
A Boundedness of the Number of Arrivals

For an MHP with stationary increments, we have E[dNi(t)|F t] = λi(t)dt, where F t denotes the
σ-algebra generated by {N1(t), ..., Np(t)}. This implies

E[Ni(t)−Ni(t− z)] = λ̄iz,

where λ̄i := E[λi(t)] is a positive constant. On the other hand, using the second order statistics of
Hawkes processes in [2], we know that the covariance matrix of Hawkes process is given by

E
[
(N(z)−N(0)− λ̄z)(N(t)−N(t− z)− λ̄z)>

]
= Ψtz,

where Ψt is a p × p matrix given in Theorem 1 of [1], N(z) = [N1(z), . . . , Np(z)]
> and λ̄ =

[λ1, . . . , λp]
>. Hence, we obtain that, with high probability, Ni(t)−Ni(t− z) = Θ(z).

B Proof of Example 1

Notice that f (0)i,j (t) is a monotonically decreasing function. Therefore, for any δ-update set, we have

sup
x∈(tk−1,tk]

|f (0)i,j (x)| = f
(0)
i,j (tk−1) = exp{−βtk−1}.

Hence,

(tk − tk−1) exp{−βtk−1} ≤
∫ tk

tk−1

exp{−β(t− δ)}dt

=
1

β
(exp{β(δ − tk−1)} − exp{β(δ − tk)}) ,

where the inequality is due to the fact that for tk ≤ tk−1 + δ and t ∈ [tk−1, tk], exp{−βtk−1} ≤
exp{−β(t− δ)}. Summing up both sides of the above inequality implies

∞∑
k=m

(tk − tk−1) sup
x∈(tk−1,tk]

|f (0)i,j (x)| ≤ 1

β
exp{−β(tm−1 − δ)}.

Similarly, one can obtain the tail functions of |df (0)i,j (t)/dt| that is exp{−β(tm−1 − δ)}. In case of

f
(1)
i,j (t), for tm−1 > γ + 2δ, we have

(tk − tk−1) sup
t∈[tk−1,tk]

e−(t−γ)
2

≤
∫ tk

tk−1

e−
1
2 (t−γ)

2+ δ2

2 dt,

in which we used the fact that tk ≤ tk−1 + δ. Hence, a tail function for f (1)i,j (t) is∫ ∞
tm−1

e−
1
2 (t−γ)

2+ δ2

2 dt =

√
π

2
erfc

(
tm−1√

2
− γ
)
e
δ2

2 .

For the derivative of f (1)i,j (t) and for tm−1 > γ + 2δ + 1/
√

2, we have

(tk − tk−1) sup
t∈[tk−1,tk]

|t− γ|e−(t−γ)
2

≤
∫ tk

tk−1

(t− γ)e−
1
2 (t−γ)

2+ δ2

2 dt.

This implies the following tail function:

ε(t) = e
δ2

2

∫ ∞
tm−1

(t− γ)e−
1
2 (t−γ)

2

dt.

11

C Proof of Proposition 1

Fix the triggering functions fi and the constant base intensity µi. Then,∣∣∣L(δ)
i,t (λ

(z)
i)− Li,t(λi)

∣∣∣ ≤ ∣∣∣L(δ)
i,t (λ

(z)
i)− L(δ)

i,t (λi)
∣∣∣+
∣∣∣L(δ)
i,t (λi)− Li,t(λi)

∣∣∣ . (12)

We bound the first term on the right-hand side that is corresponding to the truncation error as follows:∣∣∣L(δ)
i,t (λ

(z)
i)− L(δ)

i,t (λi)
∣∣∣ =

∣∣∣∣∣∣
M(t)∑
k=1

(tk − tk−1)
(
λ
(z)
i (tk)− λi(tk)

)
−
M(t)∑
k=1

xi,k

(
log λ

(z)
i (tk)− log λi(tk)

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣
M(t)∑
k=1

(tk − tk−1)
(
λ
(z)
i (tk)− λi(tk)

)∣∣∣∣∣∣+

∣∣∣∣∣∣
M(t)∑
k=1

xi,k
µmin

(
λ
(z)
i (tk)− λi(tk)

