
Visual Interaction Networks: Learning a Physics
Simulator from Video

Supplementary Material

Nicholas Watters, Andrea Tacchetti, Théophane Weber
Razvan Pascanu, Peter Battaglia, Daniel Zoran

DeepMind
London, United Kingdom

{nwatters, atacchet, theophane,
razp, peterbattaglia, danielzoran}@google.com

1 Supplementary Videos

We provide videos showing sample VIN rollout sequences and dataset examples. In all videos, for
visual clarity the objects are rendered at a higher resolution than they are in the input data.

1.1 Sample VIN Rollout Videos

See the videos at

https://goo.gl/RjE3ey

These show rendered VIN rollout position predictions compared to the ground-truth (unobserved)
system simulation for 3-object and 6-object datasets of all force systems. In each video, the VIN
rollout is on the right-hand side and the ground-truth on the left-hand side. Rollouts are 200 steps
long for 3-object systems and 100 steps long for 6-object systems (except for Drift, where we use 35
steps for all rollouts to ensure objects don’t drift out of view). The VIN rollout tracks the ground
truth quite closely for most datasets. Two rollout examples are provided for each dataset.

1.2 Dataset Examples

See the videos at

https://goo.gl/yVQbUa

These show examples of the 3-object and 6-object datasets of all force systems. The VIN and all
baselines receive 6 frames of these as input during training and rollouts.

2 Training

2.1 Loss Function

Given a state code containing a representation of position and velocity for each object in the scene,
we compute the loss as follows: First, apply the decoder to each slot in the state code (there is one
slot for each object) to get a stack of 4-vectors, one for each object. Then, take the mean squared
error of each 4-vector slot with respect to the ground truth positions and velocity, and average over
slots. This is a loss term for a state code. Since our models have temporal offsets up to length 4,
we have 4 encoded state codes. For each of these encoded state codes, we take the mean of the 4
corresponding state code losses to obtain the encoding loss. For the predicted (rollout) state codes, we

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

https://goo.gl/RjE3ey
https://goo.gl/yVQbUa

take the weighted average of over the 8 predicted state codes of the state code losses (the weighting is
described in the main text). The final loss is the sum of the encoding loss and the prediction loss.

Note that for the VIN without temporal offsets, the encoding loss has 1 term instead of 4.

2.2 Training Parameters

We use the following training parameters for all models:

• Training steps: 5 · 105

• Batch Size: 4

• Gradient Descent Optimizer: Adam, learning rate 5 · 10−4e−t/α where α = 1.5 · 105 and t
is the training step.

• Rollout frame temporal discount (factor by which future frames are weighted less in the
loss): 1− γ with γ = e−t/β where β = 2.5 · 104 and t is the training step.

3 VIN Model Details

In all models, all activation functions were ReLU. All network variables were initialized with zero
bias and weights drawn from a normal distribution with standard deviation (input size)−1/2 (for
convolutional weight variables, input size is the fan-in size).

3.1 Visual Encoder

See the main text for schematics and high-level summary descriptions of all model components. Here
we describe parameters and details.

The visual encoder takes a sequence of three images as input and outputs a state code. Its sequence
of operations on frames [F1, F2, F3] is as follows:

• Apply an image pair encoder (described below) to [F1, F2] and [F2, F3], obtaining S1 and
S2. These are length-32 vectors.

• Apply a shared linear layer to convert S1 and S2 to tensors of shape Nobject × 64. Here
Nobject is the number of objects in the scene, and 64 is the length of each state code slot.

• Concatenate S1 and S2 in a slot-wise manner, obtaining a single tensor S of shape Nobject×
128.

• Apply a shared MLP with one hidden layer of size 64 and a length-64 output layer to each
slot of S. The result is the encoded state code.

The Image Pair Encoder takes two images as input and outputs a candidate state code. Its sequence
of operations on frames [F1, F2] is as follows:

• Stack F1 and F2 along their color-channel dimension.

• Independently apply two 2-layer convolutional nets, one with kernel size 10 and 4 channels
and the other with kernel size 3 and 16 channels. Both are padded to preserve the input size.
Stack the outputs of these convolutions along the channel dimension.

• Apply a 2-layer size-preserving convolutional net with 16 channels and kernel-size 3.

• Inject two constant coordinate channels, representing the x- and y-coordinates of the feature
matrix. These two channels are a meshgrid with min value 0 and max value 1.

• Convolve to unit height and width with alternating convolutional and 2× 2 max-pooling
layers. The convolutional layers are size-preserving and have kernel size 3. In total, there
are 5 each of convolutional and max-pooling layers. The first three layers have 16 channels,
and the last two have 32 channels. Flatten the result into a 32-length vector. This is the
image pair encoder’s output.

