
Reinforcement Learning under Model Mismatch

Aurko Roy1, Huan Xu2, and Sebastian Pokutta2

1College of Computing, Georgia Institute of Technology, Atlanta, GA, USA.
Email: aurko@gatech.edu

2ISyE, Georgia Institute of Technology, Atlanta, GA, USA.
Email: huan.xu@isye.gatech.edu

2ISyE, Georgia Institute of Technology, Atlanta, GA, USA.
Email: sebastian.pokutta@isye.gatech.edu

Abstract

We study reinforcement learning under model misspecification, where we do not
have access to the true environment but only to a reasonably close approximation
to it. We address this problem by extending the framework of robust MDPs of
[2, 17, 13] to the model-free Reinforcement Learning setting, where we do not have
access to the model parameters, but can only sample states from it. We define robust
versions of Q-learning, SARSA, and TD-learning and prove convergence to an
approximately optimal robust policy and approximate value function respectively.
We scale up the robust algorithms to large MDPs via function approximation
and prove convergence under two different settings. We prove convergence of
robust approximate policy iteration and robust approximate value iteration for linear
architectures (under mild assumptions). We also define a robust loss function, the
mean squared robust projected Bellman error and give stochastic gradient descent
algorithms that are guaranteed to converge to a local minimum.

1 Introduction

Reinforcement learning is concerned with learning a good policy for sequential decision making
problems modeled as aMarkov Decision Process (MDP), via interacting with the environment [22, 20].
In this work we address the problem of reinforcement learning from a misspecified model. As a
motivating example, consider the scenario where the problem of interest is not directly accessible,
but instead the agent can interact with a simulator whose dynamics is reasonably close to the true
problem. Another plausible application is when the parameters of the model may evolve over time
but can still be reasonably approximated by an MDP.

To address this problem we use the framework of robust MDPs which was proposed by [2, 17, 13]
to solve the planning problem under model misspecification. The robust MDP framework considers a
class of models and finds the robust optimal policy which is a policy that performs best under the
worst model. It was shown by [2, 17, 13] that the robust optimal policy satisfies the robust Bellman
equation which naturally leads to exact dynamic programming algorithms to find an optimal policy.
However, this approach is model dependent and does not immediately generalize to the model-free
case where the parameters of the model are unknown.

Essentially, reinforcement learning is a model-free framework to solve the Bellman equation using
samples. Therefore, to learn policies from misspecified models, we develop sample based methods to
solve the robust Bellman equation. In particular, we develop robust versions of classical reinforcement
learning algorithms such as Q-learning, SARSA, and TD-learning and prove convergence to an
approximately optimal policy under mild assumptions on the discount factor. We also show that

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

the nominal versions of these iterative algorithms converge to policies that may be arbitrarily worse
compared to the optimal policy.
We also scale up these robust algorithms to large scale MDPs via function approximation, where

we prove convergence under two different settings. Under a technical assumption similar to [6, 26]
we show convergence of robust approximate policy iteration and value iteration algorithms for linear
architectures. We also study function approximation with nonlinear architectures, by defining an
appropriate mean squared robust projected Bellman error (MSRPBE) loss function, which is a
generalization of the mean squared projected Bellman error (MSPBE) loss function of [24, 23, 7].
We propose robust versions of stochastic gradient descent algorithms as in [24, 23, 7] and prove
convergence to a local minimum under some assumptions for function approximation with arbitrary
smooth functions.

Contribution. In summary we have the following contributions:

1. We extend the robust MDP framework of [2, 17, 13] to themodel-free reinforcement learning
setting. We then define robust versions of Q-learning, SARSA, and TD-learning and prove
convergence to an approximately optimal robust policy.

2. We also provide robust reinforcement learning algorithms for the function approximation case
and prove convergence of robust approximate policy iteration and value iteration algorithms
for linear architectures. We also define the MSRPBE loss function which contains the robust
optimal policy as a local minimum and we derive stochastic gradient descent algorithms to
minimize this loss function as well as establish convergence to a local minimum in the case
of function approximation by arbitrary smooth functions.

3. Finally, we demonstrate empirically the improvement in performance for the robust algorithms
compared to their nominal counterparts. For this we used various Reinforcement Learning
test environments from OpenAI [10] as benchmark to assess the improvement in performance
as well as to ensure reproducibility and consistency of our results.

RelatedWork. Recently, several approaches have been proposed to address model performance due
to parameter uncertainty for Markov Decision Processes (MDPs). A Bayesian approach was proposed
by [21] which requires perfect knowledge of the prior distribution on transition matrices. Other
probabilistic and risk based settings were studied by [11, 28, 25] which propose various mechanisms
to incorporate percentile risk into the model. A framework for robust MDPs was first proposed by
[2, 17, 13] who consider the transition matrices to lie in some uncertainty set and proposed a dynamic
programming algorithm to solve the robust MDP. Recent work by [26] extended the robust MDP
framework to the function approximation setting where under a technical assumption the authors
prove convergence to an optimal policy for linear architectures. Note that these algorithms for robust
MDPs do not readily generalize to the model-free reinforcement learning setting where the parameters
of the environment are not explicitly known.
For reinforcement learning in the non-robust model-free setting, several iterative algorithms such

as Q-learning, TD-learning, and SARSA are known to converge to an optimal policy under mild
assumptions, see [5] for a survey. Robustness in reinforcement learning for MDPs was studied by
[15] who introduced a robust learning framework for learning with disturbances. Similarly, [18] also
studied learning in the presence of an adversary who might apply disturbances to the system. However,
for the algorithms proposed in [15, 18] no theoretical guarantees are known and there is only limited
empirical evidence. Another recent work on robust reinforcement learning is [14], where the authors
propose an online algorithm with certain transitions being stochastic and the others being adversarial
and the devised algorithm ensures low regret.

For the case of reinforcement learning with large MDPs using function approximations, theoretical
guarantees for most TD-learning based algorithms are only known for linear architectures [3]. Recent
work by [7] extended the results of [24, 23] and proved that a stochastic gradient descent algorithm
minimizing the mean squared projected Bellman equation (MSPBE) loss function converges to a
local minimum, even for nonlinear architectures. However, these algorithms do not apply to robust
MDPs; in this work we extend these algorithms to the robust setting.

2

2 Preliminaries

We consider an infinite horizon Markov Decision Process (MDP) [20] with finite state space X of
size n and finite action space A of size m. At every time step t the agent is in a state i ∈ X and
can choose an action a ∈ A incurring a cost ct(i, a). We will make the standard assumption that
future cost is discounted, see e.g., [22], with a discount factor ϑ < 1 applied to future costs, i.e.,
ct(i, a) := ϑtc(i, a), where c(i, a) is a fixed constant independent of the time step t for i ∈ X and
a ∈ A. The states transition according to probability transition matrices τ := {Pa}a∈A which
depends only on their last taken action a. A policy of the agent is a sequence π = (a0, a1, . . .),
where every at(i) corresponds to an action in A if the system is in state i at time t. For every policy
π, we have a corresponding value function vπ ∈ Rn, where vπ(i) for a state i ∈ X measures the
expected cost of that state if the agent were to follow policy π. This can be expressed by the following
recurrence relation

vπ(i) := c(i, a0(i)) + ϑEj∼X [vπ(j)] . (1)

The goal is to devise algorithms to learn an optimal policy π∗ that minimizes the expected total cost:
Definition 2.1 (Optimal policy). Given an MDP with state space X , action space A and transition
matrices Pa, let Π be the strategy space of all possibile policies. Then an optimal policy π∗ is one
that minimizes the expected total cost, i.e., π∗ := arg minπ∈Π E

[
∑∞

t=0 ϑtc(it, at(it))
]

.

In the robust case we will assume as in [17, 13] that the transition matrices Pa are not fixed and may
come from some uncertainty region P a and may be chosen adversarially by nature in future runs of
the model. In this setting, [17, 13] prove the following robust analogue of the Bellman recursion. A
policy of nature is a sequence τ := (P0, P1, . . .) where every Pt(a) ∈ P a corresponds to a transition
probability matrix chosen from P a. Let T denote the set of all such policies of nature. In other words,
a policy τ ∈ T of nature is a sequence of transition matrices that may be played by it in response to
the actions of the agent. For any set P ⊆ Rn and vector v ∈ Rn, let σP(v) := sup

{
p>v | p ∈ P

}
be the support function of the set P. For a state i ∈ X , let P a

i be the projection onto the ith row of P a.
Theorem 2.2. [17] We have the following perfect duality relation

min
π∈Π

max
τ∈T

Eτ

[
∞

∑
t=0

ϑtc (it, at(it))

]
= max

τ∈T
min
π∈Π

Eτ

[
∞

∑
t=0

ϑtc (it, at(it))

]
. (2)

The optimal value function vπ∗ corresponding to the optimal policy π∗ satisfies vπ∗(i) =

mina∈A
(

c(i, a) + ϑσP a
i
(vπ∗)

)
, and π∗ can then be obtained in a greedy fashion, i.e., a∗(i) ∈

arg mina∈A
{

c(i, a) + ϑσP a
i
(v)
}

.

The main shortcoming of this approach is that it does not generalize to themodel free case where the
transition probabilities are not explicitly known but rather the agent can only sample states according
to these probabilities. In the absence of this knowledge, we cannot compute the support functions of
the uncertainty sets P a

i . On the other hand it is often easy to have a confidence region Ua
i , e.g., a ball

or an ellipsoid, corresponding to every state-action pair i ∈ X , a ∈ A that quantifies our uncertainty
in the simulation, with the uncertainty set P a

i being the confidence region Ua
i centered around the

unknown simulator probabilities. Formally, we define the uncertainty sets corresponding to every
state action pair in the following fashion.
Definition 2.3 (Uncertainty sets). Corresponding to every state-action pair (i, a)we have a confidence
region Ua

i so that the uncertainty region P a
i of the probability transition matrix corresponding to

(i, a) is defined as

P a
i := {x + pa

i | x ∈ Ua
i } , (3)

where pa
i is the unknown state transition probability vector from the state i ∈ X to every other state

in X given action a during the simulation.

