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1 Proofs of main theorems

We start by reminding the reader of our geometric setup. First, topic simplexB := Conv(β1, . . . , βK)

is centered at a point denoted by Cp. Let ∆V−1
0 := {x ∈ RV : x + Cp ∈ ∆V−1} — centered

probability simplex. Then, write bk := βk − Cp ∈ ∆V−1
0 for k = 1, . . . ,K and p̃m := pm − Cp ∈

∆V−1
0 for m = 1, . . . ,M . Note that re-centering leaves corresponding barycentric coordinates θm ∈

∆K−1 unchanged. Moreover, the extreme points of centered topic simplex B̃ := Conv{b1, . . . , bK}
can now be represented by their directions vk ∈ RV and corresponding radii Rk ∈ R+ such that
bk = Rkvk for any k = 1, . . . ,K.

1.1 Coverage of the topic simplex

Suppose that Cp is the incenter of the topic simplex B̃, with r being the inradius. Recall that the
incenter and inradius correspond to the maximum volume sphere inside B̃. Let ai,k denote the
distance between the ith and kth vertex of B̃, with amin ≤ ai,k ≤ amax for all i, k, andRmax, Rmin
such that Rmin ≤ Rk := ‖bk‖2 ≤ Rmax ∀ k = 1, . . . ,K

Proposition 1. For simplex B̃ and ω ∈ (ω1, ω2), where ω1 = 1 − r/Rmax and ω2 =
max{(a2min)/(2R2

max), max
i,k=1,...,K

(1 − cos(bi, bk)}, the cone Sω(v) around any vertex direction

v of B̃ contains exactly one vertex. Moreover, complete coverage holds:
K⋃
k=1

Sω(vk) ⊇ B̃.

Proof. Let ω0 =
a2min
2R2

max
. Then, for any k ∈ {1, . . . ,K}, for any ω ≤ ω0, Sω(vk) does not contain

any other vertices. This can be explained as follows. Fix k, and choose i ∈ {1, . . . ,K} 6= k. Define
φi,k as the angle at Cp made by the side connecting the vertex i and vertex k. Then from the cosine
law for triangles, we have

cos(φi,k) =
R2
i +R2

k − a2i,k
2RiRk

.

Now, for any φ ≤ min
i,k

φi,k, with ωφ = 1− cos(φ), the cone Sωφ(vk) does not cover any vertex other

than vertex k, for any k. Now φ1 = min
i,k

φi,k satisfies

1− cos(φ1) ≤ a2min
2R2

max

− (Rmax −Rmin)2

2RmaxRmin
≤ a2min

2R2
max

.

from which we obtain the upper bound for ω. For the lower bound, consider for vertex k, S(vk) the

cone connecting the incenter to facial incenters of facets containing vertex k. Then
K⋃
k=1

S(vk) ⊇ B̃.
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Figure 1: C : kth vertex point, A : point where the adjacent side to the vertex has been cut off by the
sphere, Rk: distance to kth vertex from incenter,R : radius of sphere, B : incenter

Now for each k, S(vk) ⊆ Sω2(vk), where ω2 = 1 − cos(φ2), with φ2 satisfying cos(φ2) ≤
min

k∈{1,...,K}
r
Rk

. From this we get the lower bound. The restriction 2R2
max ≤ a2min is needed to ensure

that the set
{
ω : 1− ( r

Rmax
) ≤ ω ≤ (

a2min
2R2

max
)
}

is non-empty.

Proposition 2. Let B(Cp,R) = {p̃ ∈ RV |‖p̃− Cp‖2 ≤ R},R > 0; ω1, ω2 given in Prop. 1, and

ω3 := 1−min

{
min
i,k

Rk sin2(bi, bk)

R
+ cos(bi, bk)

√
1−

R2
k sin2(bi, bj)

R2

 , 1

}
, (1)

then we have
K⋃
k=1

Sω(vk) ∪B(Cp,R) ⊇ B̃ whenever ω ∈ (min{ω1, ω3}, ω2).

