
A More Instantiations

A.1 Matrix Chain Multiplication

Given a sequence A1, A2, . . . , An of n matrices, our goal is to compute the product A1⇥A2⇥. . .⇥An

in the most efficient way. Using the standard algorithm for multiplying pairs of matrices as a subrou-
tine, this product can be found by a specifying the order which the matrices are multiplied together.
This order is determined by a full parenthesization: A product of matrices is fully parenthesized if it
is either a single matrix or the multiplication of two fully parenthesized matrix products surrounded
by parentheses. For instance, there are five full parenthesizations of the product A1A2A3A4:

(A1(A2(A3A4)))

(A1((A2A3)A4))

((A1A2)(A3A4))

(((A1A2)A3)A4)

((A1(A2A3))A4).

We consider the online version of matrix-chain multiplication problem [10]. In each trial, the
algorithm predicts with a full parenthesization of the product A1 ⇥A2 ⇥ . . .⇥An without knowing
the dimensions of these matrices. Then the adversary reveals the dimensions of each Ai at the end
of the trial denoted by di�1 ⇥ di for all i 2 {1..n}. The loss of the algorithm is defined as the
number of scalar multiplications in the matrix-chain product in that trial. The goal is to predict with a
sequence of full parenthesizations minimizing regret which is the difference between the total loss of
the algorithm and the total loss of the single best full parenthesization chosen in hindsight.

The number of scalar multiplications in the matrix-chain product cannot be expressed as a linear loss
over the dimensions of the matrices di’s. Thus we are unaware of a way to apply FPL to this problem
using the di’s as components in the loss vector revealed by the adversary.

The Dynamic Programming Representation Finding the best full parenthesization can be solved
via dynamic programming [10]. Each subproblem is denoted by a pair (i, j) for 1  i  j  n,
indicating the problem of finding a full parenthesization of the partial matrix product Ai . . . Aj .
The base subproblems are (i, i) for 1  i  n and the final subproblem is (1, n). The dynamic
programming for matrix chain multiplication uses the following recurrence:

OPT(i, j) =
⇢
0 i = j

minik<j{OPT(i, k) + OPT(k + 1, j) + di�1 dk dj} i < j.

This recurrence always recurses on 2 subproblems. Therefore we have k = 2 and the associated
2-DAG has the subproblems/vertices V = {(i, j) | 1  i  j  n}, source s = (1, n) and sinks
T = {(i, i) | 1  i  n}. Also at node (i, j), the set M(i,j) consists of (j � i) many 2-multiedges.
The kth 2-multiedge leaving (i, j) is comprised of 2 edges going from the node (i, j) to the nodes
(i, k) and (k + 1, j). The loss of the kth 2-multiedge is di�1 dk dj . Figure 3 illustrates the 2-DAG
and 2-multipaths associated with matrix chain multiplications.

Since the above recurrence relation correctly solves the offline optimization problem, every 2-
multipath in the DAG represents a full parenthesization, and every possible full parenthesization can
be represented by a 2-multipath of the 2-DAG.

We have O(n3
) edges and multiedges which are the components of our new representation.

Assuming that all dimensions di are bounded as di < dmax for some dmax, the loss associated
with each 2-multiedge is upper-bounded by (dmax)

3. Most crucially, the original number of scalar
multiplications in the matrix-chain product is linear in the losses of the multiedges and the 2-flow
polytope has O(n3

) facets.

Regret Bounds It is well-known that the number of full parenthesizations of a sequence of n
matrices is the nth Catalan number [10]. Therefore N =

(2n)!
n!(n+1)! 2 (2

n, 4n). Also note that the
number of scalar multiplications in each full parenthesization is bounded by B = (n� 1)(dmax)

3 in
each trial. Thus using Theorem 3, EH achieves a regret bound of O(n

3
2
(dmax)

3
p
T ).
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Figure 3: Given a chain of n = 4 matrices, the 2-multipaths associated with the full parenthesizations
((A1A2)(A3A4)) and (A1((A2A3)A4)) are depicted in red and blue, respectively.

Additionally, notice that each 2-multipath associated with a full parenthesization consists of exactly
D = 2(n�1) edges. Also we have |V | = n(n+1)

2 . Therefore, incorporating (dmax)
3 as the loss range

for each component and using Theorem 4 , CH achieves a regret bound of O(n (log n)
1
2
(dmax)

3
p
T ).