As a simple example, we have the ellipsoid Ua
i :=

{
x | x>Aa

i x ≤ 1, ∑i∈X xi = 0
}
for some n× n

psd matrix Aa
i with the uncertainty setP a

i beingP a
i :=

{
x + pa

i | x ∈ Ua
i
}

, where pa
i is the unknown

simulator state transition probability vector with which the agent transitioned to a new state during

3

x
y

z

Figure 1: Example transition matrices shown within the probability simplex ∆n with uncertainty sets
being `2 balls of fixed radius.

training. Note that while it may easy to come up with good descriptions of the confidence region Ua
i ,

the approach of [17, 13] breaks down since we have no knowledge of pa
i and merely observe the new

state j sampled from this distribution. See Figure 1 for an illustration with the confidence regions
being an `2 ball of fixed radius r.
In the following sections we develop robust versions of Q-learning, SARSA, and TD-learning

which are guaranteed to converge to an approximately optimal policy that is robust with respect to
this confidence region. The robust versions of these iterative algorithms involve an additional linear
optimization step over the set Ua

i , which in the case of Ua
i = {‖x‖2 ≤ r} simply corresponds to

adding fixed noise during every update. In later sections we will extend it to the function approximation
case where we study linear architectures as well as nonlinear architectures; in the latter case we derive
new stochastic gradient descent algorithms for computing approximately robust policies.

3 Robust exact dynamic programming algorithms

In this section we develop robust versions of exact dynamic programming algorithms such as Q-
learning, SARSA, and TD-learning. These methods are suitable for small MDPs where the size n of
the state space is not too large. Note that confidence region Ua

i must also be constrained to lie within
the probability simplex ∆n, see Figure 1. However since we do not have knowledge of the simulator
probabilities pa

i , we do not know how far away pa
i is from the boundary of ∆n and so the algorithms

will make use of a proxy confidence region Ûa
i where we drop the requirement of Ûa

i ⊆ ∆n, to
compute the robust optimal policies. With a suitable choice of step lengths and discount factors
we can prove convergence to an approximately optimal Ua

i -robust policy where the approximation
depends on the difference between the unconstrained proxy region Ûa

i and the true confidence region
Ua

i . Below we give specific examples of possible choices for simple confidence regions.

1. Ellipsoid: Let {Aa
i }i,a be a sequence of n × n psd matrices. Then we can define the

confidence region as

Ua
i :=

{
x

∣∣∣∣∣x>Aa
i x ≤ 1, ∑

i∈X
xi = 0,−pa

ij ≤ xj ≤ 1− pa
ij, ∀j ∈ X

}
. (4)

Note that Ua
i has some additional linear constraints so that the uncertainty set P a

i :={
pa

i + x | x ∈ Ua
i
}
lies inside ∆n. Since we do not know pa

i , we will make use of the proxy
confidence region Ûa

i := {x | x>Aa
i x ≤ 1, ∑i∈X xi = 0}. In particular when Aa

i = r−1 In
for every i ∈ X , a ∈ A then this corresponds to a spherical confidence interval of [−r, r] in
every direction. In other words, each uncertainty set P a

i is an `2 ball of radius r.

4

2. Parallelepiped: Let {Ba
i }i,a be a sequence of n× n invertible matrices. Then we can define

the confidence region as

Ua
i :=

{
x

∣∣∣∣∣‖Ba
i x‖1 ≤ 1, ∑

i∈X
xi = 0,−pa

ij ≤ xj ≤ 1− pa
ij, ∀j ∈ X

}
. (5)

As before, we will use the unconstrained parallelepiped Ûa
i without the−pa

ij ≤ xj ≤ 1− pa
ij

constraints, as a proxy for Ua
i since we do not have knowledge pa

i . In particular if Ba
i = D

for a diagonal matrix D, then the proxy confidence region Ûa
i corresponds to a rectangle. In

particular if every diagonal entry is r, then every uncertainty set P a
i is an `1 ball of radius r.

3.1 Robust Q-learning

Let us recall the notion of a Q-factor of a state-action pair (i, a) and a policy π which in the non-robust
setting is defined as

Q(i, a) := c(i, a) + Ej∼X [v(j)] , (6)

where v is the value function of the policy π. In other words, the Q-factor represents the expected cost
if we start at state i, use the action a and follow the policy π subsequently. One may similarly define
the robust Q-factors using a similar interpretation and the minimax characterization of Theorem 2.2.
Let Q∗ denote the Q-factors of the optimal robust policy and let v∗ ∈ Rn be its value function. Note
that we may write the value function in terms of the Q-factors as v∗ = mina∈AQ∗(i, a). From
Theorem 2.2 we have the following expression for Q∗:

Q∗(i, a) = c(i, a) + ϑσP a
i
(v∗) (7)

= c(i, a) + ϑσUa
i
(v∗) + ϑ ∑

j∈X
pa

ij min
a′∈A

Q∗(j, a′), (8)

where equation (8) follows from Definition 2.3. For an estimate Qt of Q∗, let vt ∈ Rn be its value
vector, i.e., vt(i) := mina∈AQt(i, a). The robust Q-iteration is defined as:

Qt(i, a) := (1− γt)Qt−1(i, a) + γt

(
c(i, a) + ϑσÛa

i
(vt−1) + ϑ min

a′∈A
Qt−1(j, a′)

)
, (9)

where a state j ∈ X is sampled with the unknown transition probability pa
ij using the simulator. Note

that the robust Q-iteration of equation (9) involves an additional linear optimization step to compute
the support function σÛa

i
(vt) of vt over the proxy confidence region Ûa

i . We will prove that iterating
equation (9) converges to an approximately optimal policy. The following definition introduces the
notion of an ε-optimal policy, see e.g., [5]. The error factor ε is also referred to as the amplification
factor. We will treat the Q-factors as a |X | × |A| matrix in the definition so that its `∞ norm is
defined as usual.
Definition 3.1 (ε-optimal policy). A policy π with Q-factors Q′ is ε-optimal with respect to the
optimal policy π∗ with corresponding Q-factors Q∗ if∥∥Q′−Q∗

∥∥
∞ ≤ ε ‖Q∗‖∞ . (10)

The following simple lemma allows us to decompose the optimization of a linear function over the
proxy uncertainty set P̂ a

i in terms of linear optimization over P a
i , Ua

i , and Ûa
i .

Lemma 3.2. Let v ∈ Rn be any vector and let βa
i := maxy∈Ûa

i
minx∈Ua

i
‖y− x‖1. Then we have

σP̂ a
i
(v) ≤ σP a

i
(v) + βa

i ‖v‖∞ .

Proof. Note that every point p in P a
i is of the form pa

i + x for some x ∈ Ua
i and every point q ∈ P̂ a

i
is of the form pa

i + y for some y ∈ Ûa
i , and this correspondence is one to one by definition. For any

5

vector v ∈ Rn and pairs of points p ∈ P a
i and q ∈ P̂ a

i we have

q>v = p>v + (q− p)>v (11)

≤ sup
p′∈P a

i

(p′)>v + (pa
i + y− pa

i − x)> v (12)

= σP a
i
(v) + (y− x)>v. (13)

≤ σP a
i
(v) + (y− x)>v (14)

≤ σP a
i
(v) +

(
y>v− min

x∈Ua
i

x>v

)
(15)

≤ σP a
i
(v) + max

y∈Ûa
i

min
x∈Ua

i

(y− x)>v (16)

≤ σP a
i
(v) + max

y∈Ûa
i

min
x∈Ua

i

‖y− x‖1 ‖v‖∞ (17)

≤ σP a
i
(v) + βa

i ‖v‖∞ . (18)

Since equation (18) holds for every q ∈ P̂ a
i , it follows that it also holds for arg max σP̂ a

i
(v) so that

σP̂ a
i
(v) ≤ σP a

i
(v) + βa

i ‖v‖∞ . (19)

The following theorem proves that under a suitable choice of step lengths γt and discount factor
ϑ, the iteration of equation (9) converges to an ε-approximately optimal policy with respect to the
confidence regions Ua

i .

Theorem 3.3. Let the step lengths γt of the Q-iteration algorithm be chosen such that ∑∞
t=0 γt = ∞

and ∑∞
t=0 γ2

t < ∞ and let the discount factor ϑ < 1. Let βa
i be as in Lemma 3.2 and let β :=

maxi∈X ,a∈A βa
i . If ϑ(1 + β) < 1 then with probability 1 the iteration of equation (9) converges to

an ε-optimal policy where ε := ϑβ
1−ϑ(1+β)

.

Proof. Let P̂ a
i be the proxy uncertainty set for state i ∈ X and a ∈ A, i.e., P̂ a

i :={
x + pa

i | x ∈ Ûa
i

}
. We denote the value function of Q by v. Let us define the following oper-

ator H mapping Q-factors to Q-factors as follows:

(H Q)(i, a) := c(i, a) + ϑσP̂ a
i
(v). (20)

6

Wewill first show that a solutionQ′ to the equation H Q = Q is an ε-optimal policy as in Definition 3.1,
i.e., ‖Q′ −Q∗‖∞ ≤ ε ‖Q∗‖∞.

|Q′(i, a)−Q∗(i, a)| =
∣∣∣(H Q′)(i, a)− c(i, a)− ϑσP a

i
(v∗)

∣∣∣ (21)

= ϑ
∣∣∣σP̂ a

i
(v′)− σP a

i
(v∗)

∣∣∣ (22)

≤ ϑ

∣∣∣∣∣ max
y∈Ûa

i ,x∈Ua
i

‖y− x‖1
∥∥Q′

∥∥
∞ + σP a

i
(v′)− σP a

i
(v∗)

∣∣∣∣∣ (23)

≤ ϑβa
i
∥∥Q′

∥∥
∞ +

∣∣∣σP a
i
(v′)− σP a

i
(v∗)

∣∣∣ (24)

≤ ϑβ
∥∥Q′

∥∥
∞ + ϑ

∣∣∣∣∣max
q′∈P a

i
∑
j∈X

q′j min
a′′∈A

Q′(j, a′′)−max
q∈P a

i
∑
j∈X

qj min
a′∈A

Q∗(j, a′)