2

3.2 Dynamics Predictor

The dynamics predictor takes a sequence of 4 consecutive state codes [S1, ..., S4] and outputs a
predicted state code Spred, as follows:

• Temporal offsets are 1, 2, 4, so we have IN cores C1, C2, C4. Since the temporal off-
set indexing goes back in time, we apply C4 to S1, C2 to S3, and C1 to S4. Let
Scandidate1 , Scandidate3 , Scandidate4 denote the outputs.

• Apply a shared slot-wise MLP aggregator with sizes [32, 64] to the concatenation of S1,3,4
i

for each i ∈ {1, ..., Nobject}. The resulting state code is the dynamics predictor’s output.

The Interaction Net core takes a state code [Mi]1≤i≤Nobject
as input and outputs a candidate state

code, as follows:

• Apply a Self-Dynamics MLP with sizes [64, 64] to each slot Mi. Let [Mself
i]1≤i≤Nobject

denote these.
• Apply a Relation MLP with sizes [64, 64, 64] to the concatenation of each pair of distinct

slots. Let [Mrel
ij]1≤i 6=j≤Nobject

denote the outputs.
• Sum for each slot the quantities computed so far, to produce an updated slot. Specifically,

let Mupdate
i =Mself

i +
∑
jM

rel
ij .

• Apply an Affector MLP with sizes [64, 64, 64] to each Mupdate
i , yielding Maffect

i .
• For each slot, apply a shared MLP with sizes [32, 64] to the concatenation of Mi and
Maffect
i . The resulting state code is the output.

The IN from State model uses the same dynamics predictor, but no encoder (it is given the posi-
tion/velocity vectors for directly).

3.3 RNN Models

The Visual RNN model uses the same parameters for the visual encoder as the VIN. The RNN
dynamics predictor has a single MLP core with sizes [64, 64, 64, 64, 64] and the same temporal offset
of {1, 2, 4} and shared slot-wise MLP aggregator with sizes [32, 64] as the VIN.

3.4 LSTM

The Visual LSTM model uses the same parameters for the visual encoder as the VIN. The LSTM
dynamics predictor has a single LSTM/MLP core consisting of a pre-processor MLP with sizes
[64, 64], an LSTM with 128 hidden units, and a post-processor MLP with sizes 32, 32. This is the
core of an temporal offset-aggregating MLP with sizes [32, 64] and temporal offsets 1, 2, 4.

The LSTM from State model uses the LSTM dynamics predictor on position/velocity states.

4 Importance of Temporal Offsets

In the main text, we highlighted the importance of the relation network in the model’s interaction net
by showing results from an ablation experiment with that network removed. Here, we highlight the
importance of temporal offset aggregation by showing results from an ablation experiment without
any temporal offset aggregation. Specifically, we give the dynamics predictor only one core C1 and
only one single frame of input S1 (see SM Secion 3.2). Everything else remains the same, including
the shared slot-wise MLP aggregator, which now takes not a concatenation over cores but the slots
from just the one core C1. Additionally, note that the auxiliary encoding loss now has only one term,
instead of four.

Figure 1 shows the results of this experiment in a format analogous to Figure 3 of the main text. The
only difference here is that we replace the relation net ablation experiment results with the temporal
offset ablation experiment results described here. We see that the performance of the VIN without
temporal offsets is significantly lower than that of the VIN, hence temporal offset aggregation is a
crucial component of the model.

3

Figure 1: Importance of Temporal Offsets. Model comparison of Inverse Normalized Loss. This
includes results from the VIN without temporal offsets (yellow). Results for all other models are the
same as in Figure 3 of the main text. The poor performance of the VIN without temporal offsets
shows that temporal offset aggregation is critical for the performance of the VIN model.

5 Datasets

5.1 Physical Systems

We simulated each physical system with Newton’s Method and internal simulation timestep small
enough that there was no visual distinction after 300 frames when using the RK4 method. We use the
specific force laws below:

• Spring A pair of objects at positions ~pi and ~pi obey Hooke’s law

~Fij = −κ~dij − ε
~dij

|~dij |

where Fij is the force component on object j from object i. Here ~dij = ~pi − ~pj is the
displacement between the objects, κ is the spring constant, and ε is the equilibrium. We use
ε = 0.45

• Gravity A the pair of objects with masses mi, mj obey Newton’s Law

~Fij = −G
mimj

~dij

|~dij |3

where G is the gravitational constant. In practice, we upper-bounded the gravitational force
to avoid instability due to the "slingshot" effect when two objects pass extremely close to
each other. To further prevent objects from drifting out of view, we also applied a weak
attraction towards the center of the field of view. The system effectually operates within a
parabolic bowl.

• Billiards A pair of balls only interact when they touch, in which case they bounce off of
each other instantaneously and with total elasticity. The bounces conserve kinetic energy
and total momentum, as if the objects are perfect billiard balls. In addition, the balls bounce
off the edges of the field of view.

