A Additional figures and examples

A.1 Special cases of transductive regret.
b:x/1 b:a/l

a:x/l :x/1 a:b/1 (, /1

@) (i)

A (a,a)/l
b:p(a,b)/1

c:p(ac)/1
p(c,a)/l

b:(b)/1

a:q)(a)/l :p(c)/1

(ii1) @iv)
Figure 4: Several families of WFSTs for special cases of transductive regret for ¥ = {a, b, c}. (i)
External regret with parameter « € X. (ii) Internal regret: family of transducers T, o, With a1 # aq,
a1,az € X; example shown for T, ;. (iii) Swap regret with parameter : ¥ — Y. (iv) Bigram
conditional swap regret with parameter ¢): (X U {e}) x ¥ — X.

p(ce)/1
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A.2 Example with a swapping subset.

Figure 5: Example of a WEST with X = {a, b, ¢, d} and where each state has a swapping subset.
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B Pseudocode of FASTTRANSDUCE

Algorithm 3: FASTTRANSDUCE; (Auy.i)uecicilabE, [u]] €Xternal regret minimization algorithms.

Algorithm: FASTTRANSDUCE(T , (Au,i)uc@ icilablEs [u]))

u < I
fort < 1toT do
for each ¢ € ilab[E7[u]] do
q; < QUERY(A, ;)
Q""" < [a1l1citablEr [u)] ** - AN LN €ilablE [u]]
for each j <+ 1to N do
¢j 4 Mileiable fu)) Qi LjeilablEx [ul]

log (Jr)

]T

a el e [

if 7 < N then

P < Py o

for 7 < 1to 7; do

(PD) " (pD)T(Q"™ = TeT); pt <= pi + Pf
Pt < 7o
[EAIR

else

p; = FIXED-POINT(Q"%)
¢ < SAMPLE(p:); l; + RECEIVELOSS(); u « d7(u, )
for each i € ilab[Ex[u]] do

ATTRIBUTELOSS(A,, ;, p¢[i]1;)
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C Pseudocode of FASTSLEEPTRANSDUCE

Algorithm 4: FASTSLEEPTRANSDUCE. (A, ;) sleeping regret minimization algorithms.

Algorithm: FASTSLEEPTRANSDUCE(T , {Au.i }ueq icilabEr [u])

u < Ir
fort < 1toT do
At + AWAKESET()
for each i € ilab[Ey[u]] N A; do

qi ¢ QUERY(A,;); g « L‘“q
A Al
Q"  [a7  LiciablEs [u]n Ay - - - AN’ LN Eilab[ES [u]]nA,]

for each j < 1 to N do
Cj 4 MiN;gilablE s [u]]N A, Qf? LjcilablEs [u])nAs

1
ar < llefi e [%]
if 7, < N then
P < P} ~
for 7 < 1to 7, do
(P "« (P7) T(Q"™ — [L1ea,i-- - LjiablEs[@)eal)c )
Pt < Pt +pg

Pt
% —rt
Pt < Toully

else
p/ ¢ FIXED-POINT(Q%")

Ay Ptla . Aty
Pyt Z,Tttpt; x¢ < SAMPLE(p; *); 1, + RECEIVELOSS()

for each ¢ € ilab[E7[u]] do
ATTRIBUTELOSS(A,, ;, pe[i]1s)

5w 07w, @)
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D Proof of Theorem 1

Theorem 1. Let Ay, ..., Ay be external regret minimizing algorithms admitting data-dependent
regret bounds of the form O(\/Lr(A;)log N), where L1(A;) is the cumulative loss of A; after T
rounds. Assume that, at each round, the sum of the minimal probabilities given to an expert by these
algorithms is bounded below by some constant o > 0. Then, FASTSWAP achieves a swap regret in

O(v/TNlog N) with a per-iteration complexity in O(N? min {%, N}).