∣∣∣∣∣
(25)

≤ ϑβ
∥∥Q′

∥∥
∞ + ϑ

∣∣∣∣∣max
q∈P a

i
∑
j∈X

qj

(
min
a′′∈A

Q′(j, a′′)−min
a′∈A

Q∗(j, a′)
)∣∣∣∣∣ (26)

≤ ϑβ
∥∥Q′

∥∥
∞ + ϑ

∣∣∣∣∣max
q∈P a

i
∑
j∈X

qj

(
max
a′∈A
|Q′(j, a′)−Q∗(j, a′)|

)∣∣∣∣∣ (27)

≤ ϑβ
∥∥Q′

∥∥
∞ + ϑ

∣∣∣∣∣max
q∈P a

i
∑
j∈X

qj
∥∥Q′−Q∗

∥∥
∞

∣∣∣∣∣ (28)

≤ ϑβ
∥∥Q′

∥∥
∞ + ϑ

∥∥Q′−Q∗
∥∥

∞ , (29)

where we used Lemma 3.2 to derive equation (23). Equation (29) implies that
∥∥Q′−Q∗

∥∥
∞ ≤

ϑβ
1−ϑ

∥∥Q′
∥∥

∞. If
∥∥Q′

∥∥
∞ ≤ ‖Q

∗‖∞ then we are done since ϑβ
1−ϑ ≤

ϑβ
1−ϑ(1+β)

. Otherwise assume
that

∥∥Q′
∥∥

∞ > ‖Q∗‖∞ and use the triangle inequality:
∥∥Q′

∥∥
∞ − ‖Q

∗‖∞ =
∣∣∥∥Q′

∥∥
∞ − ‖Q

∗‖∞
∣∣ ≤∥∥Q′−Q∗

∥∥
∞. This implies that

1− ϑ

ϑβ

∥∥Q′−Q∗
∥∥

∞ − ‖Q
∗‖∞ ≤

∥∥Q′−Q∗
∥∥

∞ , (30)

from which it follows that
∥∥Q′−Q∗

∥∥
∞ ≤ ε ‖Q∗‖∞ under the assumption that ϑ(1 + β) < 1 as

claimed. The Q-iteration of equation (9) can then be reformulated in terms of the operator H as

Qt(i, a) = (1− γt)Qt−1(i, a) + γt (H Qt(i, a) + ηt(i, a)) , (31)

where ηt(i, a) := mina′∈AQt(j, a′)−Ej∼pa
i
[mina′∈AQt(j, a′)] where the expectation is over the

states j ∈ X with the transition probability from state i to state j given by pa
j . Note that this is an

example of a stochastic approximation algorithm as in [5] with noise parameter ηt. Let Ft denote the
history of the algorithm until time t. Note that Ej∼pa

i
[ηt(i, a)|Ft] = 0 by definition and the variance

is bounded by

Ej∼pa
i

[
ηt(i, a)2

∣∣∣Ft

]
≤ K

1 + max
j∈X
a′∈A

Q2
t (j, a′)

 . (32)

Thus the noise term ηt satisfies the zero conditional mean and bounded variance assumption (As-
sumption 4.3 in [5]). Therefore it remains to show that the operator H is a contraction mapping to
argue that iterating equation (9) converges to the optimal Q-factor Q∗. We will show that the operator
H is a contraction mapping with respect to the infinity norm ‖.‖∞. Let Q and Q′ be two different
Q-vectors with value functions v and v′. If Ua

i is not necessarily the same as the unconstrained proxy
set Ûa

i for some i ∈ X , a ∈ A, then we need the discount factor to satisfy ϑ(1 + β) in order to
ensure convergence. Intuitively, the discount factor should be small enough that the difference in the

7

estimation due to the difference of the sets Ua
i and Ûa

i converges to 0 over time. In this case we show
contraction for operator H as follows

|(H Q)(i, a)− (H Q′)(i, a)| ≤ ϑ

∣∣∣∣∣max
q∈P̂ a

i

∑
j∈X

qj

(
min
a′∈A

Q(j, a′)− min
a′′∈A

Q′(j, a′′)
)∣∣∣∣∣ (33)

≤ ϑ max
q∈P̂ a

i

∑
j∈X

qj max
a′∈A

∣∣Q(j, a′)−Q′(j, a′)
∣∣ (34)

≤ ϑ max
y∈Û,x∈U

‖y− x‖1
∥∥Q−Q′

∥∥
∞ + ϑ max

q∈P a
i

∑
j∈X

qj
∥∥Q−Q′

∥∥
∞

(35)
≤ ϑβ

∥∥Q−Q′
∥∥

∞ + ϑ
∥∥Q−Q′

∥∥
∞ max

q∈P a
i

∑
j∈X

qj (36)

≤ ϑ(β + 1)
∥∥Q−Q′

∥∥
∞ (37)

where we used Lemma 3.2 with vector v(j) := maxa∈A |Q(j, a)−Q′(j, a)| to derive equation (35)
and the fact that P a

i ⊆ ∆n to conclude that maxq∈P a
i

∑j∈X qj = 1. Therefore if ϑ(1 + β) < 1, then
it follows that the operator H is a norm contraction and thus the robust Q-iteration of equation (9)
converges to a solution of H Q = Q which is an ε-approximately optimal policy for ε = ϑβ

1−ϑ(1+β)
,

as was proved before.

Remark 3.4. If β = 0 then note that by Theorem 3.3, the robust Q-iterations converge to the exact
optimal Q-factors since ε = 0. Since β = maxi∈X ,a∈Amaxy∈Ûa

i
minx∈Ua

i
‖y− x‖1, it follows that

β = 0 iff Ûa
i = Ua

i for every i ∈ X , a ∈ A. This happens when the confidence region is small
enough so that the simplex constraints −pa

ij ≤ xj ≤ 1− pa
ij∀j ∈ X in the description of P a

i become
redundant for every i ∈ X , a ∈ A. Equivalently every pa

i is “far” from the boundary of the simplex
∆n compared to the size of the confidence region Ua

i , see e.g., Figure 1.
Remark 3.5. Note that simply using the nominal Q-iteration without the σÛa

i
(v) term does not

guarantee convergence to Q∗. Indeed, the nominal Q-iterations converge to Q-factors Q′ where∥∥Q′−Q∗
∥∥

∞ may be arbitrary large. This follows easily from observing that |Q′(i, a)−Q∗(i, a)| =∣∣∣σÛa
i
(v∗)

∣∣∣, where v∗ is the value function of Q∗ and so∥∥Q′−Q∗
∥∥

∞ = max
i∈X ,a∈A

∣∣∣σÛa
i
(v∗)

∣∣∣ , (38)

which can be as high as ‖v∗‖∞ = ‖Q∗‖∞. See Section 5 for an experimental demonstration of the
difference in the policies learned by the robust and nominal algorithms.

3.2 Robust SARSA

Recall that the update rule of SARSA is similar to the update rule for Q-learning except that instead
of choosing the action a′ = arg mina′∈A Qt−1(j, a′), we choose the action a′′ where with probability
δ, the action a′′ is chosen uniformly at random from A and with probability 1− δ, we have a′′ =
arg mina′∈A Qt−1(j, a′). Therefore, it is easy to modify the robust Q-iteration of equation (9) to
give us the robust SARSA updates:

Qt(i, a) := (1− γt)Qt−1(i, a) + γt

(
c(i, a) + ϑσÛa

i
(vt−1) + ϑ Qt−1(j, a′′)

)
. (39)

In the exact dynamic programming setting, it has the same convergence guarantees as robustQ-learning
and can be seen as a corollary of Theorem 3.3.
Corollary 3.6. Let the step lengths γt be chosen such that ∑∞

t=0 γt = ∞ and ∑∞
t=0 γ2

t < ∞ and let the
discount factor ϑ < 1. Let βa

i be as in Lemma 3.2 and let β := maxi∈X ,a∈A βa
i . If ϑ(1+ β) < 1 then

with probability 1 the iteration of equation (39) converges to an ε-optimal policy where ε := ϑβ
1−ϑ(1+β)

.

In particular if β = βa
i = 0 so that the proxy confidence regions Ûa

i are the same as the true confidence
regions Ua

i , then the iteration (39) converges to the true optimum Q∗.

8

3.3 Robust TD-learning

Recall that TD-learning allows us to estimate the value function vπ for a given policy π. In this section
we will generalize the TD-learning algorithm to the robust case. The main idea behind TD-learning
in the non-robust setting is the following Bellman equation

vπ(i) := E
j∼pπ(i)

i
[c(i, π(i)) + vπ(j)] . (40)

Consider a trajectory of the agent (i0, i1, . . .), where im denotes the state of the agent at time step m.
For a time step m, define the temporal difference dm as

dm := c(im, π(im)) + ϑvπ(im+1)− vπ(im). (41)

Let λ ∈ (0, 1). The recurrence relation for TD(λ) may be written in terms of the temporal difference
dm as

vπ(ik) = E

[
∞

∑
m=0

(ϑλ)m−k dm

]
+ vπ(ik). (42)

The corresponding Robbins-Monro stochastic approximation algorithm with step size γt for equa-
tion (42) is

vt+1(ik) := vt(ik) + γt

(
∞

∑
m=k

(ϑλ)m−k dm

)
. (43)

A more general variant of the TD(λ) iterations uses eligibility coefficients zm(i) for every state i ∈ X
and temporal difference vector dm in the update for equation (43)

vt+1(i) := vt(i) + γt

(
∞

∑
m=k

zm(i)dm

)
. (44)

Let im denote the state of the simulator at time step m. For the discounted case, there are two
possibilities for the eligibility vectors zm(i) leading to two different TD(λ) iterations:

1. The every-visit TD(λ) method, where the eligibility coefficients are

zm(i) :=
{

ϑλzm−1(i) if im 6= i
ϑλzm−1(i) + 1 if im = i.

2. The restart TD(λ) method, where the eligibility coefficients are

zm(i) :=
{

ϑλzm−1(i) if im 6= i
1 if im = i.