A.2 Knapsack

Consider the online version of the knapsack problem [23]: We are given a set of n items along with
the capacity of the knapsack C 2 N. For each item i 2 {1..n}, a heaviness hi 2 N is associated. In
each trial, the algorithm predicts with a packing which is a subset of items whose total heaviness is at
most the capacity of the knapsack. After the prediction of the algorithm, the adversary reveals the
profit of each item pi 2 [0, 1]. The gain is defined as the sum of the profits of the items picked in the
packing predicted by the algorithm in that trial. The goal is to predict with a sequence of packings
minimizing regret which is the difference between the total gain of the algorithm and the total gain of
the single best packing chosen in hindsight.

Note that this online learning problem only deals with exponentially many objects when there are
exponentially many feasible packings. If the number of packings is polynomial, then it is practical
to simply run the Hedge algorithm with one weight per packing. Here we consider a setting of the
problem where maintaining one weight per packing is impractical. We assume C and hi’s are in such
way that the number of feasible packings is exponential in n.

The Dynamic Programming Representation Finding the optimal packing can be solved via
dynamic programming [23]. Each subproblem is denoted by a pair (i, c) for 0  i  n and
0  c  C, indicating the knapsack problem given items 1, . . . , i and capacity c. The base
subproblems are (0, c) for 0  c  C and the final subproblem is (n,C). The dynamic programming
for the knapsack problem uses the following recurrence:

OPT(i, c) =

8
<

:

0 i = 0

OPT(i� 1, c) c < hi

max{OPT(i� 1, c), pi + OPT(i� 1, c� hi)} else.

This recurrence always recurses on 1 subproblem. Therefore we have k = 1 and the problem is
essentially the online longest-path problem with several sink nodes. The associated DAG has the
subproblems/vertices V = {(i, c) | 0  i  n, 0  c  C}, source s = (n,C) and sinks
T = {(0, c) | 0  c  C}. Also at node (i, c), the set M(i,c) consists of two edges going from
the node (i, c) to the nodes (i � 1, c) and (i � 1, c � hi). Figure 4 illustrates the DAG and paths
associated with packings.

Since the above recurrence relation correctly solves the offline optimization problem, every path in
the DAG represents a packing, and every possible packing can be represented by a path of the DAG.

We have O(nC) edges which are the components of our new representation. The gains of the edges
going from the node (i, c) to the nodes (i� 1, c) and (i� 1, c� hi) are 0 and pi, respectively. Note
that the gain associated with each edge is upper-bounded by 1. Most crucially, the sum of the profits
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Figure 4: An example with C = 7 and (h1, h2, h3) = (2, 3, 4). The packing of picking the first and
third item is highlighted.

of the picked items in the packing is linear in the gains of the edges and the unit-flow polytope has
O(nC) facets.

Regret Bounds We turn the problem into shortest-path problem by defining a loss for each edge
e 2 E as `e = 1� ge in which ge is the gain of e. Call this new DAG ¯G. Let LḠ(⇡) be the loss of
path ⇡ in ¯G and GG(⇡) be the gain of path ⇡ in G. Since all paths contain exactly n edges, the loss
and gain are related as follows: LḠ(⇡) = n�GG(⇡).

According to our initial assumption logN = O(n). Also note that loss of each path in each trial is
bounded by B = n. Thus using Theorem 3 we obtain:

G⇤ � E[GEH] = (nT � L⇤
)� (nT � E[LEH]) = E[LEH]� L⇤

= O(n
3
2

p
T ).

Notice that the number of vertices is |V | = nC and each path consists of D = n edges. Therefore
using Theorem 4 we obtain:

G⇤ � E[GCH] = (nT � L⇤
)� (nT � E[LCH]) = E[LCH]� L⇤

= O(n (log nC)

1
2

p
T ).

A.3 Rod Cutting

Consider the online version of rod cutting problem [10]: A rod of length n 2 N is given. In each
trial, the algorithm predicts with a cutting, that is, it cuts up the rod into smaller pieces of integer
length. Then the adversary reveals a profit pi 2 [0, 1] for each piece of length i 2 {1..n} that can be
possibly generated out of a cutting. The gain of the algorithm is defined as the sum of the profits of
all the pieces generated by the predicted cutting in that trial. The goal is to predict with a sequence of
cuttings minimizing regret which is the difference between the total gain of the algorithm and the
total gain of the single best cutting chosen in hindsight. See Figure 5 as an example.