Proof. Let p; be the distribution returned by FASTSWAP at round ¢. For any distribution p}, ¢t € [T7,
the following inequality holds:

Z lt CUt lr<n = Z

E [ls(z:))1 Tt<N+Z E [z <n

-1 TPy
- Z E lt CUt n<N
'ct’\‘pt

T T

< ZJ ]E L@ Lr,<n + > lIPe = PFll1lelloo Lry <
t=1 t=1
T T

< t_zlw‘]g le(xe))lr,en + tzl [Pt — Py llilr <

Let p} be the stationary distribution of the row stochastic matrix Q, p; ' Q! = p; ". Then, we can
write

N
Pt it jlr<N

Il
M=

ZmINE lt SCt 1n<N

t=1

o~
Il

—
<
Il

—

I
] =
M-
P‘ﬂz

~
I
=
-
Il
—
~
Il
-

t
Qi sl ln <N

N T N
Qi jpeilejleen + ZZ Z Qi (pis

I

] =
M)~
] =

i=1 t=1 j=1 i=1 t=1 j=1
- Pt,i)lt,gln<N
N T N T
<D DN Qlpeilegleen + Y IPF = pelli e <n-
i=1 t=1 j=1 t=1
On the other hand, by design, if 7+ > N, then p; = p}, so that
N T N
Z o lt xt Tf>N_ZZZQ thlltj T >N -
t=1 TPt =1 t=1 j=1
Thus, it follows that
T N T N T
DL ) < 33 Qlprde + 23 Ipi = pel L
t=1 i=1 t=1 j=1 t=1
N T T
29 { min 3" pril + Regr (Ao cbexl)] +23 o — pilla e
o LEN A t=1
N T T
= min 3 [Z Pr.ilt,p(s) + Regr(Ai, %)} +23 I} = pellilr<n
=1 Li=1 t=1
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Now let L1 (.A;) denote the cumulative loss incurred by algorithm .4;. Since the losses attributed to
algorithm .A; are scaled by p; ;, at each round, the sum of the losses over all the algorithms is at most
1. Thus, by Jensen’s inequality, the following inequalities hold:

N N
1 1
N E Regr(Ai, Pex) = N E:I O(\/ LT(Ai) log N)

i=1
1 Y Tlog N
§O< N;LT(Ai)IOgN>§O<\/N>,

which implies N | Regq (A, Pex) < VTN Iog N.

Finally, during the rounds in which 1., -, p; is an RPM approximation of p; using 7 iterations.
Thus, by Equation 3.7 in [Nesterov and Nemirovski, 2015] the following inequality holds: ||p; —
pill1 < (1 — ay)™. Since 74 is chosen so that the inequality (1 — i)™ < 1/+/% holds, it follows that
Zthl Pt — pilllr<en < Zthl 1/v/t < V/T, which proves the regret bound Reg (A, ®gyap) <
O(yTNlogN).

Furthermore, the computational cost of the ¢-th iteration of the algorithm is dominated by 7, matrix

e . . log( ==
multiplications or the solution of the linear system. 7, can be bounded as follows: 74, = {%W <
s ()

fog(i—a) T 1- Thus, the computational cost of the Z-th iteration is in

o (Wmin{ ety V) <0 (Vmind g —ay V)
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E Proof of Theorem 2

Theorem 2. Let (Au’i)ueriE“ab[Eﬂu” be external regret minimizing algorithms admitting data-

dependent regret bounds of the form O(/Lr(Auy,;)log N), where L1 (Ay.;) is the cumulative loss
of A,.; after T rounds. Assume that, at each round, the sum of the minimal probabilities given to
an expert by these algorithms is bounded below by some constant o > 0. Then, FASTTRANSDUCE

achieves a transductive regret against T that is in O(\/T|E1|in log N) with a per-iteration complexity
. 2 . log T
in O(N min {71%(1/(17&)) , N})

Proof. Let p; be the distribution output by FASTTRANSDUCE at round ¢. For any distribution pj,
t € [T, the following inequalities hold:

T T
Y E l(@)lren =) E [l(@)]ly<n + Z [le(z)]Lr <
=1 Tt~Pt =1 T~p; Tt~Pt

—Z E lt xt 1 <n

xt"‘/pt

MH

INE (e (2)]1 n<N+ZHPt—PtH 12l oo < v

Tt

=1 t—1
T T
S;I]E [le(z))1 n<N+;HPt pillilr,<n-

Let u, be the state that the algorithm is in at time ¢ as a result of its past actions. Consider the matrix
Q!“t defined in the algorithm. The restriction of the matrix Q%*¢ to its non-zero rows and columns
is a row stochastic matrix. Let p} be its stationary distribution, and by augmenting it with zeros in the
zero rows of QV%t, we may take p; € Ay as a fixed point of Q%“¢. Then, we can write:

T N N

T
Z lt xt Tt<N = Zzzptz tu lt T <N

T~
t=1 t=1 i=1 j=1

N T N

t,ug
E Qi peiltjlr <N

i=1 t=1 j=1

N T N
+ Z Z Z Qf,’;‘t (p:z - pt’i)lt7j17t<N
T

N T N
< ZZZQ:;’M zlt,let<N + Z ||p:: - pt||117'1,<1\/"

i=1 t=1 j=1 t=1

On the other hand, by design, if » > N, then p; = p}, so that

N T N

Z }Ept le(ze)]1r >N —ZZZQ” pe.ile 1oy
t=1

i=1 t=1 j=1

Thus, it follows that for any WFEST T € T,

N T N

Zztwpt lt zt < ZZ Z sz Or(IT,x1:4— 1)—upt 1ltj +2Z ||pf - Pt||1 T <N

t=1 i=1 t=1 j=1ueQsr

T N
Z ZZ 1J15T(IT$1t 1)= uptzlt]

u€QT i€ilab[ET[u]] t=1 j=1
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T

+2) lIp; = pellilren
t=1

< Z Z min ZléT(IT,mlt 1) —upt7ltz

weQr i€i|ab[ET[u]] 7% Eolab[ET[éT(IT,zl t— 1)751&]

T
+2> lp; —pillilr<n + Z > Regp(Aui, Pex)
t=1

i=1 uEQT

<> X > S Lo (1 v 1) —ubrawlells(olable])

ueQT iGiIab[ET[ Nl e€Es 67 (IT,x1:4—1),2¢] t=1

+ QZ Hpt - pt||117t<N + Z Z RegT(-Au uq)ext)

u€QT tE€ilab[E7[q]]

-> E 3 wle]ly (olable +2Z||pt Pellilr, <

t~Pt
t=1 e€Eg [0 (IT,x1:0—1),%¢]

+ Z Z Regp( Ay iy Pext)-

u€QT i€ilab[E7[q]]

Now let L1 (A, ;) denote the cumulative loss incurred by algorithm A,, ;. Since the losses attributed
to algorithm A, ; are scaled by 15, (1, z,,,_,)=uPt,i, it follows that at each round, the sum of the
losses over all the algorithms is at most 1. Thus, by Jensen’s inequality, it follows that

1
ZueQT\ilab[ET[um 2 > Remp(Aun o)

u€QT i€ilab[E7 [u]]

N > ueor | llab [Er[u Z Z Lr(A,,;)log(N

uE QT i€ilab[ET[u

: 2 ueQr ||Iab Er[u]]] 2 Z Lr(Ay,i)log(N)

u€Q 7 i€ilab[Eg [u]]

1
< - Tlog(N),
\/ > ey TTb[E ]
sothat }-, co D icilabler [u)) R8T (Auis Pext) < \/T > uecq, lilab[E7[u]][log(IN).

Finally, during the rounds in which 1., - n, p; is an RPM approximation of p; using 7 iterations.
Thus, it follows from Equation 3.7 in [Nesterov and Nemirovski, 2015] that ||p: — p;|l1 < (1 —ax)™

By the algorithm’s choice of 7, ||p:—p;||1 < ﬁ Thus, it follows that ZtT:l lpe—pillils,<n < VT,
so that Regy (A, T) < O(\/T > weo, lilab[Er[q]]|log(IV)).

Moreover, the computational cost of the ¢-th iteration of the algorithm is dominated by 7, matrix

multiplications or the solution of the linear system. 7, can be bounded as follows: 74, = {M—‘ <

lOg(l o )
I (] c ) + . us, the C()mputatl()na cost of the ?-th 1teration 1s in

o (Wmin{ ety V) <0 (Vmind g —ay )
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F Proof of Theorem 3

Theorem 3. Let (-AI,u,i)IeZ,ueQT,ieilab[Eq—[q]] be external regret minimizing algorithms admitting
data-dependent regret bounds of the form O(y/Lr(Ar.,;)1og N), where Ly (A ..;) is the cumu-
lative loss of A u; after T rounds. Let A1 be an external regret minimizing algorithm over I that

admits a regret in O(\/T log(|Z|)) after T rounds. Assume further that at each round, the sum of
the minimal probabilities given to an expert by these algorithms is bounded below by some constant
a > 0. Then, FASTTIMESELECTTRANSDUCE achieves a time-selection transductive regret with re-

spect to the time-selection family T and WEST family T that is in O(\/T (log(|Z]) + |E7|in log N))

with a per-iteration complexity in O(N2 ( min {%, N} + \Z|))

Proof. We first note that since A7 is designed to minimize external regret against the losses (it)thl,
it follows that for any I* € Z,

T T
ZZ&§Z§ < Ziﬁ* + Regr(Az).