We make the following assumptions about the eligibility coefficients that are sufficient for proof of
convergence.
Assumption 3.7. The eligibility coefficients zm satisfy the following conditions

1. zm(i) ≥ 0

2. z−1(i) = 0

3. zm(i) ≤ ϑzm−1(i) if i /∈ {i0, i1, . . . }

4. The weight zm(i) given to the temporal difference dm should be chosen before this temporal
difference is generated.

Note that the eligibility coefficients of both the every-visit and restart TD(λ) iterations satisfy
Assumption 3.7. In the robust setting, we are interested in estimating the robust value of a policy π,
which from Theorem 2.2 we may express as

vπ(i) := c(i, π(i)) + ϑ max
p∈Pπ(i)

i

Ej∼p [vπ(j)] , (45)

9

where the expectation is now computed over the probability vector p chosen adversarially from the
uncertainty region P a

i . As in Section 3.1, we may decompose maxp∈P a
i

Ej∼p [v(j)] = σP a
i
(v) as

max
p∈Pπ(i)

i

Ej∼p [v(j)] = σ
Uπ(i)

i
(v) + E

j∼pπ(i)
i

[v(j)] , (46)

where pπ(i)
i is the transition probability of the agent during a simulation. For the remainder of this

section, we will drop the subscript and just use E to denote expectation with respect to this transition
probability pπ(i)

i .

Define a simulation to be a trajectory {i0, i1, . . . , iNt} of the agent, which is stopped according to a
random stopping time Nt. Note that Nt is a random variable for making stopping decisions that is not
allowed to foresee the future. Let Ft denote the history of the algorithm up to the point where the tth

simulation is about to commence. Let vt be the estimate of the value function at the start of the tth

simulation. Let {i0, i1, . . . , iNt} be the trajectory of the agent during the tth simulation with i0 = i.
During training, we generate several simulations of the agent and update the estimate of the robust
value function using the the robust temporal difference d̃m which is defined as

d̃m := dm + ϑσ
Ûπ(im)

im

(vt), (47)

= c(im, π(im)) + ϑvt(im+1)− vt(im) + ϑσ
Ûπ(im)

im

(vt), (48)

where dm is the usual temporal difference defined as before

dm := c(im, π(im)) + ϑvt(im+1)− vt(im). (49)

The robust TD-update is now the usual TD-update, except that we use the robust temporal difference
computed over the proxy confidence region:

vt+1(i) := vt(i) + γt

Nt−1

∑
m=0

zm(i)
(

d̃m

)
, (50)

= vt(i) + γt

Nt−1

∑
m=0

zm(i)

(
ϑσ

Ûπ(im)
im

(vt) + dm

)
. (51)

We define an ε-approximate value function for a fixed policy π in a way similar to the ε-optimal
Q-factors as in Definition 3.1:
Definition 3.8 (ε-approximate value function). Given a policy π, we say that a vector v′ ∈ Rn is an
ε-approximation of vπ if the following holds∥∥v′ − vπ

∥∥
∞ ≤ ε ‖vπ‖∞ .

The following theorem guarantees convergence of the robust TD iteration of equation (50) to an
approximate value function for π under Assumption 3.7.
Theorem 3.9. Let βa

i be as in Lemma 3.2 and let β := maxi∈X ,a∈A βa
i . Let ρ :=

maxi∈X ∑∞
m=0 zm(i). If ϑ(1 + ρβ) < 1 then the robust TD-iterations of equation (50) converges to

an ε-approximate value function, where ε := ϑβ
1−ϑ(1+ρβ)

. In particular if βa
i = β = 0, i.e., the proxy

confidence region Ûa
i is the same as the true confidence region Ua

i , then the convergence is exact, i.e.,
ε = 0. Note that in the special case of regular TD(λ) iterations, ρ = ϑλ

1−ϑλ .

Proof. Let P̂ a
i be the proxy uncertainty set for state i ∈ X and action a ∈ A as in the proof of

Theorem 3.3, i.e., P̂ a
i :=

{
x + pa

i | x ∈ Ûa
i

}
. Let It(i) := {m | im = i} be the set of time indices

the tth simulation visits state i. We define δt(i) := max
qm∈Pπ(im)

im
Eim∼qm

[
∑m∈It(i) zm(i)

∣∣∣Ft

]
, so

10

that we may write the update of equation (50) as

vt+1(i) = vt(i)(1− γtδt(i)) + γtδt(i)

E
[
∑Nt−1

m=0 zm(i)d̃m

∣∣∣Ft

]
δt(i)

+ vt(i)

 (52)

+γtδt(i)
ϑ ∑Nt−1

m=0 zm(i)d̃m −E
[
∑Nt−1

m=0 zm(i)d̃m

∣∣∣Ft

]
δt(i)

. (53)

Let us define the operator Ht : Rn → Rn corresponding to the tth simulation as

(Htv)(i) :=

E

[
∑Nt−1

m=0 zm(i)

(
c(im, π(im)) + ϑσ

Ûπ(im)
im

(v) + ϑv(im+1)− v(im)

)∣∣∣∣∣Ft

]
δt(i)

+ v(i).

(54)

We claim as in the proof of Theorem 3.3 that a solution v to Htv = v must be an ε-approximation to
vπ . Define the operator H′t with the proxy confidence regions replaced by the true ones, i.e.,

(H′tv)(i) :=
E

[
∑Nt−1

m=0 zm(i)
(

c(im, π(im)) + ϑσ
Uπ(im)

im
(v) + ϑv(im+1)− v(im)

)∣∣∣∣Ft

]
δt(i)

+ v(i).

(55)

Note that H′tvπ = vπ for the robust value function vπ since c(im, π(im)) + ϑσ
Uπ(im)

im
(vπ) +

ϑvπ(im+1)− vπ(im) = 0 for every im ∈ X by Theorem 2.2. Finally by Lemma 3.2 we have

σ
Ûπ(im)

im

(v) + E [v(im)] ≤ σ
Uπ(im)

im
+ E [v(im)] + β ‖v‖∞ , (56)

for any vector v, where the expectation is over the state im ∼ pπ(im−1)
im−1

. Thus for any solution v to the
equation Htv = v, we have

|v(i)− vπ(i)| = |(Htv)(i)− vπ(i)| (57)

≤
∣∣(H′tv)(i)− vπ(i)

∣∣+ ϑβ ‖v‖∞ E

[
Nt−1

∑
m=0

zm(i)

]
(58)

=
∣∣(H′tv)(i)− (H′tvπ)(i)

∣∣+ ϑβ ‖v‖∞ E

[
Nt−1

∑
m=0

zm(i)

]
(59)

≤ ϑ ‖v− vπ‖∞ + ϑρβ ‖v‖∞ , (60)

where equation (60) follows from equation (55). Therefore the solution to Htv = v is an ε-
approximation to vπ for ε = ϑβ

1−ϑ(1+ρβ)
if ϑ(1 + ρβ) < 1 as in the proof of Theorem 3.3. Note

that the operator Ht applied to the iterates vt is (Htvt)(i) =
E
[
∑

Nt−1
m=0 zt

m(i)d̃m,t

∣∣∣Ft

]
δt(i)

+ vt(i) so that the
update of equation (50) is a stochastic approximation algorithm of the form

vt+1(i) = (1− γ̂t)vt(i) + γ̂t ((Htvt)(i) + ηt(i)) ,

where γ̂t = γtδt(i) and ηt is a noise term with zero mean and is defined as

ηt(i) :=
∑Nt−1

m=0 zt
m(i)d̃m −E

[
∑Nt−1

m=0 zt
m(i)d̃m

∣∣∣Ft

]
δt(i)

. (61)

Note that by Lemma 5.1 of [5], the new step sizes satisfy ∑∞
t=0 γ̂t = ∞ and ∑∞

t=0 γ̂t
2 < ∞ if the

original step size γt satisfies the conditions ∑∞
t=0 γt = ∞ and ∑∞

t=0 γ2
t < ∞, since the conditions on

the eligibility coefficients are unchanged. Note that the noise term also satisfies the bounded variance
of Lemma 5.2 of [5] since any q ∈ Pπ(i)

i still specifies a distribution as Pπ(i)
i ⊆ ∆n.

11

Therefore, it remains to show that Ht is a norm contraction with respect to the `∞ norm on v. Let
us define the operator At as

(Atv)(i) :=

E

[
∑Nt−1

m=0 zm(i)

(
ϑσ

Ûπ(im)
im

(v) + ϑv(im+1

)
− v(im)

∣∣∣∣∣Ft

]
δt(i)

+ v(i) (62)

and the expression bt(i) :=
E
[
∑

Nt−1
m=0 c(im ,π(im))

∣∣∣Ft

]
δt(i)

so that (Htv)(i) = (Atv)(i) + bt(i). We will
show that ‖Atv‖∞ ≤ α ‖v‖∞ for some α < 1 from which the contraction on Ht follows because for
any vector v′′ ∈ Rn and the ε-optimal value function v′ = Htv′ we have∥∥Htv′′ − v′

∥∥
∞ =

∥∥Htv′′ − Htv′
∥∥

∞ =
∥∥At(v′′ − v′)

∥∥
∞ ≤ α

∥∥v′′ − v′
∥∥

∞ . (63)

Let us now analyze the expression for At. We will show that

E

Nt−1

∑
m=0

zm(i)

(
ϑv(im+1)− v(im) + ϑσ

Ûπ(i)
i

(v)

)
+ ∑

m∈It(i)
zm(i)v(i)

∣∣∣∣∣∣Ft

 ≤ (64)

α ‖v‖∞ E

 ∑
m∈It(i)

zm(i)

∣∣∣∣∣∣Ft

 . (65)

We first replace the σ
Ûπ(im)

im

term with σ
Uπ(im)

im
using Lemma 3.2 while incurring a ρβ ‖v‖∞ penalty.