The Dynamic Programming Representation Finding the optimal cutting can be solved via dy-
namic programming [10]. Each subproblem is simply denoted by i for 0  i  n, indicating the rod
cutting problem given a rod of length i. The base subproblem is i = 0, and the final subproblem is
i = n. The dynamic programming for the rod cutting problem uses the following recurrence:

OPT(i) =
⇢
0 i = 0

max0ji{OPT (j) + pi�j} i > 0.

This recurrence always recurses on 1 subproblem. Therefore we have k = 1 and the problem is
essentially the online longest-path problem from the source to the sink. The associated DAG has the
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Figure 6: An example of rod cutting problem with n = 4. The cutting with two smaller pieces of size
2 is highlighted.

subproblems/vertices V = {0, 1, . . . , n}, source s = n and sink T = {0}. Also at node i, the set Mi

consists of i edges going from the node i to the nodes 0, 1, . . . , i� 1. Figure 6 illustrates the DAG
and paths associated with the cuttings.

Since the above recurrence relation correctly solves the offline optimization problem, every path in
the DAG represents a cutting, and every possible cutting can be represented by a path of the DAG.

We have O(n2
) edges which are the components of our new representation. The gains of the edges

going from the node i to the node j (where j < i) is pi�j . Note that the gain associated with each
edge is upper-bounded by 1. Most crucially, the sum of the profits of all the pieces generated by the
cutting is linear in the gains of the edges and the unit-flow polytope has O(n) facets.

Regret Bounds Similar to the knapsack problem, we turn this problem into a shortest-path problem:
We first modify the graph so that all paths have equal length of n (which is the length of the longest
path) and the gain of each path remains fixed. We apply a method introduced in György et. al. [18],
which adds O(n2

) vertices and edges (with gain zero) to make all paths have the same length. Then
we define a loss for each edge e as `e = 1� ge in which ge is the gain of e. Call this new DAG ¯G.
Similar to the knapsack problem, we have LḠ(⇡) = n�GG(⇡) for all paths ⇡.

Note that in both G and ¯G, there are N = 2

n�1 paths. Also note that loss of each path in each trial is
bounded by B = n. Thus using Theorem 3 we obtain5

G⇤ � E[GEH] = (nT � L⇤
)� (nT � E[LEH]) = E[LEH]� L⇤

= O(n
3
2

p
T ).

5We are over-counting the number of cuttings. The number of possible cutting is called partition function
which is approximately e⇡

p
2n/3/4n

p
3 [10]. Thus if we run the Hedge algorithm inefficiently with one weight

per cutting, we will get better regret bound by a factor of 4
p
n.

15



Interval Index

1

6

5

4

3

2

Figure 7: An example of weighted interval scheduling with n = 6

Notice that the number of vertices in ¯G is O(n2
) and each path consists of D = n edges. Therefore

using Theorem 4 we obtain:

G⇤ � E[GCH] = (nT � L⇤
)� (nT � E[LCH]) = E[LCH]� L⇤

= O(n (log n)
1
2

p
T ).

A.4 Weighted Interval Scheduling

Consider the online version of weighted interval scheduling problem [23]: We are given a set of n
intervals I1, . . . , In on the real line. In each trial, the algorithm predicts with a scheduling which is
a subset of non-overlapping intervals. Then, for each interval Ij , the adversary reveals pj 2 [0, 1]
which is the profit of including Ij in the scheduling. The gain of the algorithm is defined as the total
profit over chosen intervals in the scheduling in that trial. The goal is to predict with a sequence of
schedulings minimizing regret which is the difference between the total gain of the algorithm and
the total gain of the single best scheduling chosen in hindsight. See Figure 7 as an example. Note
that this problem is only interesting when there are exponential in n many combinatorial objects
(schedulings).

The Dynamic Programming Representation Finding the optimal scheduling can be solved via
dynamic programming [23]. Each subproblem is simply denoted by i for 0  i  n, indicating the
weighted scheduling problem for the intervals I1, . . . , Ii. The base subproblem is i = 0, and the final
subproblem is i = n. The dynamic programming for the rod cutting problem uses the following
recurrence:

OPT(i) =
⇢
0 i = 0

max{OPT(i� 1),OPT(pred(i)) + pi} i > 0.

where

pred(i) :=
⇢
0 i = 1

max{j<i, Ii\Ij=;} j i > 1.