• Magnetic Billiards A pair of objects with charges qi, qj obey Coulomb’s law

Fij = k
q1q2~dij

|~dij |3

where k is Coulomb’s constant. In addition, the balls bounce off the edges of the field of
view as in the Billiards system.

4

pixel-to-state models state-to-state models
3-object datasets VIN Visual LSTM Visual RNN VIN from State LSTM from State

Spring 1.646 1.831 3.272 0.426 1.844
Gravity 1.194 1.288 1.572 0.146 0.191

Magnetic Billiards 1.792 1.878 2.911 0.454 1.863
Billiards 1.391 1.600 2.752 0.942 2.507

Drift 2.474 2.920 3.663 0.0017 0.0052

6-object datasets VIN Visual LSTM Visual RNN VIN from State LSTM from State
Spring 0.565 0.608 0.858 0.235 0.324
Gravity 0.416 0.422 0.597 0.092 0.157

Magnetic Billiards 0.750 0.836 1.374 0.349 0.791
Billiards 0.918 1.022 2.582 0.817 1.919

Drift 0.749 0.831 1.083 0.0025 0.0069
Table 1: Mean Euclidean Prediction Error On 8-Step Rollouts. These values show the Mean
Euclidean Prediction Error on the length-8 test rollouts. All values are scaled by 100, so they show a
geometric deviation as a percentage of the frame width. Our model outperforms all pixel-to-state
baselines on all datsets, and also outperforms the LSTM state-to-state baseline on some datasets. We
believe the unexpectedly high values on Drift result from objects nearly drifting out of view before
simulations are terminated. We also believe the lower values on 6-object datasets is a function of the
slower velocity of those datasets.

• Drift In this system there are no forces, so the objects simply drift with their initial velocity.
We terminate all simulations before the objects completely exit the frame, though bound the
initial positions and velocities so that this never occurs before 32 timesteps.

Unspecified parameters κ, G, and k were tuned with the render stride for each dataset and object
number to make the object velocities look reasonable.

We initialize each object’s initial position uniformly within a centered box of width 0.8 times the
framewidth. We initialize each object’s velocity uniformly at random, except for Gravity, where we
initialize each object’s velocity as the counter-clockwise vector tangent with respect to the center of
the frame, then add a small random vector (this was necessary to ensure stability of the system).

For the unbounded systems (Gravity, Springs, and Drift), after the velocities are initialized we enforce
net zero momentum by subtracting an appropriate vector from each ball’s initial velocity. For these
systems we also center the objects’ positions so that the center of mass lies in the center of the frame.
These measures ensure the entire system remains in view.

For all systems except Drift we apply a weak frictional force (linearly proportional to each ball’s
area), to ensure that any accumulation of numerical inaccuracies does not cause instability in any
systems, even after many hundreds of timesteps.

We render each system as a 32 × 32 RGB video in front of a CIFAR10 natural image background.
For systems that allow occlusion (every system except Billiards), we use a foreground/background
ordering of the balls by color, and this ordering is fixed for the entire dataset.

5.2 Numerical Results

In Tables 1 and 2 we show values of the Mean Euclidean Prediction error on all models and all
datasets after 8 and 50 rollout steps, respectively. These values numerically represent time-slices of
Figure 6 in the main text, partitioned by dataset.

5

Euclidean deviation after 50 simulation timesteps
Our Model Visual LSTM Visual RNN Our Predictor LSTM Predictor

Spring 0.046 0.249 0.157 0.063 0.324
Gravity 0.008 0.048 0.043 0.013 0.081

Magnetic Billiards 0.111 0.398 0.314 0.179 0.332
Billiards 0.151 0.391 0.308 0.199 0.348

Euclidean deviation per object after full frame width is travelled
Our Model Visual LSTM Visual RNN Our Predictor LSTM Predictor

Spring 0.069 0.304 0.213 0.091 0.360
Gravity 0.009 0.038 0.038 0.010 0.057

Magnetic Billiards 0.118 0.417 0.455 0.165 0.354
Billiards 0.179 0.470 0.395 0.223 0.411

Table 2: Mean Euclidean Prediction Error for 50-Step Rollouts. These values show the Mean
Euclidean Prediction Error on length-50 test rollouts. All values are scaled by 100, so they show a
geometric deviation as a percentage of the frame width. Our model out-performs all other models,
including state-to-state models.

6

	Supplementary Videos
	Sample VIN Rollout Videos
	Dataset Examples

	Training
	Loss Function
	Training Parameters

	VIN Model Details
	Visual Encoder
	Dynamics Predictor
	RNN Models
	LSTM

	Importance of Temporal Offsets
	Datasets
	Physical Systems
	Numerical Results