Let us collect together the coefficients corresponding to v(im) in the expression for the expectation:

E

Nt−1

∑
m=0

zm(i)
(

ϑv(im+1)− v(im) + ϑσ
Uπ(im)

im
(v)
)
+ ∑

m∈It(i)
zm(i)v(i)

∣∣∣∣∣∣Ft

+ ϑρβ ‖v‖∞

(66)

≤ max
qm∈Pπ(im)

im

Eim∼qm

Nt−1

∑
m=0

zm(i) (ϑv(im+1)− v(im)) + ∑
m∈It(i)

zm(i)v(i)

∣∣∣∣∣∣Ft

+ ϑρβ ‖v‖∞

(67)

= max
qm∈Pπ(im)

im

Eim∼qm

 Nt

∑
m=0

(ϑzm−1(i)− zm(i))v(im) + ∑
m∈It(i)

zm(i)v(i)

∣∣∣∣∣∣Ft

+ ϑρβ ‖v‖∞ ,

(68)

where we obtain inequality (67) by subsuming the σ
Uπ(im)

im
term within the expectation since Pπ(im)

im

is now part of the simplex ∆n and taking the worst possible distribution qm. We also used the fact
that z−1(i) = 0 and zNt(i) = 0. Note that whenever im 6= i, the coefficient ϑzm−1(i)− zm(i) of
v(im) is nonnegative while whenever im = i, then the coefficient ϑzm−1(i)− zm(i) + zm(i) is also
nonnegative. Therefore, we may bound the right hand side of equation (66) as

max
qm∈Pπ(im)

im

Eim∼qm

 Nt

∑
m=0

(ϑzm−1(i)− zm(i))v(im) + ∑
m∈It(i)

zm(i)v(i)

∣∣∣∣∣∣Ft

+ ϑρβ ‖v‖∞

(69)

≤ max
qm∈Pπ(im)

im

Eim∼qm

 Nt

∑
m=0

(ϑzm−1(i)− zm(i)) ‖v‖∞ + ∑
m∈It(i)

zm(i) ‖v‖∞

∣∣∣∣∣∣Ft

+ ϑρβ ‖v‖∞ .

(70)

12

Let us now collect the terms corresponding to a fixed zm(i):

max
qm∈Pπ(im)

im

Eim∼qm

 Nt

∑
m=0

(ϑzm−1(i)− zm(i)) ‖v‖∞ + ∑
m∈It(i)

zm(i) ‖v‖∞

∣∣∣∣∣∣Ft

+ ϑρβ ‖v‖∞ (71)

= ‖v‖∞ max
qm∈Pπ(im)

im

Eim∼qm

Nt−1

∑
m=0

zm(i) (ϑ− 1) + ∑
m∈It(i)

zm(i)

∣∣∣∣∣∣Ft

+ ϑρβ ‖v‖∞ (72)

≤ ‖v‖∞ max
qm∈Pπ(im)

im

Eim∼qm

 ∑
m∈It(i)

zm(i) (ϑ− 1) + ∑
m∈It(i)

zm(i)

∣∣∣∣∣∣Ft

+ ϑρβ ‖v‖∞ (73)

≤ ‖v‖∞ ϑ (1 + ρβ)E

 ∑
m∈It(i)

zm(i)

∣∣∣∣∣∣Ft

 (74)

where equation (73) follows since ϑ < 1. Therefore setting α = ϑ (1 + ρβ), our claim follows under
the assumption that ϑ(1 + ρβ) < 1.

4 Robust Reinforcement Learning with function approximation

In Section 3 we derived robust versions of exact dynamic programming algorithms such as Q-learning,
SARSA, and TD-learning respectively. If the state space X of the MDP is large then it is prohibitive
to maintain a lookup table entry for every state. A standard approach for large scale MDPs is to
use the approximate dynamic programming (ADP) framework [19]. In this setting, the problem is
parametrized by a smaller dimensional vector θ ∈ Rd where d� n = |X |.
The natural generalizations of Q-learning, SARSA, and TD-learning algorithms of Section 3 are

via the projected Bellman equation, where we project back to the space spanned by all the parameters
in θ ∈ Rd, since they are the value functions representable by the model. Convergence for these
algorithms even in the non-robust setting are known only for linear architectures, see e.g., [3]. Recent
work by [7] proposed stochastic gradient descent algorithms with convergence guarantees for smooth
nonlinear function architectures, where the problem is framed in terms of minimizing a loss function.
We give robust versions of both these approaches.

4.1 Robust approximations with linear architectures

In the approximate setting with linear architectures, we approximate the value function vπ of a policy
π by Φθ where θ ∈ Rd and Φ is an n × d feature matrix with rows φ(j) for every state j ∈ X
representing its feature vector. Let S be the span of the columns of Φ, i.e., S :=

{
Φθ | θ ∈ Rd

}
is

the set of representable value functions. Define the operator Tπ : Rn → Rn as

(Tπv)(i) := c(i, π(i)) + ϑ ∑
j∈X

pπ(i)
ij v(j), (75)

so that the true value function vπ satisfies Tπvπ = vπ . A natural approach towards estimating
vπ given a current estimate Φθt is to compute Tπ (Φθt) and project it back to S to get the next
parameter θt+1. The motivation behind such an iteration is the fact that the true value function is a
fixed point of this operation if it belonged to the subspace S. This gives rise to the projected Bellman
equation where the projection Π is typically taken with respect to a weighted Euclidean norm ‖·‖ξ ,
i.e., ‖x‖ξ = ∑i∈X ξix2

i , where ξ is some probability distribution over the states X , see [3] for a
survey.
In the model free case, where we do not have explicit knowledge of the transition probabilities,

variousmethods likeLSTD(λ), LSPE(λ), andTD(λ) have been proposed see e.g., [4, 9, 8, 16, 24, 23].
The key idea behind proving convergence for these methods is to show that the mapping ΠTπ is
a contraction mapping with respect to the ‖·‖ξ for some distribution ξ over the states X . While
the operator Tπ in the non-robust case is linear and is a contraction in the `∞ norm as in Section 3,

13

the projection operator with respect to such norms is not guaranteed to be a contraction. However,
it is known that if ξ is the steady state distribution of the policy π under evaluation, then Π is
non-expansive in ‖·‖ξ [5, 3]. Hence because of discounting, the mapping ΠTπ is a contraction.

We generalize these methods to the robust setting via the robust Bellman operators Tπ defined as

(Tπv)(i) := c(i, π(i)) + ϑσ
Pπ(i)

i
(v). (76)

Since we do not have access to the simulator probabilities pa
i , we will use a proxy set P̂ a

i as in Section 3,
with the proxy operator denoted by T̂π . While the iterative methods of the non-robust setting generalize
via the robust operator Tπ and the robust projected Bellman equation Φθ = ΠTπ(Φθ), it is however
not clear how to choose the distribution ξ under which the projected operator ΠTπ is a contraction in
order to show convergence. Let ξ be the steady state distribution of the exploration policy π̂ of the
MDP with transition probability matrix Pπ̂ , i.e. the policy with which the agent chooses its actions
during the simulation. We make the following assumption on the discount factor ϑ as in [26].
Assumption 4.1. For every state i ∈ X and action a ∈ A, there exists a constant α ∈ (0, 1) such
that for any p ∈ P a

i we have ϑpj ≤ αPπ̂
ij for every j ∈ X .

Assumption 4.1 might appear artificially restrictive; however, it is necessary to prove that ΠTπ is a
contraction. While [26] require this assumption for proving convergence of robust MDPs, a similar
assumption is also required in proving convergence of off-policy Reinforcement Learning methods of
[6] where the states are sampled from an exploration policy π̂ which is not necessarily the same as
the policy π under evaluation. Note that in the robust setting, all methods are necessarily off-policy
since the transition matrices are not fixed for a given policy.
The following lemma is an ξ-weighted Euclidean norm version of Lemma 3.2.

Lemma 4.2. Let v ∈ Rn be any vector and let βa
i :=

max
y∈Ûa

i
minx∈Ua

i
‖y−x‖ξ

ξmin
. Then we have

σP̂ a
i
(v) ≤ σP a

i
(v) + βa

i ‖v‖ξ , (77)

where ξmin := mini∈X ξi.

Proof. Same as Lemma 3.2 except now we take Cauchy-Schwarz with respect to weighted Euclidean
norm ‖·‖ξ in the following manner

a>b ≤ a>Ξb
ξmin

≤
‖a‖ξ ‖b‖ξ

ξmin
. (78)

The following theorem shows that the robust projected Bellman equation is a contraction under
reasonable assumptions on the discount factor ϑ.

Theorem 4.3. Let βa
i be as in Lemma 4.2 and let β := maxi∈X β

π(i)
i . If the discount factor ϑ satisfies

Assumption 4.1 for some α and α2 + ϑ2β2 < 1
2 , then the operator T̂π is a contraction with respect to

‖·‖ξ . In other words, for any two θ, θ′ ∈ Rd, we have∥∥∥T̂π(Φθ)− T̂π(Φθ′)
∥∥∥2

ξ
≤ 2

(
α2 + ϑ2β2

) ∥∥Φθ −Φθ′
∥∥2

ξ
<
∥∥Φθ −Φθ′

∥∥2
ξ

. (79)

If βi = β = 0 so that Ûπ(i)
i = Uπ(i)

i , then we have a simpler contraction under the assumption that
α < 1, i.e., ∥∥∥T̂π(Φθ)− T̂π(Φθ′)

∥∥∥
ξ
≤ α

∥∥Φθ −Φθ′
∥∥

ξ
<
∥∥Φθ −Φθ′

∥∥
ξ

. (80)

14

Proof. Consider two parameters θ and θ′ in Rd. Then we have

∥∥∥T̂π(Φ>θ)− T̂π(Φ>θ′)
∥∥∥2

ξ
= ∑

i∈X
ξi

(
T̂π(Φ>θ)(i)− T̂π(Φ>θ′)(i)

)2
(81)

= ϑ2 ∑
i∈X

ξi

σ
Φ>
(
P̂π(i)

i

)(θ)− σ
Φ>
(
P̂π(i)

i

)(θ′)
2

(82)

= ϑ2 ∑
i∈X

ξi

 sup

q∈P̂π(i)
i

q>Φθ − sup

q′∈P̂π(i)
i

(q′)>Φθ′


2

(83)