Proof. Let φi,k = arccos(1 − ωi,k) be the angle formed by the line joining the kth vertex to the
incenter Cp and the radial vector from incenter to the point where the sphere cuts the edge connecting
i and k (segment AB on Fig. 1). From the sine law for a triangle we have

cos(φi,k) + cot(bi, bk) sin(φi,k)− Rk
R

= 0. (2)

Solving for φi,k we have cos(φi,k) =

(
Rk sin2(bi,bk)

R + cos(bi, bk)

√
1− R2

k sin2(bi,bk)

R2

)
. Now,

since we must choose the largest such φ over all i and k, the bound follows immediately. Notice

that as R → Rmax, the value of
(
Rk sin2(bi,bk)

R + cos(bi, bk)

√
1− R2

k sin2(bi,bk)

R2

)
→ 1, whereas

r
Rmax

< 1 strictly. Thus, as R increases the lower bound in this limiting scenario is dominated by

1−min
i,k

(
Rk sin2(bi,bk)

R + cos(bi, bk)

√
1− R2

k sin2(bi,bk)

R2

)
, thereby obtaining an improvement in the

bound from Proposition 1.

Proposition 3. The cone Sω(v1) whose axis is a topic direction v1 has mass

P(Sω(v1)) > P(Λc(b1)) =

∫ 1

1−c θ
α1−1
1 (1− θ1)

∑
i6=1 αi−1dθ1∫ 1

0
θα1−1
1 (1− θ1)

∑
i6=1 αi−1dθ1

=

c
∑
i6=1 αi(1− c)α1Γ(

∑K
i=1 αi)

(
∑
i 6=1 αi)Γ(α1)Γ(

∑
i 6=1 αi)

[
1 +

c
∑K
i=1 αi∑

i6=1 αi + 1
+

c2(
∑K
i=1 αi)(

∑K
i=1 αi + 1)

(
∑
i 6=1 αi + 1)(

∑
i 6=1 αi + 2)

+ · · ·
]
,

(3)
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where Λc(b1) is the simplicial cap of Sω(v1) which is composed of vertex b1 and a base parallel to
the corresponding base of B̃ and cutting adjacent edges of B̃ in the ratio c : (1− c).

The truncated beta probability calculations in Proposition 3 can be found in Olver et al. (2010).
Proposition 4. For λ ∈ (0, 1), let cλ be such that λ = min

k
P(Λcλ(bk)) and let ωλ be such that

cλ =

((
2

√
1− r2

R2
max

)
(sin(d) cot(arccos(1− ωλ)) + cos(d))

)−1
, (4)

where angle d ≤ min
i,k

∠(bk, bk − bi). Then, as long as

ω ∈
(
ωλ,max

(
a2min

2R2
max

, max
i,k=1,...,K

(1− cos(bi, bk)

))
, (5)

the bound P(Sω(vk)) ≥ λ holds for all k = 1, . . . ,K.

Proof. Consider Figure 1, with length of AC = ai,kc, where c is the proportion in which the cone
cuts AC, the edge joining vertex i and vertex k. Now, from the sine law of a triangle,

Rk
ai,kc

= sin(bi, bk) cotφi,k + cos(bi, bk) (6)

where φi,k is as defined in the proof of Proposition 2. Now ai,k
Rk
≤ 2(
√
R2
max−r2)
Rmax

. The choice of
φλ = cosωλ satisfies

cλ ≥
1

2
√

1− r2

R2
max

min
i,k

1

sin(bi, bk) cotφλ + cos(bi, bk)
(7)

therefore proves the theorem. Since, φλ ≤ π
2 −∠(bi, bk), for all i, k, the function sin(bi, bk) cotφλ+

cos(bi, bk) is increasing as the angle between bi and bk increases, as can be checked for maxima by
the first derivative rule. Using the cosine law,

cos(bi, bk) =
−R2

i +R2
k + a2i,k

2ai,kRk
. (8)

Minimizing this quantity with respect to i and k we get the result.

