

1p
2T

(e�128"

2

)

ni,Cm |A(S) = P(S)
◆
(1� �), (7)

where we used Assumption 2. On the other hand, we have that
X

i2S

X

1mW

n
i,Cm =

X

i2S
n
i,S = 2T.

Hence by using the the inequality of arithmetic and geometric means and (7):

5

KW
�

1� �
� 1

1� �

X

i2S

X

1mW

P(A(Sm

i

) 6= P(Sm

i

))

�
X

i2S

X

1mW

E
✓

1p
2T

(e�128"

2

)

ni,Cm |A(S) = P(S)
◆

�
X

i2S

X

1mW

E
✓

1p
2T

(e�128"

2

)

2T/KW |A(S) = P(S)
◆

� KWE
✓

1p
2T

(e�128"

2

)

2T/KW |A(S) = P(S)
◆

Now using the previous inequality and Jensen inequality:

log

✓
�

1� �

◆
� log

✓
E
✓

1p
2T

(e�128"

2

)

2T/KW |A(S) = P(S)
◆◆

� �E
✓
256T"2

KW
|A(S) = P(S)

◆
� 1

2

E (log (2T) |A(S) = P(S))

hence the conclusion.

B Appendix : Extended Proofs for Poset and Decoys

Proposition B.1. Let S let a poset, and " < min (�
p,q

, p 2 P, q 2 S \ P) . Then P
"

= {P}

Proof. Let bP 2 P
"

. By Definition 2.6, we have P ⇢ bP .

B.1 Proof of Theorem 3.

This result is a consequence of Theorem 1 and the following intermediate result, whose proof can be
found in the Appendix.

Proposition B.2. Algorithm 3 called on S
t

with parameter � > 0, �0 > 0 and A = Algorithm 4
returns the Pareto front of S

t

with probability at least 1� �0 after at most

T  4|S
t

|width(S
t

)log(4|S
t

|2/�0)/�2

comparisons.

First note that if P 0 is a "- approximation of P , then P ⇢ P 0. Additionally, it is easy to see that if S
is a poset and P is its Pareto set, then 8S 0 ⇢ S such that P ⇢ S 0, the Pareto front of S 0 is P.

6

Hence, Theorem 1 combined with Proposition B.2 imply that with probability at least 1�N�/N =

1� �, Algorithm 4 returns the Pareto front of S . in at most T comparisons, where

T  2

N�1X

t=1

|S
t

|width
"t(St

)log(2N |S
t

|2/�)
✓

1

"2
t

� 1
t>1

1

"2
t�1

◆

+ 4|S
N

|width(S
N

)

log(4N |S
N

|2/�)
�

2

 2

N�2X

t=1

1

"2
t

�|S
t

|width
"t(St

)log(2N |S
t

|2/�)

�|S
t+1

|width
"t+1(St+1

)log(2N |S
t+1

|2/�)�

+

2

"2
N�1

|S
N�1

|width
"N�1(SN�1

)log(2N |S
N�1

|2/�)

+ 4|S
N

|width(S
N

)

log(4N |S
N

|2/�)
�

2

where the second inequality is obtained by rearranging the sum. Now, by hypothesis we have

"
t

> "
N�1

� �

s
|S|

width(S)
Hence, since the |S

t

|width
"t(St

)log(N |S
t

|2/�) is decreasing in t we have

T  2

N�2X

t=1

width(S)
|S|�2

�|S
t

|width
"t(St

)log(2N |S
t

|2/�)

�|S
t+1

|width
"t+1(St+1

)log(2N |S
t+1

|2/�)�

+

2width(S)
|S|�2

|S
N�1

|width
"N�1(SN�1

)log(2N |S
N�1

|2/�)

+ 4|S
N

|width(S
N

)

log(N |S
N

|2/�)
�

2

 2

�

2

|S|width
"1(S)

|S| width(S)log(2N |S|2/�)

+ 4|S
N

|width(S
N

)

log(4N |S
N

|2/�)
�

2

 O
✓
Kwidth(S) log(NK2/�)

�

2

◆

B.2 Proof of Proposition B.2

In this setting, the arms are compared using decoys. Let E
1

be the event where during the execution
of Algorithm UBSRoutine, each call to Algorithm 4 returns the correct answer. We are going to
prove the following invariant for the principal loop of the Algorithm on E

1

.

Invariant: At the iteration n, Let Sn

t

the set of element of S
t

already considered, bPn the current set
of pivot. Then

8c0 2 Sn

t

9c 2 bPn, c < c0 (8)

8c, c0 2 bP
t

, c k c0 (9)

It is easy to see that the invariant is true at the beginning of the algorithm because S0

t

=

bP0 and
| bP0| = 1.

Suppose that the invariant is true at the n-th iteration. Let p be the new element considered, i.e.
Sn+1

t

= Sn

t

[{p}, and define �

p

�
.
= {q 2 bPn, p � q}

7

1. Case 1. 9q 2 bPn s.t. q � p. In this case, bPn+1

=

bPn \ �

p

�, hence (9) at iteration n
immediatly implies (9) at iteration n+ 1. Since q � p, we have 8q0 2 �

p

�, we have q � q0

by transitivity.Hence (8) at iteration n implies (8) at iteration n+1.

2. Case 2. 8q 2 bPn, p � q or p k q. Then

bPn+1

= {p} [bPn \ �p

�,

and is it easy to see that (8) is still true iteration n+ 1. Now we are going to prove that (9)
is still true by RAA. Assume that 9q 2 bPn+1 s.t. q is comparable to p. By definition of �p

�,
it implies that q � p, which contradicts the initial assumption of the case.

After the last iteration n, we have Sn+1

t

= S
t

, since all the elements have been examined. We now
prove by RAA that the invariant implies that bPn+1

= P. We drop the n+ 1 in bPn+1 for the sake of
alleviating the notations.

Suppose that bP 6⇢ P and let p 2 bP \ P . Since p /2 P, 9q 2 P s.t. q � p. If q 2 bP , (9) is contracted.
Then q /2 bP. Hence q � p contradicts (8). So bP ⇢ P .

Now assume that P 6⇢ bP and let p 2 P \ bP . Since p /2 bP, (8) implies that 9q 2 bP s.t. q < p. Since
p /2 bP and q 2 bP , q 6= p hence q � p, which contradicts p 2 P . So P ⇢ bP. Hence bP = P.

A consequence of (9) is that at each step, bPn is an antichain. Since during the execution of the
algorithm all the elements of S

t

are compared to all the element of the current bP , the algorithm do at
most

|S
t

|max

n

| bPn|  |S
t

|width(S
t

)

comparisons, and as a consequence

P(EC

1

)  |S
t

|width(S
t

)

�

|S
t

|2  �.

B.3 Proof of Theorem 4

Now let R
1

be the regret generated by the decoy step. To reach this step, an arm i must be such that
�

i

< "
N�1

. If i 2 P , then pulling the arm i produces no regret. Otherwise, it is easy to see that the
arm is compared to at most width(S) other arms before being eliminated.

R
1

 width(S) log
✓
2NK2

�

◆ X

i,�i<"N�1,i/2P

�

i

�

2

 (

"
N�1

�

)

2width(S) log
✓
2NK2

�

◆ X

i,�i<"N�1,i/2P

1

�

i

 Kwidth(S) log
✓
2NK2

�

◆ X

i,�i<"N�1,i/2P

1

�

i

.

8