t=11eT t=1

Let u; be the state that the algorithm is in at time ¢ as a result of its past actions. Consider the matrix
Q?“ defined in the algorithm. The restriction of the matrix Q%*¢ to its non-zero rows and columns
is a row stochastic matrix. Let p; be its stationary distribution, and by augmenting it with zeros in
the zero rows of Q%*t, we may take p; € Ay as a fixed point of of Q%**. Then, by expanding the

definition of 1!, we can rewrite the expression on the left-hand side as

T T
SN @i en = > a () (o MUl = pl 1) 1r, o

t=11Iel t=11I€ez
T T
- Z Z arl(t)pf MM 11y, o — Z Z QrI(t)p, Lils,<n
t=1Iez t=1Iez

T

Z t)(pp) T M1 ZZ%I ) Ldren
t=11¢e t=11eZ
T
Z

Pt — Py ll1lr <

On the other hand, by design if = > N, then p; = pj, so that

quzh TN = ZZQII )(py) TMPU L, ZZQI—’ ) Ll >N

t=11eZ t=1 1€l t=1I1€Z

Thus, it follows that

T T
> D il > quﬂ (py) ' MAueT], — ZZG?I(t)(p?)Tlt = > llpe = p; 1Ly <n
t=1

t=11€T t=11€eZ t=0IeT

ZIEZ I(t)aijt'”t’I

If 3,7 1(t)a} # 0, then the fact that p; is a stationary distribution of Q" = S T0%

implies that
> oarIt)(py) T™MP e, = > G () (p;) Ly
Iez IeT

On the other hand, if ), .7 I(¢)} = 0, then by non-negativity, it must be the case that I(¢)q}; = 0
for every I € 7. Thus, it follows that

D ATty (py) M, =Y ar () (p) Tl = 0,
I1eT IeT
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which implies that
T

T
Z —lp. < Z [Pt = Pill11r,<n + Regr(Az).

t=1

By expanding the definition of [} 7+, We can write

T T T
Y= I (P?Mt’“"l*lt — pflt) = 3" ()p] 1 — I (t)py ME“-T'1,.
t=1

t=1 t=1

Moreover, for any J € 7, we can bound the second term in the following way:

T T
ZI*(t)p:Mt’ut’I*lt:ZI* methutl ly
t=1 —

N T N
Z ZZZMt gl 157‘ (Ir,x1:6— 1)—uI (t)pt,ilt,j

ueQT i=1 t=1 j=1

= X ZZMf-:;-‘“*1aT<zT,m1:t,1>:u1*(t)pt,izt,j

wEQT i€ilab[Er[u]] t=1 j=1

= Z Z min 2157’(17’ Ty1-1)= uI ( )pt,ilt,i*

i* €olab[E7 [t
WEQT i€ilab[E[u]] 7l

+ Z Z RegT(ALu,h (I)exl)

u€QT i€ilab[E7[u]]

T
< Z Z Z w[e]Z16T(I7’7$1;t71):u1*(t)pt,ilt7o|ab[e]
=1

u€QT i€ilab[ET[u]] e€Eg[u]

+ Z Z RegT(AI,um ‘I)ext)

u€QT i€ilab[Eg [u]]

T
Z ) E > wle]ly(olable])

e€Es[d7 (I x1:0—1),%¢]
+ Z Z RegT(AI,u,iaq)eXt>7
u€QT i€ilab[E7[u]]
using the fact that algorithm A, ; minimizes external regret against the surrogate losses
I(t)]‘(ST(Iq>7fI,'1:t_1):upt,ilt'

As in Theorem 2, the scaling assumption on the external regret minimizing algorithms and Jensen’s
inequality imply that

Z Z RegT(Aluu ext <O \/ Z ‘I'ab Eg’ ‘]Og( )

u€Q T i€ilab[Es[u]] u€EQT

Thus, we can write for any I* € 7 that

T T
Z pt lt o I*( ) ;l—Mt,ut,I*lt — ZI*(t) Y ]E Z w[e]lt(olab[e])
t=1 t=1 P e (57 (Iramii 1))
< Regp(Az) +O | [T > lilab[Ex[u]]|log(N) | + Z IPe = Pi 1l Lr <,
UEQT t=1
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and as in Theorem 2, we can bound the /; approximation error of p; for p; by
1
[Pt —pPilli < (T —au)™ < NG

by the algorithm’s choice of 7;. Thus, by applying regret guarantee of algorithm A7 together with
the above calculations, the time-selection transductive regret of FASTTIMESELECTTRANSDUCE is

in0 (/7 (1o8(11) + Ty, lioblEx(al to2()) ).