1.2 Consistency of the Conic Scan-and-Cover algorithm

Under the LDA setup (as presented in Section 2 of the main text), recall that ai,k is the length of
the edge connecting the ith and kth vertex, i.e., ‖βi − βk‖2 = ai,k, where ‖ · ‖2 is the `2 norm. Let
B(·, ε) denote an ε-ball in `2-norm. Then the following result states that with high probability there
exists a document in a neighborhood of every vertex.
Lemma 1. Let pm :=

∑
k βkθmk for m = 1, . . . ,M as before. Then for any i and any 0 < ε <

max
k 6=i

ai,k,

P(pm /∈ B(βi, ε) ∀ m ∈ {1, . . . ,M}) ≤

∫ 1−(ε/max
k 6=i

ai,k)

0 θαi−1i (1− θi)
∑
j 6=i αj−1dθi∫ 1

0
θαi−1i (1− θi)

∑
j 6=1 αj−1dθi

M

. (9)

Since

( ∫ 1−(ε/max
k 6=i

ai,k)

0 θ
αi−1

i (1−θi)
∑
j 6=i αj−1dθi∫ 1

0
θ
αi−1

i (1−θi)
∑
j 6=1 αj−1dθi

)
< 1, for all i because Beta distribution is absolutely

continuous in (0, 1), the bound on the right hand side goes to 0 as M →∞.

Let {β̂1, . . . , β̂K} be the topics identified by Conic Scan-and-Cover algorithm, with labels permuted
according to the minimum matching distance criteria, with {β1, . . . , βK} being the true topics. Then
the following result shows the consistency of the identified topics.
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Theorem 1. Suppose {β1, . . . , βK} are the true topics, incenter Cp is given, θm ∼ DirK(α) and
pm :=

∑
k βkθmk for m = 1, . . . ,M and α ∈ RK+ . Let {β̂1, . . . , β̂K̂} be the output of the Conic

Scan-and-Cover algorithm trained with ω andR as in Proposition 2. Then ∀ ε > 0,

P

({
min

j∈{1,...,K̂}
‖βi − β̂j‖ > ε , for any i ∈ {1, . . . , K̂}

}
∪ {K 6= K̂}

)
→ 0 as M →∞.

Proof. From the description of the Conic Scan-and-Cover algorithm it suffices to prove that for the
suitable choice of ω,R as in Proposition 2 there holds P(∃ xi ∈ {p1, . . . , pm} such that ‖βi−xi‖ <
ε ∀ i ∈ {1, . . . ,K}) → 1 as M → ∞. But this probability expression is bounded from below by
1−

∑K
i=1 P(pm /∈ B(βi, ε) ∀ m ∈ {1, . . . ,M}). The conclusion now follows from Lemma 1.

1.3 Variance argument for multinomial setup

In the topic modeling problem we are not given pm for m = 1, . . . ,M . Under the bag-of-words
assumption we have access to the frequencies of words in documents w1, . . . , wM which provide
a point estimate w̄m := wm/Nm for the pm. The following proposition establishes a bound on the
variation of w̄m from pm.
Proposition 5.

E[‖w̄m − pm‖22] ≤ 1− (1/V )

Nm
. (10)

Proof. By iterated expectation identity,

E[‖w̄m − pm‖22] = E
[
E
[ V∑
i=1

‖w̄mi − pmi‖22
∣∣∣∣pm]]

= E
[ V∑
i=1

pmi(1− pmi)
Nm

]

=
1− E[

∑V
i=1 p

2
mi]

Nm
≤ 1− (1/V )

Nm
.

The second equality follows because conditioned on pm, each wmi ∼ Bin(Nm, pmi). The last
inequality follows from Cauchy-Schwartz Inequality.

2 Spherical k-means for topic modeling

We aim to clarify the role of Step 11 of the document Conic Scan-and-Cover algorithm, a geometric
correction technique based on weighted spherical k-means optimization.

2.1 Topic directions as solutions to weighted spherical k-means

Let centered document norms rm := ‖p̃m‖2 for m = 1, . . . ,M and αk(v) := cos(bk, v), cosine of
the angle between direction v and k-th topic. The weighted spherical k-means objective takes the
form

min
‖vk‖2=1,k=1,...K

K∑
k=1

∑
m∈Sk(vk)

rm(1− cos(vk, p̃m)), (11)

where Sk(vk) := {m| cos(vk, p̃m)) > cos(vl, p̃m) ∀l 6= k)}. Next observe that:

rm cos(vk, p̃m) = 〈vk, p̃m〉 =

K∑
i=1

θmi〈vk, bi〉 =

K∑
i=1

θmiRiαi(vk), (12)

so our objective 11 becomes:

max
‖vk‖2=1,k=1,...K

K∑
k=1

∑
m∈Sk(vk)