)∣∣∣∣∣∣
≤
M(t)∑
k=1

(tk − tk−1 +
xi,k
µmin

)
∣∣∣λ(z)i (tk)− λi(tk)

∣∣∣ . (13)

First, we define α(t) := 1 {t ≤ z}. Using the fact that 1 − α(tk − τj,n) = 1 {tk − τj,n > z}, we
obtain
M(t)∑
k=1

(tk − tk−1)
∣∣∣λ(z)i (tk)− λi(tk)

∣∣∣ =

M(t)∑
k=1

p∑
j=1

Nj(tk)∑
n=1

(tk − tk−1)fi,j(tk − τj,n)(1− α(tk − τj,n))

=

p∑
j=1

∑
k:tk∈[z,t)

∑
τj,n∈[0,tk−z)

(tk − tk−1)fi,j(tk − τj,n)

=

p∑
j=1

∑
τj,n∈[0,t−z)

∑
k:tk−τj,n≥z

(tk − τj,n − tk−1 + τj,n)fi,j(tk − τj,n)

≤
p∑
j=1

∑
τj,n∈[0,t−z)

εfi,j ,δ(z) ≤
p∑
j=1

Nj(t− z)ε(z)

= N(t− z)ε(z), (14)

where ε(t) is a tail function such that for any i and j, εfi,j ,δ(t) ≤ ε(t). The above inequality is due
to Assumption 2.2. Suppose that the m-th arrival of the i-th dimension is in [tkm−1, tkm). Then,

M(t)∑
k=1

xi,k

∣∣∣λ(z)i (tk)− λi(tk)
∣∣∣ =

Ni(t)∑
m=1

∣∣∣λ(z)i (tkm)− λi(tkm)
∣∣∣

=

Ni(t)∑
m=1

p∑
j=1

Nj(tkm)∑
n=1

fi,j(tkm − τj,n)(1− α(tkm − τj,n))

=

p∑
j=1

∑
m:z<tkm<t

∑
τj,n∈[0,tkm−z)

fi,j(tkm − τj,n)

≤
p∑
j=1

∑
τj,n∈[0,t−z)

∑
m:tkm−τj,n>z

fi,j(tkm − τj,n)

≤
p∑
j=1

∑
τj,n∈[0,t−z)

κ1ε(z) = N(t− z)κ1ε(z). (15)

The last inequality uses Assumption 2.2 and the fact that the number of arrivals in an interval of
length one is bounded by κ1. Therefore, by combining (13) with (14) and (15), we get∣∣∣L(δ)

i,t (λ
(z)
i)− L(δ)

i,t (λi)
∣∣∣ ≤ (1 +

κ1
µmin

)
N(t− z)ε(z). (16)

12

We now proceed to bound the second term in (12). By the definition, we have∣∣∣L(δ)
i,t (λi)− Li,t(λi)

∣∣∣ =

∣∣∣∣∣∣
M(t)∑
k=1

(tk − tk−1)λi(tk)−
∫ t

0

λi(τ)dτ

∣∣∣∣∣∣ . (17)

To bound the right-hand side, using the definition of λi, we have that (17) is bounded above by

M(t)∑
k=1

p∑
j=1

∣∣∣∣∣∣
∫ tk

tk−1

∑
τj,n<τ

fi,j(τ − τj,n)−
∑

τj,n<tk

fi,j(tk − τj,n)dτ

∣∣∣∣∣∣


(a)
=

M(t)∑
k=1

p∑
j=1

∣∣∣∣∣∣
∫ tk

tk−1

∑
τj,n<tk

[fi,j(τ − τj,n)− fi,j(tk − τj,n)]dτ

∣∣∣∣∣∣


≤
p∑
j=1

M(t)∑
k=1

 ∑
τj,n<tk

(tk − tk−1)2 sup
x∈(tk−1−τj,n,tk−τj,n]

∣∣∣∣dfi,j(x)

dx

∣∣∣∣


=

p∑
j=1

∑
τj,n<t

∑
tk≥τj,n

(tk − tk−1)2 sup
x∈(tk−1−τj,n,tk−τj,n]

∣∣∣∣dfi,j(x)

dx

∣∣∣∣
≤

p∑
j=1

∑
τj,n<t

δεf ′i,j ,δ(τj,n)
(b)

≤ δN(t)ε′(0),

where ε′(t) is a tail function such that for any i and j, εf ′i,j ,δ(t) ≤ ε
′(t). In the above equations, (a)

uses the fact that in an interval [tk−1, tk], arrivals can only happen at the endpoints. Moreover, (b)
uses Assumption 2.2. Using the upper bounds of (17) and (16) in (12) will imply the result.