≤ ϑ2 ∑
i∈X

ξi

 sup

q∈P̂π(i)
i

q>
(
Φθ −Φθ′

)
2

(84)

≤ ϑ2 ∑
i∈X

ξi

 sup
q∈Pπ(i)

i

(
q>
(
Φθ −Φθ′

))
+ β

∥∥Φθ −Φθ′
∥∥

ξ

2

(85)

≤ ∑
i∈X

ξi

(
α ∑

j∈X
Pπ̂

ij

(
φ(j)>θ − φ(j)>θ′

)
+ ϑβ

∥∥Φθ −Φθ′
∥∥

ξ

)2

(86)

≤ 2 ∑
i∈X

ξi

(
α2 ∑

j∈X
Pπ̂

ij

(
φ(j)>θ − φ(j)>θ′

)2
+ ϑ2β2 ∥∥Φθ −Φθ′

∥∥2
ξ

)
(87)

≤ 2(α2 + ϑ2β2)
∥∥Φθ −Φθ′

∥∥2
ξ

(88)

where we used Lemma 4.2 and the definition of β in line (85), the inequality (a + b)2 ≤
2(a2 + b2), and the fact that

(
Pπ̂

ij

)2
≤ Pπ̂

ij . Note that if β
π(i)
i = β = 0 so that the proxy

confidence region is the same as the true confidence region, then we have the simple upper

bound of
∥∥∥T̂π(Φ>θ)− T̂π(Φ>θ′)

∥∥∥2

ξ
≤ α2 ‖Φθ −Φθ′‖2

ξ instead of
∥∥∥T̂π(Φ>θ)− T̂π(Φ>θ′)

∥∥∥2

ξ
≤

2α2 ‖Φθ −Φθ′‖2
ξ since we do not have the cross term in equation (86) in this case.

The following corollary shows that the solution to the proxy projected Bellman equation converges
to a solution that is not too far away from the true value function vπ .

Corollary 4.4. Let Assumption 4.1 hold and let β be as in Theorem 4.3. Let ṽπ be the fixed point of
the projected Bellman equation for the proxy operator T̂π , i.e., ΠT̂π ṽπ = ṽπ . Let v̂π be the fixed
point of the proxy operator T̂π , i.e., T̂π v̂π = v̂π . Let vπ be the true value function of the policy π,
i.e., Tπvπ = vπ . Then the following holds

‖ṽπ − vπ‖ξ ≤
ϑβ ‖vπ‖ξ + ‖Πvπ − vπ‖ξ

1−
√

2 (α2 + ϑ2β2)
. (89)

In particular if βi = β = 0 i.e., the proxy confidence region is actually the true confidence region,
then the proxy projected Bellman equation has a solution satisfying ‖ṽπ − vπ‖ξ ≤

‖Πvπ−vπ‖ξ

1−α .

15

Proof. We have the following expression

‖ṽπ − vπ‖ξ ≤ ‖ṽπ −Πvπ‖ξ + ‖Πvπ − vπ‖ξ (90)

≤
∥∥∥ΠT̂π ṽπ −ΠTπvπ

∥∥∥
ξ
+ ‖Πvπ − vπ‖ξ (91)

≤
∥∥∥ΠT̂π ṽπ −ΠT̂πvπ + ϑβ ‖vπ‖ξ

∥∥∥+ ‖Πvπ − vπ‖ξ (92)

≤
∥∥∥ΠT̂π ṽπ −ΠT̂πvπ

∥∥∥
ξ
+ ϑβ ‖vπ‖ξ + ‖Πvπ − vπ‖ξ (93)

≤
√

2(α2 + ϑ2β2) ‖ṽπ − vπ‖ξ + ϑβ ‖vπ‖ξ + ‖Πvπ − vπ‖ξ , (94)

where we used Lemma 4.2 to derive inequality (92) and Theorem 4.3 to conclude that∥∥∥ΠT̂π ṽπ −ΠT̂πvπ

∥∥∥
ξ
≤
√

2(α2 + ϑ2β2) ‖ṽπ − vπ‖ξ . If β
π(i)
i = β = 0 so that the proxy confi-

dence regions are the same as the true confidence regions, then we have α instead of
√

2(α2 + ϑ2β2)
in the last equation due to Theorem 4.3.

Theorem 4.3 guarantees that the robust projected Bellman iterations of LSTD(λ), LSPE(λ) and
TD(λ)-methods converge, while Corollary 4.4 guarantees that the solution it converges to is not too
far away from the true value function vπ . We refer the reader to [3] for more details on LSTD(λ),
LSPE(λ) since their proof of convergence is analogous to that of TD(λ).

4.2 Robust stochastic gradient descent algorithms

While the TD(λ)-learning algorithms with function approximation with linear architectures converges
to vπ if the states are sampled according to the policy π, it is known to be unstable if the states are
sampled in an off-policy manner, i.e., in the terminology of the previous section π̂ 6= π. This issue
was addressed by [24, 23] who proposed a stochastic gradient descent based TD(0) algorithm that
converges for linear architectures in the off-policy setting. This was further extended by [7] who
extended it to approximations using arbitrary smooth functions and proved convergence to a local
optimum. In this section we show how to extend these off-policy methods to the robust setting with
uncertain transitions. Note that this is an alternative approach to the requirement of Assumption 4.1,
since under this assumption all off-policy methods would also converge.
The main idea of [23] is to devise stochastic gradient algorithms to minimize the following loss

function called the mean square projected Bellman error (MSPBE) also studied in [1, 12].

MSPBE(θ) := ‖vθ −ΠTπvθ‖2
ξ . (95)

Note that the loss function is 0 for a θ that satisfies the projected Bellman equation, Φθ = Tπ(Φθ).
Consider a linear architecture as in Section 4.1 where vθ := Φθ. Let i ∈ X be a random state chosen
with distribution ξi. Denote φ(i) by the shorthand φ and φ(i′) by φ′. Then it is easy to show that

MSPBE(θ) := ‖vθ −ΠTπvθ‖2
ξ = E [dφ]>E

[
φφ>

]−1
E [dφ] , (96)

where the expectation is over the random state i and d is the temporal difference error for the transition
(i, i′) i.e., d := c(i, a) + ϑθ>φ′ − θ>φ, where the action a and the new state i′ are chosen according
to the exploration policy π̂. The negative gradient of the MSPBE function is

−1
2
∇MSPBE(θ) = E

[
(φ− ϑφ′)φ>

]
w (97)

= E [dφ]− ϑE
[
φ′φ>

]
w (98)

where w = E
[
φφ>

]−1
E [dφ]. Both d and w depend on θ. Since the expectation is hard to compute

exactly [23] introduce a set of weights wk whose purpose is to estimate w for a fixed θ. Let dk denote
the temporal difference error for a parameter θk. The weights wk are then updated on a fast time scale
as

wk+1 := wk + βk

(
dk − φ>k wk

)
φk, (99)

16

while the parameter θk is updated on a slower timescale in the following two possible manners

θk+1 := θk + αk
(
φk − ϑφ′k

)
(φ>k wk) GTD2 (100)

θk+1 := θk + αkdkφk − ϑαkφ′k(φ
>
k wk) TDC (101)

[7] extended this to the case of smooth nonlinear architectures, where the space S :=
{

vθ | θ ∈ Rd
}

spanned by all value functions vθ is now a differentiable sub-manifold of Rn rather than a linear
subspace. Projecting onto such nonlinear manifolds is a computationally hard problem, and to get
around this [7] project instead onto the tangent plane at θ assuming the parameter θ changes very little
in one step. This allows [7] to generalize the updates of equations (99) and (100) with an additional
Hessian term ∇2vθ which vanishes if vθ is linear in θ.
In the following sections we extend the stochastic gradient algorithms of [7, 24, 23] to the robust

setting with uncertain transition matrices. Since the number n of states is prohibitively large, we will
make the simplifying assumption that Ua

i = U and Ûa
i = Ua

i for the results of the following sections.

4.2.1 Robust stochastic gradient algorithms with linear architectures

In this section we extend the results of [23] to the robust setting, where we are interested in finding a
solution to the robust projected Bellman equation Φθ = Tπ (Φθ), where Tπ is the robust Bellman
operator of equation (76). Let T̂π denote the proxy robust Bellman operators using the proxy uncer-
tainty set Û instead of U. A natural generalization of [23] is to introduce the following loss function
which we call mean squared robust projected Bellman error (MSRPBE):

MSRPBE(θ) :=
∥∥∥vθ −ΠT̂πvθ

∥∥∥2

ξ
, (102)

where the proxy robust Bellman operator T̂ is used. Note that T̂π is no longer truly linear in θ even
for linear architectures vθ = Φθ as

(T̂πΦθ)(i) = c(i, π(i)) + ϑσ
Pπ(i)

i
(Φθ) (103)

= c(i, π(i)) + ϑθ>Φ>pπ(i)
i + ϑ sup

q∈Φ>(Û)
q>θ, (104)

where pπ(i)
i are the simulator transition probability vector. However, under the assumption that Û is a

nicely behaved set such as a ball or an ellipsoid, so that changing θ in a small neighborhood does not
lead to jumps in σΦ>(Û)(θ), we may define the gradient ∇θ T̂π(Φθ)(i) as

∇θ((T̂πΦθ)(i)) := ϑΦ>pπ(i)
i + ϑ arg max

q∈Φ>(Û)
q>θ (105)

= ϑ arg max
q∈Φ>

(
P̂π(i)

i

) q>θ. (106)

Recall the robust temporal difference error d̃ for state i with respect to the proxy set Û as in equa-
tion (47)

d̃ := c(i, π(i)) + ϑvθ(i′) + σÛ(vθ)− vθ(i). (107)

Under the assumption that E
[
φφ>

]
is full rank, we may write the MSRPBE loss function in terms

of the robust temporal difference errors d̃ of equation (47) as in [23]:

MSRPBE(θ) = E
[
d̃φ
]>

E
[
φφ>

]−1
E
[
d̃φ
]

. (108)