K∑
i=1

θmiRiαi(vk). (13)
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Now, if R1 = . . . = RK and αi(bk) = αi(bl) ∀ k, l 6= i, which implies that topic simplex
is equilateral, we see that cluster boundaries of topic directions are given by m ∈ Sk(bk) iff
θmk > θml ∀ l 6= k. Observe that the corresponding partition is defined by the geometric medians
of topic simplex, which in turn partitions it into equal volume parts. Then, assuming that the topic
simplex B is symmetric, combined with the symmetricity of the Dirichlet distribution of θm-s, it
follows that bk is the centroid of Sk(bk) for k = 1, . . . ,K.

2.2 Role of the spherical k-means in CoSAC algorithm for documents

The result of Section 2.1 shows that weighted spherical k-means with Lloyd type updates (Lloyd, 1982)
will converge to the directions of the true topics if it is initialized in their respective neighborhoods
and equilaterality of B and symmetricity of Dirichlet for document topic proportions is satisfied.

Recall that goal of the Conic Scan-and-Cover is to find the number of topics and their directions,
while Mean Shifting was used to address the noise in the data. We proceed to compare weighted
spherical k-means by itself (with 500 iterations, which makes it slower than CoSAC) versus document
Conic Scan-and-Cover with only Mean Shifting and the full document Conic Scan-and-Cover
algorithm to see the effect of the spherical k-means post-processing step. Results in Fig. 2 are for
the same scenarios as in the main text – that is when either documents are short Nm ∈ [25, 300]
but corpora is large M = 30000 or when documents are longer Nm = 500 and corpora is smaller
M ∈ [100, 10000]. We see that spherical k-means by itself does not succeed, whereas when used as
a postprocessing step for CoSAC it allows for a slight improvement when documents are short. This
is because it operates on the full data partition when taking averages for direction estimation, while
Mean Shifting only has access to the data in its respective cone Sω(v). Using more data is important
for noise reduction when documents are short as suggested by our analysis.
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Figure 2: Minimum matching Euclidean distance for (a) varying corpora size, (b) varying length of
documents. Perplexity for (c) varying corpora sizes, (d) varying length of documents.

3 Additional experiments

3.1 Perplexity comparison

In this section we present perplexity scores comparison for the same experiments as in the main
text. For simulation experiments we used V = 2000, symmetric α = η = 0.1. To compute held-
out perplexity for the CoSAC we employed projection based estimates for topic proportions θm
from Yurochkin & Nguyen (2016), which led to a slightly worse perplexity scores for CoSAC and
GDM in comparison to Gibbs sampler. However, CoSAC (except for Nm = 25, when it slightly
underestimates K) shows competitive performance without requiring K as an input. We note that as
before cscRecoverKL outperforms RecoverKL in all cases.

3.2 Varying vocabulary size V

Our next experiment investigates the influence of vocabulary size V . We set Nm = 500, M = 5000,
K = 15, symmetric α = η = 0.1 and varied V from 2000 to 15000. We discovered that ω = 0.6 is
too small for V > 10000, meaning that CoSAC algorithm does not find enough documents in the
corresponding cones and keeps discarding without recording topics (per Step 9 of Algorithm 2). This
can be explained by the fact that vectors tending to be far apart in high dimensions and relatively (to
V > 10000) small values of corpora size M and document lengths Nm. On the other hand, setting
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ω = 0.75 worked well for all values of V in this experiment. Results are reported in Fig. 3(c), (d)
and Fig. 4(d). Document CoSAC with ω = 0.75 recovered true K = 15 for all values of V and
showed better recovery than GDM and Gibbs sampler in terms of minimum matching distance, while
Gibbs sampler had slightly better perplexity for higher values of V . It is worth reminding that unlike
CoSAC, both GDM and the Gibbs sampling based method requires the number of topics K be given.