This recurrence always recurses on 1 subproblem. Therefore we have k = 1 and the problem is
essentially the online longest-path problem from the source to the sink. The associated DAG has the
subproblems/vertices V = {0, 1, . . . , n}, source s = n and sink T = {0}. Also at node i, the set Mi

consists of 2 edges going from the node i to the nodes i� 1 and pred(i). Figure 8 illustrates the DAG
and paths associated with the scheduling for the example given in Figure 7.

Since the above recurrence relation correctly solves the offline optimization problem, every path in
the DAG represents a scheduling, and every possible scheduling can be represented by a path of the
DAG.
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Figure 8: The underlying DAG associated with the example illustrated in Figure 7. The scheduling
with I1, I3, and I5 is highlighted.

We have O(n) edges which are the components of our new representation. The gains of the edges
going from the node i to the nodes i� 1 and pred(i) are 0 and pi, respectively. Note that the gain
associated with each edge is upper-bounded by 1. Most crucially, the total profit over chosen intervals
in the scheduling is linear in the gains of the edges and the unit-flow polytope has O(n) facets.

Regret Bounds Similar to rod cutting, this is also the online longest-path problem with one sink
node. Like the rod cutting problem, we modify the graph by adding O(n2

) vertices and edges (with
gain zero) to make all paths have the same length and change the gains into losses. Call this new
DAG ¯G. Again we have LḠ(⇡) = n�GG(⇡) for all paths ⇡.

According to our initial assumption logN = O(n). Also note that loss of each path in each trial is
bounded by B = n. Thus using Theorem 3 we obtain:

G⇤ � E[GEH] = (nT � L⇤
)� (nT � E[LEH]) = E[LEH]� L⇤

= O(n
3
2

p
T ).

Notice that the number of vertices in ¯G is O(n2
) and each path consists of D = n edges. Therefore

using Theorem 4 we obtain:

G⇤ � E[GCH] = (nT � L⇤
)� (nT � E[LCH]) = E[LCH]� L⇤

= O(n (log n)
1
2

p
T ).

B Generalized Weight Pushing

Lemma 5. The weights wnew
m generated by the generalized weight pushing satisfies the EH distribution

properties in Definition 3 and W new
(⇡) = 1

Z

Q
m2M ( bwm)

⇡m . Moreover, the weights wnew
m can be

computed in O(|E|) time.

Proof For all v 2 V , Zv is defined as the normalization if v was the source in G. Let Pv be the set
of all k-multipaths sourced from v and sinking at T . Then:

Zv =

X

⇡2Pv

W (⇡) exp(�⌘⇡ · `).

For a sink node v 2 T , the normalization constant is vacuously 1 since no normalization is needed.
For any non-sink v 2 V � T , we “peel off” the first multiedge leaving v and then recurse:

Zv =

X

⇡2Pv

W (⇡) exp(�⌘⇡ · `)

=

X

m2Mv

X

⇡2Pv
starts with m

W (⇡) exp(�⌘⇡ · `).

Now, we can factor out the weight and exponentiated loss associated with multiedge m 2 Mv.
Assume the k-multiedge m comprised of k edges from the node v to the nodes u1, . . . , uk. Notice,
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excluding m from the k-multipath, we are left with k number of k-multipaths from the ui’s:

Zv =

X

m2Mv

X

⇡2Pv
starts with m

W (⇡) exp(�⌘⇡ · `)

=

X

m2Mv

(wm)

⇡m
exp(�⌘ ⇡m

X

e2m

`e)

| {z }
bwm

X

(⇡1,...,⇡k)2
⇧u1⇥...⇥⇧uk

kY

i=1

W (⇡ui) exp(�⌘⇡ui · `).