D Proof of Theorem 1

We prove this regret bound following the proof technique for Theorem 4 of [19] and the proof
technique for Theorem 3.3 of [17]. The outline of this proof is as follows:

• Firstly, we derive the following upper bound:

M(t)∑
k=1

(
li,k[λ

(z)
i (µ̂

(k)
i , f̂

(k)
i)]− li,k[λ

(z)
i (µi, f̂

(k)
i)]

)
≤ 2ζ−1|δ − µ−1min|

2(1 + logM(t)).

(18)

• Next, we derive the following upper bound:

M(t)∑
k=1

(
li,k[λ

(z)
i (µi, f̂

(k)
i)]− li,k[λ

(z)
i (µi,fi)]

)
≤ 2pκ2zζ

−1|δ − µ−1min|
2(1 + logM(t)).

(19)

To do this, we need three separate steps:

– Prove the Lemma 1, which we state below.
– Prove that the instantaneous loss function is strongly convex with respect to f̂ (k)

i and
‖ · ‖2H.

– Use the result of Lemma 1 and apply the proof procedure of Theorem 4 of [19] and
Theorem 3.3 of [17].

• Lastly, we combine the results of (18) and (19) to obtain the regret bound:

R
(δ)
t [λ

(z)
i (µi,fi)) ≤ C1(1 + logM(t)], (20)

where C1 = 2(1 + pκ2z)|δ − µ−1min|2.

13

Step 0: Technical assumptions and lemma. Before the main body of the proof, we need to
introduce the following technical assumption, as well as a lemma that bounds theH-norm of ∂fi,j li,k.
These result will be frequently referred to throughout the main body of the proof.

Assumption D.1. We assume that δ is set small enough such that |δ − µ−1min| > δ.

This assumption does not affect the implementation of the algorithm since δ and µmin are both
manually set.

Assumption D.2. We assume that the initialization of the algorithm is nice enough:

µ̂
(0)
i ≤ ω

−1
i |δ − µ

−1
min|,

and ∥∥∥f̂ (0)i,j

∥∥∥
H
≤ κzζ−1i,j

∣∣δ − µ−1min

∣∣ .
Similar to D.1, this assumption does not affect the implementation of the algorithm as we can set
µmin to be small.

The following lemma is needed in Step 2, and will be proved in Step 2.

Lemma 1. Suppose that Assumptions 2.1 and 2.2 hold. Then, for any i, j, k, the intermediate output
of Algorithm 1 at step k satisfies∥∥∥∂fi,j li,k (λ(z)i (µ̂

(k)
i , f̂

(k)
i)

)∥∥∥
H
≤
{

2
∣∣δ − µ−1min

∣∣κz if xi,k = 1
2δκz if xi,k = 0

,

and ∥∥∥f̂ (k)i,j

∥∥∥
H
≤ ζ−1i,j κz

∣∣δ − µ−1min

∣∣ .
We are now ready to prove the main part of the theorem.

Step 1: Proving equation (18). We start the proof of (18) by observing the following fact: given
f̂
(k)
i , the loss function li,k(λ

(z)
i (µ̂

(k)
i , f̂

(k)
i)) is ωi-strongly convex with respect to µ̂i and the square

operator. This implies that

li,k[λ
(z)
i (µi, f̂

(k)
i)] ≥ li,k[λ

(z)
i (µ̂

(k)
i , f̂

(k)
i)] +

〈
∂µi li,k[λ

(z)
i (µ̂

(k)
i , f̂

(k)
i)], µi − µ̂(k)

i

〉
+

+
ωi
2

(µi − µ̂(k)
i)2,

which further indicates that

2li,k[λ
(z)
i (µ̂

(k)
i , f̂

(k)
i)]− 2li,k[λ

(z)
i (µi, f̂

(k)
i)] ≤ 2

〈
∂µi li,k[λ

(z)
i (µ̂

(k)
i , f̂

(k)
i)], µ̂

(k)
i − µi

〉
−

− ωi(µi − µ̂(k)
i)2. (21)

By the update rule, we have

µ̂
(k+1)
i = Π

[
µ̂
(k)
i − ηk∂µi li,k[λ

(z)
i (µ̂

(k)
i , f̂

(k)
i)]

]
.