3.3 Impact of α

Recall that, per the LDA model, topic proportions θ ∼ DirK(α). Cases with α > 1 were previously
shown (Nguyen, 2015) to exhibit slower convergence rates of the LDA’s posterior estimation (via
Gibbs sampler, for instance). Geometrically, large α implies that documents are more likely concen-
trated near the center of the topic simplex, leaving fewer documents near the vertices; this entails that
geometric inference is more challenging. In our choices for parameters ω,R, λ we relied on small
values of α as a more practical scenario. Specifically, we considered ω = 0.8 for this experiment
to achieve full coverage of the topic simplex. In our previous experiments we set α = 0.1. Now,
we consider a larger range, α ∈ [0.01, 1.5], to gauge its impact more fully. Results are reported in
Fig. 4(a), (b) and (c). For smaller values of α CoSAC is demonstrated to be the best algorithm of all
under consideration. As α increases, CoSAC can still recover correct K with high accuracy, although
the quality of topic estimates deteriorates faster than for Gibbs sampler and GDM. We think that
further work on estimation procedures for topic radii Rks (recall that topics are estimated as direction
and length along this direction bk = Rkvk) might address this issue. In this work we considered
maximum projection (Step 13 of Algorithm 2 of the main text) to estimate Rks, which might not be
as accurate when documents are mostly near the center of the topic simplex (i.e., for higher α).
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Figure 3: Perplexity for (a) varying corpora size, (b) varying length of documents, (c) varying
vocabulary size; (d) Minimum matching Euclidean distance for varying vocabulary size.
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Figure 4: Varying α (a) Minimum matching Euclidean distance, (b) Perplexity, (c) Estimation of
number of topics; (d) Estimation of number of topics for varying vocabulary size.

4 Implementation details

In this section we give details about the implementations of the algorithms used in simulation studies
and real data. We implemented Conic Scan-and-Cover (CoSAC) algorithm in Python with the
help of Scipy (Jones et al., 2001–) sparse matrix modules. Geometric Dirichlet Means (GDM)
(Yurochkin & Nguyen, 2016) was implemented with the help of Scikit-learn (Pedregosa et al.,
2011) k-means implementation (with 10 restarts to avoid local minima of k-means) combined
with a geometric correction technique. Codes for CoSAC and GDM are available at https:
//github.com/moonfolk/Geometric-Topic-Modeling. For RecoverKL (Arora et al.,
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2012) we applied code from one of the coauthors. To implement cscRecoverKL we used our CoSAC
implementation (Algorithm 1 of the main text with outlier threshold λ as in Algorithm 2) to find
anchor words and then recovery routine from the aforementioned code. For the Gibbs sampling
(Griffiths & Steyvers, 2004) we used an lda package in Python that utilizes Cython to achieve
C speed. Gibbs sampler was trained with α = 0.1, η = 0.01 and 500 iterations in simulations
studies and α = 0.1, η = 0.1 and 1000 iterations in the NYTimes articles1 analysis. For the SVI
(Hoffman et al., 2013) we used Gensim implementation (Řehůřek & Sojka, 2010) with automatic
hyperparameters estimation, 50 iterations and 10 passes. Finally for HDP (Teh et al., 2006) we used
C++ implementation with default hyperparameter settings and 100 iterations. For all experiments
(except large vocabulary sizes and bigger α), per discussions in Sections 3.2 and 4 of the main text,
parameters of the CoSAC were set to ω = 0.6, n = 0.001M and R as median of the centered and
normalized document norms. Spherical k-means post-processing step was run for 30 iterations. For
cscRecoverKL we set ω = 0.4, λ = 0.015 (λ = 0.005 for real data) andR as corresponding median
of the norms. Note that cscRecoverKL takes word-to-word co-occurrence matrix as input, therefore
sample size is V and "documents" are rows of this matrix. Exploring distributional properties of
the simplex spanned by the anchor words is outside of the scope of this work, therefore parameter
choices were made empirically based on the visual analysis illustrated by Fig. 2 of the main text.
All simulated results are reported after 20 repetitions of the data generation for each scenario and
NYTimes results for LDA and HDP are reported over 10 refits of the corresponding Gibbs samplers.

1https://archive.ics.uci.edu/ml/datasets/bag+of+words
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