Observe that since the ⇡ui ’s are independent for different ui’s, we can turn the sum of products into
product of sums:

Zv =

X

m2Mv

bwm

X

(⇡1,...,⇡k)2
⇧u1⇥...⇥⇧uk

kY

i=1

W (⇡ui) exp(�⌘⇡ui · `)

=

X

m2Mv

bwm

kY

i=1

X

⇡2⇧ui

W (⇡) exp(�⌘⇡u · `)
| {z }

Zui

=

X

m2Mv

bwm

kY

i=1

Zui . (1)

Now for each v 2 V � T , for all m 2 Mv, set wnew
m := bwm

Q
u:(v,u)2m Zu

Zv
. The second property of

Definition 3 is true since:

X

m2Mv

wnew
m =

X

m2Mv

bwm

Q
u:(v,u)2m Zu

Zv

=

1

Zv

X

m2Mv

bwm

Y

u:(v,u)2m

Zu

=

1

Zv
⇥ Zv = 1. Because of Equation (1)

We now prove that the first property of Definition 3 is also true:

Y

m2M

(wnew
m )

⇡m
=

Y

v2V�T

Y

m2Mv

(wnew
m )

⇡m

=

Y

v2V�T

Y

m2Mv

 
bwm

Q
u:(v,u)2m Zu

Zv

!⇡m

=

"
Y

v2V�T

Y

m2Mv

( bwm)

⇡m

# "
Y

v2V�T

Y

m2Mv

 Q
u:(v,u)2m Zu

Zv

!⇡m
#
.

Notice that
Q

v2V�T
Q

m2Mv

⇣Q
u:(v,u)2m Zu

Zv

⌘⇡m

telescopes along the k-multiedges in the k-

multipath. After telescoping, since Zv = 1 for all v 2 T , the only remaining term will be 1
Zs
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where s is the souce node. Therefore we obtain:

Y

m2M

(wnew
m )

⇡m
=

"
Y

v2V�T

Y

m2Mv

( bwm)

⇡m

# "
Y

v2V�T

Y

m2Mv

 Q
u:(v,u)2m Zu

Zv

!⇡m
#

=

"
Y

m2M

( bwm)

⇡m

# 
1

Zs

�

=

1

Zs

Y

m2M

( bwm)

⇡m
= W new

(⇡).

Regarding the time complexity, we first focus on the the recurrence relation Zv =P
m2Mv

bwm
Q

u:(v,u)2m Zu. Note that for each v 2 V , Zv can be computed in linear time in
terms of the number of outgoing edges from v. Thus the computation of all Zv’s takes O(|E|)
time. Now observe that wnew

m for each multiedge m 2 M can be found in O(k) time using
wnew

m = bwm

Q
u:(v,u)2m Zu

Zv
. Hence the computation of wnew

m for all multiedges m 2 M takes O(|E|)
time since |M |⇥ k = |E|. Therefore the generalized weight pushing algorithm runs in O(|E|).

⇤

C Relative Entropy Projection to the k-Flow Polytope

Formally, the projection w of a given point bw 2 R|E|
�0 to constraint C is the solution to the following:

argmin

w2C

X

e2E

we log

✓
we

bwe

◆
+ bwe � we.

C can be one of the three types of constraints mentioned in Definition 4. We use the method of
Lagrange multipliers in all three cases. Observe that if k = 1, then the third constraint is non-existent
and the updates in Koolen et. al. [25] are recovered.

C.1 Constraint Type (i)

The outflow from the source s must be k. Assume we1 , . . . , wed are the weights associated with the
outgoing edges from the root. Then:

L(w,�) :=
X

e2E

we log

✓
we

bwe

◆
+ bwe � we � �

0

@
dX

j=1

wej � k

1

A

@L

@we
= log

we

bwe
= 0 �! we = bwe 8e 2 E � {e1, . . . , ed}

@L

@wej

= log

wej

bwej

� � = 0 �! wej = bwej exp(�) (2)

@L

@�
=

dX

j=1

wej � k = 0. (3)

Combining equations (2) and (3) results in normalizing we1 , . . . , wed , that is:

8j 2 {1..d} wej =

k bwejPd
j0=1 bwej0

.
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C.2 Constraint Type (ii)

For a given multiedge m 2 M , let w(m)
0 , . . . , w

(m)
k�1 be the weights of the k edges in m. Assuming

j� = j � 1(mod k) and j+ = j + 1(mod k), then:

L(w,�) :=
X

e2E

we log

✓
we

bwe

◆
+ bwe � we �

X

m2M

k�1X

j=0

�
(m)
j (w

(m)
j � w

(m)
j� )

@L

@w
(m)
j

= log

w
(m)
j

bw(m)
j

� �
(m)
j + �

(m)
j+ = 0 �! w

(m)
j = bw(m)

j

e�
(m)
j

e
�(m)

j+

8j 2 {0, 1, . . . , k � 1}

(4)
@L

@�
(m)
j

= w
(m)
j � w

(m)
j� = 0 �! w

(m)
j = w

(m)
j� 8j 2 {0, 1, . . . , k � 1}. (5)

Combining equations (4) and (5), for all m 2 M and for all j 2 m, we can obtain:

⇣
w

(m)
j

⌘k
=

k�1Y

j0=0

w
(m)
j0 =

k�1Y

j0=0

bw(m)
j0 �! w

(m)
j =

k

vuut
k�1Y

j0=0

bw(m)
j0 .

which basically indicates that each weight must be assigned to the geometric average of the weights
the edges in its multiedge.