Moreover, at each round ¢, the computational cost of the algorithm is dominated by two quantities:
the update of |Z| N external regret minimizing algorithms over the NV experts, which is in O(|Z| N?),
and the fixed-point approximation or solution of the linear system, which is in

o (Wt min{ gy N ) <0 (W min i )
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G Proof of Theorem 4

Theorem 4. Assume that the sleeping regret minimizing algorithms used as inputs of
FASTSLEEPTRANSDUCE achieve data-dependent regret bounds such that, if the algorithm selects
the distributions (p;)}_, and observes losses (1;)1_, with awake sets (A;)]_,, then the regret of Al is

at most O(\/ZtT_l u*(A¢) Eg,mop, [l (1)) log(N)). Assume further that at each round, the sum of

the minimal probabilities given to an expert by these algorithms is bounded below by some constant
a > 0. Then, the sleeping regret Reg(FASTSLEEPTRANSDUCE, T, AT) of FASTSLEEPTRANS-

DUCE is upper bounded by O (\/Zthl u(As)|E7|in log(N)). Moreover, FASTSLEEPTRANSDUCE

admits a per-iteration complexity in O(N2 min {%, N})

Proof. Letu € Ay, and let ptAt be the distribution output by FASTSLEEPTRANSDUCE at round £.
For any distribution p, ¢ € [T, the following inequalities hold:

u(Ady) E[le(@)]lr<en = U(At)< E L)+ E [hx)]- E *[lt(xt)]> Ly <n

. t o t . s
TPy Teopy U »Lprt Ty~py

IN

u(Ar) ( E,_ [lu(z)] + o7 — o[y ||zt||m> Lry<n

TPy v

IN

u(Ar) ( E,_ [l(z)] + [lpf — pi* *||1> Lry<n.

ts
Te~Py

Let u; be the state that the algorithm is in at time ¢ as a result of its past actions. Consider the matrix
Q%" defined in the algorithm. The restriction of Q%% to its non-zero rows and columns is a row

stochastic matrix. Let pA“ be its stationary distribution, and by augmenting it with zeros in the zero
rows of Q¥%t, we may take pA“ € Ay as a fixed point of Q*%¢. Then, we can write:

T
YouA)  E [l(@)lln<n
t=1

t
Tt~Py

Ayg,x
u(A)pit Qi e jlr <N

[

B
S
e

~
Il
-
-
Il
-
<
Il
-

N T N
taug A t ug (A, Ay
U(At)Qi, Prilejlr<n + E E E u( “( pz&zt - pt,;)ltaj17t<N

1t=1 j=1

I
] =
M~
] =

@
Il
-
~
Il
-

<
Il
N

7

S0

] =
M=
] =

u(A )Qf:tp?;lt,jlmmz (AP = P11

@
Il
-
-
Il
_
I
—

J
On the other hand, by design, if 7+ > N, then p; = p}, so that

T N T N
Zu L) lron <0330 u(A)Q pril e >N
t=1

J%NPt t=1i=1 t=1 j=1

Thus, it follows that for any WEST T € T,

T
Y ou(A) E | [l(a)]

t=1 Tt~Pt
N T N T
Ay %
<3O uANQE Py + 2> u(Ad T = p L, <
i=1t=1 j=1 t=1
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T

T N

A
ZZ Z u At 1j15T(I7‘7I1t 1)_Uptzltj +2Z At Hp o 7p24t||117't<N
t=1

i=lueQr t=1
T

N
= DD u(ADQE s, (1w )=uPit

€Q i€ilab[Ey [u]] t=1 j=1

1

Il
S.MZ

<

A
u(A)|lpr " — pil1 Lry<n

MH

+

t

T N
< Z Z min Z Z 157(IT,r1:t,1):uU?7i1j€At Pff ly

U, 1 A N
uEQT i€ilabET[u]] : UE j’u(A ) t=1i=1
JEA: T3

I
—

+

MH

(At)HpA“ p?t ||117't<N + Z Z RegT(-Au,ia q>sleep)

u€EQT i€ilab[E7[u]]

T N
= Z Z Z ZZ157’(IT7xl:t71):uu]‘1j€At [}ptlltj

u€Q T i€ilab[ET[u]] e€Eg[q] t=1 j=1

("él?f)HpAt7 p?t ||11‘r,5<N + Z Z RegT(Au,ia (I)sleep)

u€QT t€ilab[ET[q]]

t

I
-

MH

+

o~
I
-

T
Z T4 Z (u‘At)Olab[e]w[e]pfjlt(olab[e])

t=1 e€Eg [0 (IT,x1:0—1),%¢]