Note that if E
[
φφ>

]
is full rank, then MSRPBE(θ) = 0 if and only if E

[
d̃φ
]
= 0 because of

equation (108). Define

µP(θ) := ∇max
y∈P

y>vθ = ∇max
y∈P

y>Φθ = Φ> arg max
y∈P

y>θ = arg max
y∈Φ>(P)

y>θ (109)

17

for any convex compact set P ⊂ Rn, so that the gradient of the MSRPBE loss function can be written
as

−1
2
∇MSRPBE(θ) = E

[(
φ− ϑµÛ(θ)− ϑφ′

)
φ>
]

E
[
φφ>

]−1
E
[
d̃φ
]

, (110)

= E
[(

φ− ϑµÛ(θ)
)

φ>
]

w, (111)

= E
[
d̃φ
]
− ϑE

[
φ′φ>

]
w− ϑE

[
µÛ(θ)φ

>
]

w (112)

where w = E
[
φφ>

]−1
E
[
d̃φ
]
is the same as in equation (97) and [23]. Therefore, as in [23] we

have an estimator wk for the weights w for a fixed parameter θk as

wk+1 := wk + βk

(
d̃k − φ>k wk

)
φk, (113)

with the corresponding parameter θk being updated as

θk+1 := θk + αk
(
φk − ϑµÛ(θ)− φ′k

)
(φ>k wk) robust-GTD2 (114)

θk+1 := θk + αk d̃kφk − ϑαk(φ
′
k + µÛ(θ))(φ

>
k wk) robust-TDC. (115)

Run time analysis: Let Tn(P) denote the time to optimize linear functions over the convex set P for
some P ⊂ Rn. Note that the values vθ(i) can be computed simply in O(d) time. Thus the updates of
robust-GTD2 and robust-TDC can be computed in O

(
d + Tn

(
Û
))

time. In particular if the set Û
is a simple set like an ellipsoid with associated matrix A, then the optimum value σÛ(vθ) is simply√

θ>Φ>AΦθ, where Φ is the feature matrix. In this case we only need to compute Φ>AΦ once and
store it for future use. However, note that this still takes time polynomial in n, which is undesirable
for n� d. In this case, we need to to make the assumption that there are good rank-d approximations
to Û i.e., A ≈ BB> for some n× d matrix B.
Thus the total run time for each update in this case is O(d2). If the uncertainty set is spherically

symmetric, i.e., a ball, then the expression is simply ‖Φθ‖2 and the robust temporal difference errors
of equation (47) and the updates of equation (113) and (114) can be viewed simply as regular updates
of [24] with an added noise term.

4.2.2 Robust stochastic gradient algorithms with nonlinear architectures

In this section we generalize the results of Section 4.2.1 where we show how to extend the algorithms
of equation (113) and (114) to the case when the value function vθ is no longer a linear function of
θ. This also generalizes the results of [7] to the robust setting with corresponding robust analogues
of nonlinear GTD2 and nonlinear TDC respectively. LetM :=

{
vθ | θ ∈ Rd

}
be the manifold

spanned by all possible value functions and let PMθ be the tangent plane ofM at θ. Let TMθ be the
tangent space, i.e., the translation of PMθ to the origin. In other words, TMθ :=

{
Φθu | u ∈ Rd

}
,

where Φθ is an n× d matrix with entries Φθ(i, j) := ∂
∂θj

vθ(i). Let Πθ denote the projection with to
the weighted Euclidean norm ‖·‖ξ on to the space TMθ , so that

Πθ = Φθ (ΦθΞΦθ)
−1 Φ>θ Ξ (116)

where Ξ is the n× n diagonal matrix with entries ξi for i ∈ X as in Section 4.1. The mean squared
projected Bellman equation (MSPBE) loss function considered by [7] can then be defined as

MSPBE(θ) = ‖vθ −ΠθTvθ‖2
ξ , (117)

where we now project to the the tangent space TMθ . The robust version of the MSPBE loss function,
the mean squared robust projected Bellman equation (MSRPBE) loss can then be defined in terms of
the robust Bellman operator over the proxy uncertainty set Û

MSRPBE(θ) =
∥∥∥vθ −Πθ T̂vθ

∥∥∥2

ξ
, (118)

18

and under the assumption that E
[
∇vθ(i)∇vθ(i)>

]
is non-singular, this may be expressed in terms

of the robust temporal difference error d̃ of equation (47) as in [7] and equation (108):

MSRPBE(θ) = E
[
d̃∇vθ(i)

]>
E
[
∇vθ(i)∇vθ(i)>

]−1
E
[
d̃∇vθ(i)

]
, (119)

where the expectation is over the states i ∈ X drawn from the distribution ξ. Note that under
the assumption that E

[
∇vθ(i)∇vθ(i)>

]
is non-singular, it follows due to equation (119) that

MSRPBE(θ) = 0 if and only if E
[
d̃∇vθ(i)

]
= 0. Since vθ is no longer linear in θ, we need

to redefine the gradient µ of σ for any convex, compact set P as

µP(θ) := ∇max
y∈P

y>vθ = Φ>θ arg max
y∈P

y>vθ , (120)

where Φθ(i) := ∇vθ(i). The following lemma expresses the gradient ∇MSRPBE(θ) in terms of
the robust temporal difference errors, see Theorem 1 of [7] for the non-robust version.
Lemma 4.5. Assume that vθ(i) is twice differentiable with respect to θ for any i ∈ X and that
W(θ) := E

[
∇vθ(i)∇vθ(i)>

]
is non-singular in a neighborhood of θ. Let φ := ∇vθ(i) and define

for any u ∈ Rd

h(θ, u) := −E
[
(d̃− φ>u)∇2vθ(i)u

]
. (121)

Then the gradient of MSRPBE with respect to θ can be expressed as

−1
2
∇MSRPBE(θ) = E

[(
φ− ϑµÛ(θ)− ϑφ′

)
φ>
]

w + h(θ, w), (122)

where w = E
[
φφ>

]−1
E
[
d̃φ
]
as before.

Proof. The proof is similar to Theorem 1 of [7] by using µÛ(θ) as the gradient of σÛ(θ).

Lemma 4.5 leads us to the following robust analogues of nonlinear GTD and nonlinear TDC. The
update of the weight estimators wk is the same as in equation (113)

wk+1 := wk + βk

(
d̃k − φ>k wk

)
φk, (123)

with the parameters θk being updated on a slower timescale as

θk+1 := Γ
(

θk + αk

{(
φk − ϑφ′k − ϑµÛ(θ)

)
(φ>k wk)− hk

})
robust-nonlinear-GTD2 (124)

θk+1 := Γ
(

θk + αk

{
d̃kφk − ϑφ′k − ϑµÛ(θ)(φ

>
k wk)− hk

})
robust-nonlinear-TDC, (125)

where hk :=
(

d̃k − φ>k wk

)
∇2vθk (ik)wk and Γ is a projection into an appropriately chosen compact

set C with a smooth boundary as in [7]. As in [7] the main aim of the projection is to prevent the
parameters to diverge in the early stages of the algorithm due to the nonlinearities in the algorithm. In
practice, if C is large enough that it contains the set of all possible solutions

{
θ
∣∣∣E [d̃∇vθ(i)

]
= 0

}
then it is quite likely that no projections will happen. However, we require the projection for the
convergence analysis of the robust-nonlinear-GTD2 and robust-nonlinear-TDC algorithms, see Sec-
tion 4.2.3. Let Tn(P) denote the time to optimize a linear function over the set P ⊂ Rn. Then the
run time is O

(
d + Tn

(
Û
))

. If Û is an ellipsoid with associated matrix A, then an approximate
optimum may be computed by sampling, if we have a rank-d approximation to A, i.e., A ≈ BB>

for some n× d matrix. If Û is spherically symmetric, then the σ
(

Û
)
is simply ‖vθ‖2 so that the

updates of equations (123) and (114) may be viewed as the regular updates of [7] with an added noise
term.

19

4.2.3 Convergence analysis

In this section we provide a convergence analysis for the robust-nonlinear-GTD2 and robust-nonlinear-
TDC algorithms of equations (123) and (124). Note that this also proves convergence of the robust-
GTD2 and robust-TDC algorithms of equations (113) and (114) as a special case. Given the set
C let C(C) denote the space of all C → Rd continuous functions. Define as in [7] the function
Γ̂ : C(C)→ C

(
Rd
)

Γ̂ f (θ) := lim
ε→0

Γ(θ + ε f (θ))− θ

ε
. (126)

Since Γ(θ) = arg minθ′∈C ‖θ − θ′‖ and the boundary of C is smooth, it follows that Γ̂ is well defined.
Let C̊ denote the interior of C and ∂C denote its boundary so that C̊ = C \ ∂C. If θ ∈ C̊, then
Γ̂v(θ) = v(θ), otherwise Γ̂(θ) is the projection of v(θ) to the tangent space of ∂C at θ. Consider the
following ODE as in [7]:

θ̇ = Γ̂
(
−1

2
∇MSRPBE

)
(θ), θ(0) ∈ C (127)

and let K be the set of all stable equilibria of equation (127). Note that the solution set{
θ
∣∣∣E [d̃φ

]
= 0

}
⊂ K. The following theorem shows that under the assumption of Lipschitz

continuous gradients and suitable assumptions on the step lengths αk and βk and the uncertainty set
Û, the updates of equations (123) and (124) converge.
Theorem 4.6 (Convergence of robust-nonlinear-GTD2). Consider the robust nonlinear updates of
equations (123) and (124) with step sizes that satisfy ∑∞

k=0 αk = ∑∞
k=0 βk = ∞, ∑∞

k=0 α2
k , ∑∞

k=0 β2
k <

∞, and αk
βk
→ 0 as k→ ∞. Assume that for every θ we have E

[
φθφ>θ

]
is non-singular. Also assume

that the matrix Φθ of gradients of the value function defined as Φθ(i) := ∇vθ(i) is Lipschitz
continuous with constant L, i.e., ‖Φθ −Φθ′‖2 ≤ L ‖θ − θ′‖2. Then with probability 1, θk → K as
k→ ∞.