C.3 Constraint Type (iii)

Given any internal node (i.e. non-source and non-sink), the outflow from the node must be k times
of the inflow of that node. Assume w

(in)
1 , . . . , w

(in)
a and w

(out)
1 , . . . , w

(out)
b are the weights associated

with the incoming and outgoing edges from/to the node v, respectively. Then:

L(w,�) :=
X

e2E

w log

✓
we

bwe

◆
+ bwe � we � �

 
bX

b0=1

w
(out)
b0 � k

aX

a0=1

w
(in)
a0

!

@L

@we
= log

we

bwe
= 0 �! we = bwe 8e non-adjacent to v

@L

@w
(out)
b0

= log

w
(out)
b0

bw(out)
b0

� � = 0 �! w
(out)
b0 = bw(out)

b0 exp(�) 8b0 2 {1..b} (6)

@L

@w
(in)
a0

= log

w
(in)
a0

bw(in)
a0

+ k� = 0 �! w
(in)
a0 = bw(in)

a0 exp(�k�) 8a0 2 {1..a} (7)

@L

@�
=

bX

b0=1

w
(out)
b0 � k

aX

a0=1

w
(in)
a0 = 0. (8)

Letting � = exp(�), for all a0 2 {1..a} and all b0 2 {1..b}, we can obtain the following by combining
equations (6), (7) and (8):

�

 
bX

b0=1

bw(out)
b0

!
=

k

�k

 
aX

a0=1

bw(in)
a0

!
�! � =

k+1

vuutk

Pa
a0=1 bw

(in)
a0

Pb
b0=1 bw

(out)
b0

w
(out)
b0 = bw(out)

b0

 
k

Pa
a00=1 bw

(in)
a00

Pb
b00=1 bw

(out)
b00

! 1
k+1

, w
(in)
a0 = bw(in)

a0

 
1

k

Pb
b00=1 bw

(out)
b00Pa

a00=1 bw
(in)
a00

! k
k+1

.

This indicates that to enforce the k-flow property at each node, the weights must be multiplicatively
scaled up/down so that the out and inflow will be proportionate to the k-to-1 weighted geometric
average of the outflow and inflow, respectively. Concretely:

outflow :=

k+1

q
k (outflow)

k
(inflow), inflow :=

1

k
k+1

q
k (outflow)

k
(inflow).
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D CH Regret Bound on k-Multipaths

Proof According to Koolen, Warmuth and Kivinen [25], with proper tuning of the learning rate ⌘,
the regret bound of CH is:

E[LCH]� L⇤ 
q
2L⇤

�(⇡||winit
) +�(⇡||winit

), (9)

where ⇡ 2 N|E| is the best k-multipath and L⇤ its loss. Define bwinit
:=

1
|V |2 1 where 1 2 R|E| is a

vector of all ones. Now let the initial point winit be the relative entropy projection of bwinit onto the
k-flow prolytope6

winit
= arg min

w2P
�(w||bwinit

).

Now we have:
�(⇡||winit

)  �(⇡||bwinit
) Pythagorean Theorem

=

X

e2E

⇡e log
⇡e

bwinit
i

+ bwinit
i � ⇡e

=

X

e2E

⇡e log
1

bwinit
i

+ ⇡e log ⇡e + bwinit
i � ⇡e


X

e2E

⇡e(2 log |V |) +
X

e2E

⇡e log ⇡e +

X

e2E

1

|V |2 �
X

e2E

⇡e (10)

 D(2 log |V |) +D logD + |E| 1

|V |2 �
X

e2E

⇡e

 2D log |V |+D logD.

Thus, by Inequality (9) the regret bound will be:

E[LCH]� L⇤  D
p
2T (2 log |V |+ logD) + 2D log |V |+D logD.