Since the projection is contractive, we have(
µ̂
(k+1)
i − µi

)2
≤
(
µ̂
(k+ 1

2)
i − µi

)2
=
(
µ̂
(k)
i − ηk∂µi li,k[λ

(z)
i (µ̂

(k)
i , f̂

(k)
i)]− µi

)2
=
(
µ̂
(k)
i − µi

)2
− 2ηk

〈
µ̂
(k)
i − µi, li,k[λ

(z)
i (µ̂

(k)
i , f̂

(k)
i)]

〉
+

+ η2k

[
∂µi li,k[λ

(z)
i (µ̂

(k)
i , f̂

(k)
i)]

]2
.

14

Hence,

2
〈
µ̂
(k)
i − µi, li,k[λ

(z)
i (µ̂

(k)
i , f̂

(k)
i)]

〉
≤ 1

ηk

[(
µ̂
(k)
i − µi

)2
−
(
µ̂
(k+1)
i − µi

)2]
+

+ ηk

[
∂µi li,k[λ

(z)
i (µ̂

(k)
i , f̂

(k)
i)]

]2
. (22)

It is not hard to verify that |∂µi li,k[λ
(z)
i (µ̂

(k)
i , f̂

(k)
i)]| is bounded: first, notice that∣∣∣∂µi li,k[λ

(z)
i (µ̂

(k)
i , f̂

(k)
i)]

∣∣∣ =
∣∣∣∂µi(tk − tk−1)λi(tk)− xi,k log λi(tk) +

ωi
2

[µ̂
(k)
i]2

∣∣∣
= ρk + ωiµ̂

(k)
i ≤ |δ − µ−1min|+ ωiµ̂

(k)
i , (23)

where the last step uses the result ρk ≤ |δ − µ−1min|, which is a direct consequence from Assumption
D.1. By the update rule of µ̂(k)

i , we can see that if µ̂(k)
i ≤ ω−1i |δ − µ

−1
min|, then

µ̂
(k+1)
i ≤ µ̂(k)

i (1− ωiηk) + ηk|δ − µ−1min| ≤ (1− ωiηk)ω−1i |δ − µ
−1
min|+ ηk|δ − µ−1min|

= ω−1i |δ − µ
−1
min|.

Therefore by Assumption D.2 and mathematical induction, µ̂(k)
i ≤ ω−1i |δ − µ

−1
min| for every k ≥ 0.

Combining this result with (23), we have∣∣∣∂µi li,k[λ
(z)
i (µ̂

(k)
i , f̂

(k)
i)]

∣∣∣ ≤ 2|δ − µ−1min|. (24)

With (22), (24) and (21), we have

2

M(t)∑
k=1

(
li,k[λ

(z)
i (µ̂

(k)
i , f̂

(k)
i)]− li,k[λ

(z)
i (µi, f̂

(k)
i)]

)

≤ −ωi
M(t)∑
k=1

(
µi − µ̂(k)

i

)2
+

M(t)∑
k=1

1

ηk

[(
µ̂
(k)
i − µi

)2
−
(
µ̂
(k+1)
i − µi

)2]
+

+

M(t)∑
k=1

ηk

[
∂µi li,k[λ

(z)
i (µ̂

(k)
i , f̂

(k)
i)]

]2
=

M(t)∑
k=1

[
1

ηk
− 1

ηk−1
− ωi

](
µi − µ̂(k)

i

)2
+ 4|δ − µ−1min|

2

M(t)∑
k=1

ηk

≤ 4|δ − µ−1min|
2

M(t)∑
k=1

ηk,

where in the last step, we have invoked the assumption that when ωi ≥ ζ, and ηk = 1/(kζ + b) for
k > 0 3, η−1k − η

−1
k−1 ≤ ωi. Furthermore,

M(t)∑
k=1

ηk ≤ ζ−1(1 + logM(t)).