Proof. The argument is similar to the proof of Theorem 2 in [7]. The only thing we need to verify is
the Lipschitz continuity of the robust version g̃(θk, wk) of the function g(θk, wk) of [7] defined as

g̃(θk, wk) := E
[
(φk − ϑµÛ(θ)φ

>
k wk − hk | θk, wk

]
, (128)

where g(θk, wk) is defined as g(θk, wk) := E
[
(φk − ϑφ′k(θ)φ

>
k wk − hk | θk, wk

]
, where φ′k is the

features of the state i′ the simulator transitions to from state i. Thus we only need to verify Lipschitz
continuity of µÛ(θ). Let y∗ := arg maxy∈Û y>vθ and let z∗ := arg maxz∈Û z>v′θ .∥∥µÛ(θ)− µÛ(θ

′)
∥∥

2 =
∥∥∥Φ>θ y∗ −Φ>θ′ z

∗
∥∥∥

2
(129)

≤
∥∥∥Φ>θ y∗ −Φ>θ′y

∗
∥∥∥

2
(130)

≤ ‖Φθ −Φθ′‖2 ‖y
∗‖2 (131)

≤ ‖Φθ −Φθ′‖2 arg max
y∈Û
‖y‖2 (132)

≤
(

L arg max
y∈Û
‖y‖2

)∥∥θ − θ′
∥∥

2 . (133)

Therefore the µÛ(θ) is Lipschitz continuous with constant L arg maxy∈Û ‖y‖2.

Corollary 4.7. Under the same conditions as in Theorem 4.6, the robust-GTD2, robust-TDC and
robust-nonlinear-TDC algorithms satisfy with probability 1 that θk → K as k→ ∞.

20

Figure 2: Performance of robust models with different sizes of confidence regions on two environments.
Left: FrozenLake-v0 Right: Acrobot-v1

5 Experiments

We implemented robust versions of Q-learning, SARSA, and TD(λ)-learning as described in Sec-
tion 3 and evaluated their performance against the nominal algorithms using the OpenAI gym frame-
work [10]. The environments considered for the exact dynamic programming algorithms are the
text environments of FrozenLake-v0, FrozenLake8x8-v0, Taxi-v2, Roulette-v0, NChain-v0, as
well as the control tasks of CartPole-v0, CartPole-v1, InvertedPendulum-v1, together with the
continuous control tasks of MuJoCo [27]. To test the performance of the robust algorithms, we
perturb the models slightly by choosing with a small probability p a random state after every action.
The size of the confidence region Ua

i for the robust model is chosen by a 10-fold cross validation
using line search. After the Q-table or the value functions are learned for the robust and the nominal
algorithms, we evaluate their performance on the true environment. To compare the true algorithms
we compare both the cumulative reward as well as the tail distribution function (complementary
cumulative distribution function) as in [26] which for every a plots the probability that the algorithm
earned a reward of at least a.
Note that there is a tradeoff in the performance of the robust algorithms versus the nominal

algorithms in terms of the value p. As the value of p increases, we expect the robust algorithm to
gain an edge over the nominal ones as long as Û is still within the simplex ∆n. Once we exceed the
simplex ∆n however, the robust algorithms decays in performance. This is due to the presence of the
β term in the convergence results, which is defined as

β := max
i∈X ,a∈A

max
y∈Ûa

i

min
x∈Ua

i

‖y− x‖1 , (134)

and it grows larger proportional to how much the proxy confidence region Û is outside ∆n. Note
that while β is 0, the robust algorithms converge to the exact Q-factor and value function, while the
nominal algorithm does not. However, since large values of β also lead to suboptimal convergence,
we also expect poor performance for too large confidence regions, i.e., large values of p. Figure 2
depicts how the size of the confidence region affects the performance of the robust models; note that
the. Note that the average score appears somewhat erratic as a function of the size of the uncertainty
set, however this is due to our small sample size used in the line search. See Figures 3, 4, 5, 6, 7, 8, 9,
10, 11, and 12 for a comparison of the best robust model and the nominal model.

References

[1] A. Antos, C. Szepesvári, and R. Munos. Learning near-optimal policies with bellman-residual
minimization based fitted policy iteration and a single sample path. Machine Learning, 71(1):89–
129, 2008.

[2] J. A. Bagnell, A. Y. Ng, and J. G. Schneider. Solving uncertain markov decision processes.
2001.

21

Figure 3: Tail distribution and cumulative rewards during transient and stationary phase of robust vs
nominal Q-learning on FrozenLake8x8-v0 with p = 0.01.

Figure 4: Tail distribution and cumulative rewards during transient and stationary phase of robust vs
nominal Q-learning on FrozenLake8x8-v0 with p = 0.1.

Figure 5: Tail distribution and cumulative rewards during transient and stationary phase of robust vs
nominal Q-learning on FrozenLake-v0 with p = 0.1.

Figure 6: Tail distribution and cumulative rewards during transient and stationary phase of robust vs
nominal Q-learning on CartPole-v0 with p = 0.001.

Figure 7: Tail distribution and cumulative rewards during transient and stationary phase of robust vs
nominal Q-learning on CartPole-v0 with p = 0.01.

22

Figure 8: Tail distribution and cumulative rewards during transient and stationary phase of robust vs
nominal Q-learning on CartPole-v0 with p = 0.3.

Figure 9: Tail distribution and cumulative rewards during transient and stationary phase of robust vs
nominal Q-learning on CartPole-v1 with p = 0.1.

Figure 10: Tail distribution and cumulative rewards during transient and stationary phase of robust vs
nominal Q-learning on CartPole-v1 with p = 0.3.

Figure 11: Tail distribution and cumulative rewards during transient and stationary phase of robust vs
nominal Q-learning on Taxi-v2 with p = 0.1.

Figure 12: Tail distribution and cumulative rewards during transient and stationary phase of robust vs
nominal Q-learning on InvertedPendulum-v1 with p = 0.1.

23

[3] D. P. Bertsekas. Approximate policy iteration: A survey and some new methods. Journal of
Control Theory and Applications, 9(3):310–335, 2011.

[4] D. P. Bertsekas and S. Ioffe. Temporal differences-based policy iteration and applications in
neuro-dynamic programming. Lab. for Info. and Decision Systems Report LIDS-P-2349, MIT,
Cambridge, MA, 1996.

[5] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic programming: an overview. In Decision
and Control, 1995., Proceedings of the 34th IEEE Conference on, volume 1, pages 560–564.
IEEE, 1995.

[6] D. P. Bertsekas and H. Yu. Projected equation methods for approximate solution of large linear
systems. Journal of Computational and Applied Mathematics, 227(1):27–50, 2009.

[7] S. Bhatnagar, D. Precup, D. Silver, R. S. Sutton, H. R. Maei, and C. Szepesvári. Convergent
temporal-difference learning with arbitrary smooth function approximation. In Advances in
Neural Information Processing Systems, pages 1204–1212, 2009.

[8] J. A. Boyan. Technical update: Least-squares temporal difference learning. Machine Learning,
49(2-3):233–246, 2002.

[9] S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for temporal difference learning.
Machine learning, 22(1-3):33–57, 1996.

[10] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[11] E. Delage and S. Mannor. Percentile optimization for markov decision processes with parameter
uncertainty. Operations research, 58(1):203–213, 2010.

[12] A. M. Farahmand, M. Ghavamzadeh, S. Mannor, and C. Szepesvári. Regularized policy iteration.
In Advances in Neural Information Processing Systems, pages 441–448, 2009.

[13] G. N. Iyengar. Robust dynamic programming. Mathematics of Operations Research, 30(2):257–
280, 2005.

[14] S. H. Lim, H. Xu, and S. Mannor. Reinforcement learning in robust markov decision processes.
In Advances in Neural Information Processing Systems, pages 701–709, 2013.

[15] J. Morimoto and K. Doya. Robust reinforcement learning. Neural computation, 17(2):335–359,
2005.

[16] A. Nedić and D. P. Bertsekas. Least squares policy evaluation algorithms with linear function
approximation. Discrete Event Dynamic Systems, 13(1):79–110, 2003.

[17] A. Nilim and L. El Ghaoui. Robustness in markov decision problems with uncertain transition
matrices. In NIPS, pages 839–846, 2003.

[18] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta. Robust adversarial reinforcement learning.
arXiv preprint arXiv:1703.02702, 2017.

[19] W. B. Powell. Approximate Dynamic Programming: Solving the curses of dimensionality,
volume 703. John Wiley & Sons, 2007.

[20] M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

[21] A. Shapiro and A. Kleywegt. Minimax analysis of stochastic problems. Optimization Methods
and Software, 17(3):523–542, 2002.

[22] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction, volume 1. MIT press
Cambridge, 1998.

24

[23] R. S. Sutton, H. R.Maei, D. Precup, S. Bhatnagar, D. Silver, C. Szepesvári, and E.Wiewiora. Fast
gradient-descent methods for temporal-difference learning with linear function approximation. In
Proceedings of the 26th Annual International Conference on Machine Learning, pages 993–1000.
ACM, 2009.

[24] R. S. Sutton, H. R. Maei, and C. Szepesvári. A convergent o(n) temporal-difference algorithm
for off-policy learning with linear function approximation. In Advances in neural information
processing systems, pages 1609–1616, 2009.

[25] A. Tamar, Y. Glassner, and S. Mannor. Optimizing the cvar via sampling. arXiv preprint
arXiv:1404.3862, 2014.

[26] A. Tamar, S. Mannor, and H. Xu. Scaling up robust mdps using function approximation. In
ICML, volume 32, page 2014, 2014.

[27] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In
Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages
5026–5033. IEEE, 2012.

[28] W. Wiesemann, D. Kuhn, and B. Rustem. Robust markov decision processes. Mathematics of
Operations Research, 38(1):153–183, 2013.

25

	Introduction
	Preliminaries
	Robust exact dynamic programming algorithms
	Robust Q-learning
	Robust SARSA
	Robust TD-learning

	Robust Reinforcement Learning with function approximation
	Robust approximations with linear architectures
	Robust stochastic gradient descent algorithms
	Robust stochastic gradient algorithms with linear architectures
	Robust stochastic gradient algorithms with nonlinear architectures
	Convergence analysis

	Experiments