Note that if ⇡ is a bit vector, then
P

e2E ⇡e log ⇡e = 0, and consequently, the expression (10) can be
bounded as follows:

�(⇡||winit
) 

X

e2E

⇡e(2 log |V |) +
X

e2E

⇡e log ⇡e +

X

e2E

1

|V |2 �
X

e2E

⇡e

 D(2 log |V |) + |E| 1

|V |2 �
X

e2E

⇡e

 2D log |V |.

Again, using Inequality (9), the regret bound will be:

E[LCH]� L⇤  D
p
4T log |V |+ 2D log |V |.

⇤

E Additional Loss with Approximate Projection

First, let us define the notation �. Given two vectors a and b of the same dimensionality, we say
a � b iff a is less than b elementwise.

Now let us discuss approximate projection and additional loss. As we are working with inexact
projection, we propose a slightly different prediction algorithm for CH. Suppose, using iterative
Bregman projections, we reached at bw 2 R|E|

�0 which is ✏-close to the exact projection w 2 R|E|
�0 in

1-norm, that is kw � bwk1 < ✏. Then do the following steps for prediction:
6This computation can be done as a pre-processing step.
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1. Set ew :=

bw + ✏ · 1 where 1 2 R|E|
�0 is a vector of all ones.

2. Apply decomposition procedure on ew and obtain a set of paths ⇧ and their associated
coefficients {p⇡ | ⇡ 2 ⇧}. Since ew does not necessarily belong to the k-flow polytope, the
decomposition ⇧ will not zero-out all the edges in ew:

¯w :=

X

⇡2⇧

p⇡ · ⇡ � ew

3. Normalize and sample from decomposition ⇧.

First note that since kw � bwk1 < ✏ we have |we � bwe| < ✏ for all e 2 E. Therefore ew ⌫ w. This
means that in the decomposition procedure, w will be subtracted out from ew. Thus we have ¯w ⌫ w
and

w � ¯w � ew =

bw + ✏ · 1. (11)
Now let z be the normalization constant for ⇧. Hence the expected prediction will be ¯w/z. Note
that since ¯w ⌫ w and w is in the k-flow polytope, then z � 1. Also notice that the weights of
outgoing edges from the source s in ew are at most 2 ✏ greater than the ones in w which belongs to the
k-flow polytope. Thus the outflow at s in ew is at most k + 2 |V | ✏. Therefore, since ¯w � ew, we have
z  1 +

2|V |
k ✏. Now we establish a closeness property between the approximate projected vector

and the expected prediction vector with approximate projection:

k ¯w

z
� bwk1  k ¯w � bwk1 + z � 1

z
k ¯wk1

 k ¯w � bwk1 + 2|V |
k

✏ k ¯wk1.

Recall from Theorem 4 that D is an upper-bound on the 1-norm of the k-multipaths. Using this upper
bound, k ¯wk1 can be bounded:

k ¯wk1  kbw + 1 · ✏k1  kw + 1 · 2 ✏k1  kwk1 + 2|E|✏  D + 2|E|✏.

Therefore:

k ¯w

z
� bwk1  k ¯w � bwk1 + 2|V |

k
✏ k ¯wk1

 ✏ |E|+ 2|V |
k

✏ (D + 2|E|✏) = ✏ (|E|+ 2|V |
k

(D + 2|E|✏)).

Next we establish closeness between the expected prediction vectors in exact and approximate
projections:

k ¯w

z
�wk1  k ¯w

z
� bwk1 + kbw �wk1

 ✏ (|E|+ 2|V |
k

(D + 2|E|✏)) + ✏ = ✏ (1 + |E|+ 2|V |
k

(D + 2|E|✏)).

Now we can compute the total expected loss over the trials t = 1 . . . T using approximate projection:
�����

TX

t=1

¯w(t)

z
· `(t)

����� 
�����

TX

t=1

w(t) · `(t)
�����+

�����

TX

t=1

(

¯w(t)

z
�w(t)

) · `(t)
�����


�����

TX

t=1

w(t) · `(t)
�����+

TX

t=1

����
¯w(t)

z
�w(t)

����
1

·
���`(t)

���
1


�����

TX

t=1

w(t) · `(t)
�����+ T ⇥ ✏ (1 + |E|+ 2|V |

k
(D + 2|E|✏))⇥ 1.

For ✏  1

T (1+|E|+ 2|V |
k (D+2|E|✏))

we have at most one unit of additional loss compared to the expected
cumulative loss based on exact projections.
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