Zﬁ

+

Mq

(At)”pAt’ p?t ||1]-Tt<N + Z Z RegT(Au,iv (I)sleep)~

w€QT i€ilab[ET[q]]

o~
Il
_

T
For any distribution u* € Ay and awake sequence AT, Let L;’Al = Zle u*(Ay) Eg,mop, [l (z0)],

q,* T
Thus, algorithm A, ; achieves a regret in O(\/ L A log(N)), where uf™ is a maximizer of
algorithm A,, ;’s sleeping regret.

Since the losses attributed to algorithm A, ; are scaled by 15, ( IT7$1:t—1):up£’f’ it follows that at
each round, the sum of the losses over all the algorithms is at most 1. Thus, by Jensen’s inequality, it
follows that

1
EUEQT |||ab[ET[u]]| Z Z R‘egT(AU,ia (I)sleep)

u€QT i€ilab[E7[u]]

! AT
" Y, lTab[Er{u]] 2 2 \/Ll Aui)log(N)

u€QT i€ilab[E7[u]]

u, AT
b ||IabE a2 L (A log(V)
ueQr T uEQTzelab[Eq—[u]]
1 T
= : u(Ar) log(N),
ZUEQThIab[ET[u]”; (4

T
sothat 35, Diciabler fu)) R8T (Au,is Poteep) < \/Zt:l u(At) Xueqr 2icitablerfu)) 108(N)-

Finally, during the rounds in which 1., <, p; is an RPM approximation of p; using 7 iterations.
Thus, by Equation 3.7 in [Nesterov and Nemirovski, 2015] the following inequality holds: ||p; —

pill1 < (1 — ay)™. Since 74 is chosen so that the inequality (1 — i)™ < 1/+/% holds, it follows that
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Zthl u(Ay)|lpt — pi*t*||y < VT, which proves the regret bound

Zu E [li(x)] Z E, Z (ul 4, )olable)w[e]l¢ (olable])

t=1 I’NPf t=1%t" pi* e€Ey [0 (IT,21:4—1),%¢]

T

<0 ZU(At) Z Z log(N)

q€Qs i€ilab[Eg[q]]

Furthermore, the computational cost of the ¢-th iteration of the algorithm is dominated by 7, matrix

o . : log( 7z
multiplications or the solution of the linear system. 7, can be bounded as follows: 74 = {M—‘ <

log(1—ox)
log (== . . L
log((l\—ﬁa)) + 1. Thus, the computational cost of the ¢-th iteration is in

o (Wrmin{ izt V) <0 (Vi g —ay )
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H Connections with game-theoretic equilibria

There is an elegant connection between regret minimization in online learning and convergence
to game-theoretic equilibria in repeated games [Nisan et al., 2007]. As an example, remarkably,
if all players in a repeated game follow a swap regret minimization algorithm, then the empirical
distribution of their play converges to a correlated equilibrium (see for example [Blum and Mansour,
2007]). Similarly, if all players follow a conditional swap regret minimization algorithm, then the
empirical distribution of their play converges to a conditional correlated equilibrium [Mohri and Yang,
2014]. Hazan and Kale [2008] showed a result generalizing this property to the case of a ®-regret and
®-equilibrium. Moreover, the authors showed that the existence of an efficient ®-regret minimizing
algorithm is equivalent to the possibility of efficiently computing a fixed point associated to ®-regret.
However, their characterization of efficiency is a per iteration time complexity of O(|®|), which may
be very large, in fact exponential in the number of experts, as in the case of the examples discussed in
this paper. Here, we proved the existence of a large class of ®-equilibria, transductive equilibria, i.e.
those induced by a WFST, that are realizable in time that is polynomial in the number of experts.

I Lower bound

Auer [2017] proved a lower bound of Q(+/T'N) for swap regret. Since swap regret is a special case
of transductive regret, that lower bound applies to the setting of transductive regret as well. This is
further detailed in an extended version of this paper.

J Bandit setting

Blum and Mansour [2007] and Mohri and Yang [2014] respectively showed that swap and conditional
swap regret-minimizing algorithms can be extended to the bandit setting. Similarly, our more general
transductive regret-minimizing can be extended to the bandit setting, as shown and detailed in the
extended version of this paper.
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