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A Implementation details1

Representative dataset generation As a representative dataset in cold start experiments we use2

synthetic 2D datasets where each class comes from a Gaussian distribution with a randomly generated3

mean and variance. We set the size of training and test dataset to 400 and 4000 respectively and4

the proportion of class 0 varies from 0.1 to 0.9. Each mean is drawn independently from a uniform5

distribution from 0 to 1 and the covariance is obtained by multiplying matrices whose entries are6

drawn uniformly between −0.5 and 0.5 with their transposes. The LAL data generation parameters7

of Sec. 3 are set to the following values: M = 100, T = 48, Q = 500. For every new initialization8

we use a new representative dataset that insures that the learnt strategy can generalize to various9

problems.10

In warm start experiments, we used 100 or 200 samples (in Splice and Higgs datasets correspond-11

ingly), out of which 40% were used to estimate the test error and 60% for collecting LAL data.12

Besides, we used multiple permutations of training and testing data to compensate for the limited13

amount of data (compared to the synthetic data). The LAL data generation parameters are the14

following. For Splice dataset, Q = 100 and M = 10, τ = 10, 14, . . . , 48, T = 12. For Higgs dataset,15

Q = 100, M = 10 and τ = 50, 55, . . . , 110, T = 12. The experiments show that is selected values16

are enough to interpolate between the learning states.17

Learning state parameters for GP When we use GP as a classifier, we operate on the following18

features: a) predicted probability p(y = 0|Dt, x) b) predicted variance by GP c) variance and19

d) lengthscale of RBF kernel e) kernel density estimation for x with respect to labeled and f) unlabeles20

samples g) size of Lt.21

Cross-validation of LAL strategies The LAL regressor is represented by RF regressor that re-22

quires a set of meta-parameters. Their values were set with a cross validation of a regression problem23

with the regression performance is measured by R squared metrics. The cross-validated parameters24

for the LAL strategies can be found in a Tab 125

Table 1: Cross-validated parameters of LAL strategies

Strategy Dataset # estimators max depth of trees max features per split
LAL-independent-2D All 2000 40 6
LAL-iterative-2D All 1000 30 7
LAL-independent-WS Splice 500 10 6
LAL-independent-WS Higgs 1000 40 7
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B Detailed descriptions of datasets26

2 Gaussian clouds When two Gaussian clouds datasets are used in AL experiments, they are27

generated with the same procedure as for the representative dataset in cold start (see Sec. A).28

Parameters of the data generation process are set at random every time, thus these datasets are not29

seen by LAL. A few examples of these daatsets are depicted in Fig. 130
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Figure 1: 4 examples of the synthetic datasets with as a representative dataset and in the experiments
with 2 Gaussian clouds.

Striatum This dataset consists of 3D Electron Microscopy stack of rat neural tissue from striatum [5,31

3] (Fig. 2). The train stack is of size 318×711×422 pixels and the test stack is of size 318×711×45032

with the resolution of 5nm in all three spatial orientations. The task is to detect and segment33

mitochondria – intracellular structures that supply the cell with its energy. It is a laborious task for34

neuroscientists to annotate sufficient amounts of data to learn a classifier. Furthermore, the visual35

appearance varies significantly for different areas in the brain, for different animal species and for36

different settings of the equipment. The images are oversegmented with [1] and features are extracted37

according to Lucchi et al. [5]. The properties of the resulting dataset are summarized in Tab. 238
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Figure 2: Interface of the FIJI Visualization API, which is extensively used to interact with 3D image
stacks. The user is presented with three orthogonal planar slices of the stack. While effective when
working slice by slice, this is extremely cumbersome for random access to voxels anywhere in the 3D
stack, which is what a naive AL implementation would require.

Table 2: Parameters of the datasets.

Dataset Dimensions # training samples # test samples positive class %
2 Gauss clouds 2 400 4000 50
Checkerboard 2 1000 1000 50
Striatum 272 276 130 294 496 11.59
Striatum mini 272 2000 2000 11.59
MRI 188 22 934 22 562 5.99
MRI mini 188 2000 2000 5.99
Credit 30 142 403 142 404 0.17
Splice 60 1000 2175 48.09
Higgs 30 125 000 125 000 34.26

Figure 3: bla bla
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MRI 20 MRI brain scans of Fig. 3 are obtained from BRATS competition [6]. The task is to39

segment brain tumor in T1, T2, FLAIR, and post-Gadolinium T1 MR images. We follow the protocol40

similar to the described in Striatum and oversegment stacks first and then extract feature with the41

convolutions of images with standard filters such as Gaussian, gradient filter, tensor, Laplacian of42

Gaussian and Hessian with different parameters. Remember that different permutations of training43

and testing data are used in AL experiments in order to better assess the classification quality.44

However, in imaging domain the samples (pixels) are not independent. This in MRI we permute the45

whole scans of different patients and in Striatum the size of the test stack is big enough ( 300 00046

samples) to evaluate prediction quality accurately.47

Credit card The task is to detect credit card fraud transactions in transaction made by European48

cardholders in September 2013 [2]. The obtained 30 features are the result of PCA on the real features49

that are not provided due to the confidentiality issues. This is highly imbalanced dataset with only50

0.17% of fraud transactions among normal transactions (see Tab. 2).51

Splice In this dataset from the domain of molecular biology, our task is to detect splice junctions52

between exons and introns in DNA sequences [4]. The sequences attributes are encoded numerically53

and a problem is formulated as a binary classification task.54

Higgs This dataset from the domain of high energy physics contains the data that simulates the55

ATLAS experiment [? ]. Higgs Boson detection challenge has its task to classify events into classes56

of tau tau decay of a Higgs boson and background noise. We preprocess the data by replacing missing57

feature values with the median of the corresponding feature.58
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C Additional experimental results59

Due to the space constraints, figures in the main manuscript are small and hard to see. Thus, we show60

them again here with a higher resolution. Moreover, we present experiments with additional quality61

measures that couldn’t fit in the main paper.62
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Figure 4: Experiments on synthetic data. 2 Gaussian clouds, RF classifier.
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Figure 5: Experiments on synthetic data. 2 Gaussian clouds, GP classifier.
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Figure 6: Experiments on synthetic data. XOR-like dataset, Checkerboard 4× 4.
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Figure 7: Experiments on synthetic data. XOR-like dataset, Checkerboard 2× 2.
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Figure 8: Experiments on synthetic data. XOR-like dataset, Banana.
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Figure 9: Experiments on real data with cold start, Striatum.
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Figure 10: Experiments on real data with cold start, Striatum mini.
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Figure 11: Experiments on real data with cold start, MRI.
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Figure 12: Experiments on real data with cold start, MRI mini.
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Figure 13: Experiments on real data with cold start, Credit card.
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Figure 14: Experiments on real data with warm start, accuracy measure on Splice.
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Figure 15: Experiments on real data with warm start, AUC measure on Splice.

200 400 600 800 1000 1200 1400 1600 1800 2000

# labelled points

230

240

250

260

270

280

290

300

A
M

S

Rs

Us

LAL-independent-WS

Figure 16: Experiments on real data with warm start, accuracy measure on Higgs.
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Figure 17: Experiments on real data with warm start, AUC measure on Higgs.
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