Hence, plugging this result into the previous equation, we have

M(t)∑
k=1

(
li,k[λ

(z)
i (µ̂

(k)
i , f̂

(k)
i)]− li,k[λ

(z)
i (µi, f̂

(k)
i)]

)
≤ 2ζ−1|δ − µ−1min|

2(1 + logM(t)),

completing the proof of Step 1.

3we assume 1/η0 = 0 since µ̂(0)
i was not involved in the summation.

15

Step 2: Proving equation (19). The proof of (19) follows the same procedure as the proof of (18).
However, proving the counterpart of (24) is more complicated. We stated it in Lemma 1, and we now
formally prove it.

Step 2.1: Proof of Lemma 1.

Recall from equation (9) that, at the k-th update epoch, the update rule for f̂ (k)i,j can be written as

f̂
(k+1)
i,j = −ηk

(tk − tk−1)− xi,k

λ
(z)
i

(
µ̂
(k)
i , f̂

(k)
i

)
 ∑
τj,n∈[tk−z,tk)

K(tk − τj,n, ·)

+ (1− ηkζi,j)f̂ (k)i,j ,

where, by Assumption 2.2, K(x, x) ≤ 1 for all x ∈ R. Since we have used the truncated intensity
function λ(z)i , we have, by triangle inequality,∥∥∥∥∥∥

∑
τj,n∈[tk−z,tk)

K(tk − τj,n, ·)

∥∥∥∥∥∥
2

H

≤

 ∑
τj,n∈[tk−z,tk)

‖K(tk − τj,n, ·)‖H

2

=

 ∑
τj,n∈[tk−z,<tk)

K(tk − τj,n, tk − τj,n)

2

≤ κ2z,

where z is the window size that is selected at the beginning of the algorithm. Here, we have used the
assumption that the number of arrivals within [tk − z, tk) is upper bounded by κz , by Assumption
2.1. In addition, by the design of the algorithm, we always have

λ
(z)
i

(
µ̂
(k)
i , f̂

(k)
i

)
≥ µmin.

Hence, when xi,k = 1,∥∥∥f̂ (k+1)
i,j

∥∥∥
H
≤ (1− ηkζi,j)

∥∥∥f̂ (k)i,j

∥∥∥
H

+

∣∣∣∣∣∣ηk
tk − tk−1 − xi,k

λ
(z)
i

(
µ̂
(k)
i , f̂

(k)
i

)
∣∣∣∣∣∣κz

≤ (1− ηkζi,j)
∥∥∥f̂ (k)i,j

∥∥∥
H

+ ηk
∣∣δ − µ−1min

∣∣κz, (25)

where in the last step of (25), we have used the technical assumption D.1. When the algorithm
initializes with f̂ (0)i,j satisfies Assumption D.2, i.e.,∥∥∥f̂ (0)i,j

∥∥∥
H
≤ κzζ−1i,j

∣∣δ − µ−1min

∣∣ ,
we can use induction and (25) to show that every f̂ (k)i,j satisfies the above bound. In addition, by (9),
we have ∥∥∥∂fi,j li,k (f̂ (k)i,j

)∥∥∥
H
≤ 2κz

∣∣δ − µ−1min

∣∣ .
Similarly, when xi,k = 0, the term µ−1min vanishes because xi,k = 0, and hence we reach the desired
statement.

Step 2.2: Strong convexity of the loss function. The instantaneous loss function is strongly convex
in the following sense:

li,k[λ
(z)
i (µi,fi)] ≥ li,k[λ

(z)
i (µi, f̂

(k)
i)] +

p∑
j=1

〈
∂fi,j li,k(λ

(z)
i (µi, f̂

(k)
i)), fi,j − f̂ (k)i,j

〉
+

+

p∑
j=1

ζi,j
2

∥∥∥fi,j − f̂ (k)i,j

∥∥∥2
H
.

16

In particular, the instantaneous loss function is strongly convex with respect to any one of the fi,j(t)s
and ‖ · ‖2H when the remaining p− 1 are fixed. The proof follows directly from the strong convexity
of ‖ · ‖2H.

Step 2.3: Proof of (19). We now prove (19). By the strong convexity of the instantaneous loss
function proved in Step 2.2, we have

2li,k[λ
(z)
i (µi,fi)] ≥ 2li,k[λ

(z)
i (µi, f̂

(k)
i)] + 2

p∑
j=1

〈
∂fi,j li,k(f̂

(k)
i,j), fi,j − f̂ (k)i,j

〉
H

+ (26)

+

p∑
j=1

ζi,j

∥∥∥fi,j − f̂ (k)i,j

∥∥∥2
H
. (27)

This can be written as follows

2li,k[λ
(z)
i (µi, f̂

(k)
i)]− 2li,k[λ

(z)
i (µi,fi)] ≤ 2

p∑
j=1

〈
∂fi,j li,k(f̂

(k)
i,j), f̂

(k)
i,j − fi,j

〉
−

−
p∑
j=1

ζi,j

∥∥∥fi,j − f̂ (k)i,j

∥∥∥2
H
. (28)

For any j ∈ {1, . . . , p}, since f̂ (k+1)
i,j = Π[f̂

(k)
i,j − ηk∂fi,j li,k[λ

(z)
i (µi, f̂

(k)
i)]] and Π[·] is contractive,

we have ∥∥∥f̂ (k+1)
i,j − fi,j

∥∥∥2
H
≤
∥∥∥f̂ (k)i,j − fi,j − ηk∂fi,j li,k[λ

(z)
i (µi, f̂

(k)
i)]

∥∥∥2
H

=
∥∥∥f̂ (k)i,j − fi,j

∥∥∥2
H

+ η2k

∥∥∥∂fi,j li,k[λ
(z)
i (µi, f̂

(k)
i)]

∥∥∥2
H
−

− 2ηk

〈
∂fi,j li,k[λ

(z)
i (µi, f̂

(k)
i)], f̂

(k)
i,j − fi,j

〉
H
.

Therefore,

2
〈
∂fi,j li,k[λ

(z)
i (µi, f̂

(k)
i)], f̂

(k)
i,j − fi,j

〉
H
≤ 1

ηk

[∥∥∥f̂ (k)i,j − fi,j
∥∥∥2
H
−
∥∥∥f̂ (k+1)
i,j − fi,j

∥∥∥2
H

]
+

+ ηk

∥∥∥∂fi,j li,k[λ
(z)
i (µi, f̂

(k)
i)]

∥∥∥2
H
. (29)

Using Lemma 1, we have

ηk

∥∥∥∂fi,j li,k[λ
(z)
i (µi, f̂

(k)
i)]

∥∥∥2
H
≤ 4ηkκ

2
z|δ − µ−1min|

2

when xi,k = 1, and

ηk

∥∥∥∂fi,j li,k[λ
(z)
i (µi, f̂

(k)
i)]

∥∥∥2
H
≤ 4ηkκ

2
zδ

2 ≤ 4ηkκ
2
z|δ − µ−1min|

2

when xi,k = 0.

We now proceed to final step, which sums (28) over k ∈ {1, . . . ,M(t)} and then combines the result
with (29) summed over j ∈ {1, . . . , p}. To obtain stronger intuition, we choose to use the uniform
upper bound 4ηkκ

2
z|δ − µ−1min|2 for ηk‖∂fi,j‖li,k[λ

(z)
i (µi, f̂

(k)
i)], which holds for all values of xi,k.

We thus obtain

2

M(t)∑
k=1

(
li,k[λ

(z)
i (µi, f̂

(k)
i)]− li,k[λ

(z)
i (µi,fi)]

)
≤
M(t)∑
k=1

p∑
j=1

∥∥∥f̂ (k)i,j − fi,j
∥∥∥2
H

(
1

ηk
− 1

ηk−1
− ζi,j

)
+

+ 4κ2z|δ − µmin|2
M(t)∑
k=1

p∑
j=1

ηk. (30)

17

Since ηk = 1/(kζ + b), we obtain

M(t)∑
k=1

ηk ≤ ζ−1(1 + logM(t)).

Furthermore, 1/ηk − 1/ηk−1 − ζi,j ≤ 0. Therefore, substituting the above inequalities into (30), we
get

M(t)∑
k=1

(
li,k[λ

(z)
i (µi, f̂

(k)
i)]− li,k[λ

(z)
i (µi,fi)]

)
≤ 2pζ−1κ2z|δ − µ−1min|

2(1 + logM(t)).

Step 3. The overall regret bound can be obtained by adding (18) and (19).

D.1 Proof of Corollary 1

From the result of Proposition 1, we have∣∣∣L(δ)
i,t (λ

(z)
i)− Li,t(λi)

∣∣∣ ≤ (1 +
κ1
µmin

)N(t− z)ε(z) + δN(t)ε′(0).

Using the above inequality, the results of Theorem 1, and the triangle inequality, we obtain

M(t)∑
k=1

(
li,k(λ

(z)
i (µ̂i, f̂

(k)
i))− li,k(λi(µi,fi))

)
≤ (C1 + C2)(1 + logM(t)) + C3N(t),

where C1 = (1 + ζ)−2|δ − µ−1min|2 + 2κ2zδ
2p and C2 = 2κ2zµ

−2
min − 4κ2zδµ

−1
min.

E Projection Procedure and Proof of Proposition 2

In this section, we derive the detailed procedure of using polynomial kernels comparing to any other
kernels in general. Recall that when using any kernel in general, the projection operation is a QP
problem, and in order to ensure f̂ (k)i,j (t) ≥ 0 for any t ∈ [0, z], the problem is subject to infinite

number of constraints: for every t > 0, we must have f̂ (k)i,j (t) ≥ 0, which makes the exact projection
onto the subspace of positive functions intractable.

Surprisingly, however, when using 1-dimensional polynomial kernels (e.g., K(x, y) = (1 + xy)4),
one can convert the projection problem to an SDP using the following procedure. First, notice that
the original projection problem can be written as

f̂
(k+1)
i,j = argmin

f∈H,f(t)≥0
||f̂ (k+

1
2)

i,j − f ||2H = argmin
f∈H,f(t)≥0

−2〈f, f̂ (k+
1
2)

i,j 〉H + ||f ||2H. (31)

By the representer theorem, we also have f̂ (k+
1
2)

i,j (·) =
∑
s∈S asK(s, ·), where

S = ∪r≤k{tr − τj,n : tr − z ≤ τj,n < tr}.

Plugging the expression of f̂ (k+
1
2)

i,j into (31), and using the fact that 〈K(s, ·), f〉H = f(s), we have

argmin
f∈H,f(t)≥0

−2
∑
s∈S

asf(s) + ||f ||2H. (32)

Let H be the RKHS with kernel K(x, y) = (1 + xy)2d, for some integer d. By the solution of
Hilbert’s 17th problem [7], we know that a 1-dimensional and 2d-degree polynomial is non-negative
if and only if it can be written as the sum of squares of d-degree polynomials, i.e., a quadratic form
of d-degree polynomials. This allows us to substitute the constraint in (32) with the following:

f ∈ {φ>(x)Qφ(x); Q � 0} ⊂ H,

18

where φ(x) is the feature map of the kernel function K ′(x, y) = (1 + xy)d, which satisfies
φ>(x)φ(y) = K ′(x, y).

Finally, by the representer Theorem in [5] for positive functions, we obtain that the minimizer to (32)
is of the form

∑
s∈S bsK(s, ·). Hence, (32) can be written as

argmin
b∈R|S|

− 2a>Kb + b>Kb (33)

s.t. f(x) =
∑
s∈S

bsK(s, x) = φ>(x)Qφ(x), for some Q � 0.

Upon simple manipulations, the above problem further reduced to

argmin
b∈R|S|

− 2a>Kb + b>Kb (34)

s.t. G · diag(b) + diag(b) ·G � 0,

where K = [K(s, s′)], and G = [φ>(s)φ(s′)] = [K ′(s, s′)] are Gramian matrices with s and s′

coming from S.

F Experiment Details

In this section, we present more details on the experiment, including the settings of parameters, the
complete set of estimates for the synthetic data, in Figure 4, and the complete set of estimates for real
data, in Figure 5.

Experiment settings. For the synthetic data, we generated two sets of data. The first set of data has
a larger time horizon, T = 105, and the simulation results are used to examine the goodness-of-fit,
and run time comparison. We refer to this set of data as “dataset 1”.

To evaluate the effects of the hyperparameters, we also generated a second set of data, which contains
100 trials of independently generated realizations of the MHP, with a smaller time horizon T = 104.
These data, which we refer to as “dataset 2”, contribute to the simulation results presented in Table 1.

Parameters used on “dataset 1”. For NPOLE-MHP, we set the discretization level δ = 0.05, the
window size z = 3, the step size ηk = (kδ/20 + 100)−1, the regularization coefficient ζi,j = 10−8,
and we use a Gaussian kernel whose bandwidth is 0.2. To speed up the algorithm, we use fi,j(t) =
g2i,j(t) setting to circumvent the projection step, and we round tk−τj,n onto a discretized set of points
of the form 0.02k for k ∈ {1, . . . , b50zc}. This allows us to compute the Gramian matrix of the
kernel beforehand. We simulated the benchmark algorithms on fine-tuned parameters. For DMD and
OGD algorithms in [15], we set fi,j(t) = αi,j exp{−2t}, set W as the coefficient matrix, δ = 0.05,
η = 0.01(105/δ)−1/2 as the step size for all the gradient descent involved. For the E-M algorithm of
[27], we use the truncated version of the intensity function, and set the number of kernels as well as
the kernel bandwidth to be the same as NPOLE-MHP. This potentially improves the performance of
[27] since all the data can now be used for learning. We set the coefficient for the `1 regularization to
be 100, and the coefficient for `1,2 regularization to be 10. The pairwise similarity is not considered.
Finally, we set 8 rounds of iterations for both inner and outer loops of the algorithm.4 Since the DMD
algorithm requires knowing the true underlying µ, we assumed that µ was available to all algorithms
for fair comparison.

Parameters used on “dataset 2”. For each choice of δ and ζ, we choose η = 1/(k/2000 + 10),
while remaining the initialization, bandwidths and landmarks of the kernels, as well as the window
size to be the same as previously. The change in the step size takes into consideration that the number
of events is lesser than in “dataset 1”, implying the need for a potentially larger step size in the
beginning. The step size is selected by grid search over 1 trial of data by minimizing the cumulative
loss under δ = 0.01 and ζ = 10−8. For the MLE and MLE-SGLP, we use 5 rounds of inner iterations

4The algorithm of [27] is implemented based on a slight modification of the code provided by the authors.

19

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 True fi,j(t) NPOLE-MHP DMD OGD MLE-SGLP MLE

Figure 4: Performance of different algorithms for estimating F . The subplot at the i-th row and j-th
column shows the performance on fi,j(t). For each subplot, the horizontal axis ranges from 0 to
z = 3, while the vertical axis covers [0, 1].

and 5 rounds of outer iterations to control the amount of time for simulation. As a consequence, the
superior results of NPOLE-MHP, demonstrated in Table 1 in terms of the “average L1 error”, should
not be interpreted as the superiority of NPOLE-MHP over the maximum likelihood algorithm. The
worse result produced by the MLE algorithm is a result of limited computational resource.

Heat maps for real data. For the real data, we compare the values of ‖f̂i,j‖L1[0,z] by converting
them into color maps (Figure 5). Top left corner, ‖f̂i,j‖L1[0,z] is computed using the output of MLE
of [27] with 8 outer loops and 8 inner loops, respectively, using 18 days of the meme-tracking dataset.
For the rest of the three plots, we calculate ‖f̂i,j‖L1[0,z] using the output of NPOLE-MHP with
different step sizes. It can be seen that NPOLE-MHP generates similar sparsity patterns to that of
MLE where the diagonal dominates.

20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

MLE estimate with 8 outer loops and 8 inner
loops.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NPOLE-MHP esitmate with ηk = 1/(kζ +
400).

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

NPOLE-MHP esitmate with ηk = 1/(kζ +
600).

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NPOLE-MHP esitmate with ηk = 1/(kζ +
800).

Figure 5: NPOLE-MHP and MLE: a color map comparison.

21

	Boundedness of the Number of Arrivals
	Proof of Example 1
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Corollary 1

	Projection Procedure and Proof of Proposition 2
	Experiment Details

