
Supplementary Materials for “Sobolev Training for Neural Networks”

1 Proofs

Theorem 1. Let f be a C1 function on a compact set. Then, for every positive ε there exists a single hidden
layer neural network with a ReLU (or a leaky ReLU) activation which approximates f in Sobolev space S1 up to
ε error.

We start with a definition. We will say that a function p on a set D is piecewise-linear, if there exist D1, . . . , Dn
such that D = D1 ∪ . . . ∪Dn = D and p|Di is linear for every i = 1, . . . , n (note, that we assume finiteness
in the definition).
Lemma 1. Let D be a compact subset of R and let ϕ ∈ C1(D). Then, for every ε > 0 there exists a piecewise-
linear, continuous function p : D → R such that |ϕ(x)− p(x)| < ε for every x ∈ D and |ϕ′(x)− p′(x)| < ε
for every x ∈ D \ P , where P is the set of points of non-differentiability of p.

Proof. By assumption, the function ϕ′ is continuous on D. Every continuous function on a compact set has
to be uniformly continuous. Therefore, there exists δ1 such that for every x1, x2, with |x1 − x2| < δ1 there
holds |ϕ′(x1) − ϕ′(x2)| < ε. Moreover, ϕ′ has to be bounded. Let M denote sup

x
|ϕ′(x)|. By Mean Value

Theorem, if |x1 − x2| < ε
2M

then |ϕ(x1)− ϕ(x2)| < ε
2

. Let δ = min
{
δ1,

ε
2M

}
. Let ξi, i = 0, . . . , N be a

sequence satisfying: ξi < ξj for i < j, |ξi − ξi−1| < δ for i = 1, . . . , N and ξ0 < x < ξN for all x ∈ D.
Such sequence obviously exists, because D is a compact (and thus bounded) subset of R. We define

p(x) = ϕ(ξi−1) +
ϕ(ξi)− ϕ(ξi−1)

ξi − ξi−1
(x− ξi−1) for x ∈ [ξi−1, ξi] ∩D.

It can be easily verified, that it has all the desired properties. Indeed, let x ∈ D. Let i be such that ξi−1 ≤ x ≤ ξi.
Then |ϕ(x)−p(x)| = |ϕ(x)−ϕ(ξi)+p(ξi)−p(x)| ≤ |ϕ(x)−ϕ(ξi)|+ |p(ξi)−p(x)| ≤ ε, as ϕ(ξi) = p(ξi)
and |ξi − x| ≤ |ξi − ξi−1| < δ by definitions. Moreover, applying Mean Value Theorem we get that there exists
ζ ∈ [ξi−1, ξi] such that ϕ′(ζ) =

ϕ(ξi)−ϕ(ξi−1)

ξi−ξi−1
= p′(ζ). Thus, |ϕ′(x)− p′(x)| = |ϕ′(x)− ϕ′(ζ) + p′(ζ)−

p′(x)| ≤ |ϕ′(x)− ϕ(ζ)|+ |p′(ζ)− p′(x)| ≤ ε as p′(ζ) = p′(x) and |ζ − x| < δ.

Lemma 2. Let ϕ ∈ C1(R) have finite limits lim
x→−∞

ϕ(x) = ϕ− and lim
x→∞

ϕ(x) = ϕ+, and let lim
x→−∞

ϕ′(x) =

lim
x→∞

ϕ′(x) = 0. Then, for every ε > 0 there exists a piecewise-linear, continuous function p : R → R such

that |ϕ(x)− p(x)| < ε for every x ∈ R and |ϕ′(x)− p′(x)| < ε for every x ∈ R \ P , where P is the set of
points of non-differentiability of p.

Proof. By definition of a limit there exist numbers K− < K+ such that x < K− ⇒ |ϕ(x) − ϕ−| ≤ ε
2

and
x > K+ ⇒ |ϕ(x)− ϕ+| ≤ ε

2
. We apply Lemma 1 to the function ϕ and the set D = [K,K+]. We define p̃ on

[K−,K+] according to Lemma 1. We define p as

p(x) =

 ϕ− for x ∈ [−∞,K−]
p̃(x) for x ∈ [K−,K+]
ϕ+ for x ∈ [K+,∞]

.

It can be easily verified, that it has all the desired properties.

Corollary 1. For every ε > 0 there exists a combination of ReLU functions which approximates a sigmoid
function with accurracy ε in the Sobolev space.

Proof. It follows immediately from Lemma 2 and the fact, that any piecewise-continuous function on R can be
expressed as a finite sum of ReLU activations.

Remark 1. The authors decided, for the sake of clarity and better readability of the paper, to not treat the
issue of non-differentiabilities of the piecewise-linear function at the junction points. It can be approached in
various ways, either by noticing they form a finite, and thus a zero-Lebesgue measure set and invoking the formal
definition f Sobolev spaces, or by extending the definition of a derivative, but it leads only to non-interesting
technical complications.

Proof of Theorem 1. By Hornik’s result (Hornik [10]) there exists a combination of N sigmoids approximating
the function f in the Sobolev space with ε

2
accuracy. Each of those sigmoids can, in turn, be approximated up

to ε
2N

accuracy by a finite combination of ReLU (or leaky ReLU) functions (Corollary 1), and the theorem
follows.

11

Theorem 2. Let f be a C1(S). Let g be a continuous function satisfying ‖g − ∂f
∂x
‖ > 0. Then, there exists an

ε = ε(f, g) such that for any C1 function h there holds either ‖f − h‖ ≥ ε or
∥∥g − ∂h

∂x

∥∥ ≥ ε.
Proof. Assume that the converse holds. This would imply, that there exists a sequence of functions hn such
that lim

n→∞
∂hn
∂x

= g and lim
n→∞

hn = f . A theorem about term-by-term differentiation implies then that the

limit lim
n→∞

hn is differentiable, and that the equality ∂
∂x

(
lim
n→∞

hn
)

= ∂f
∂x

holds. However, ∂
∂x

(
lim
n→∞

hn
)

=

lim
n→∞

∂hn
∂x

= g, contradicting ‖g − ∂f
∂x
‖ > 0.

Proposition 1. Given any two functions f : S → R and g : S → Rd on S ⊆ Rd and a finite set Σ ⊂ S,
there exists neural network h with a ReLU (or a leaky ReLU) activation such that ∀x ∈ Σ : f(x) = h(x) and
g(x) = ∂h

∂x
(x) (it has 0 training loss).

Proof. We first prove the theorem in a special, 1-dimensional case (when S is a subset of R). Form now it will
be assumed that S is a subset of R and Σ = {σ1 < . . . < σn} is a finite subset of S. Let ε be smaller than
1
5

min(si − si−1), i = 2, . . . , n. We define a function pi as follows

pi(x) =

f(σi)−g(σi)ε

ε
(x− σi + 2ε) for x ∈ [σi − 2ε, σi − ε]

f(σi) + g(σi)(x− σi) for x ∈ [σi − ε, σi + ε]

− f(σi)+g(σi)ε
ε

(x− σi − 2ε) for x ∈ [σi + ε, σi + 2ε]
0 otherwise

.

Note that the functions pi have disjoint supports for i 6= j. We define h(x) =
∑n
i=1 pi(x). By construction, it

has all the desired properties.

Now let us move to the general case, when S is a subset of Rd. We will denote by πk a projection of
a d-dimensional point σ onto the k-th coordinate. The obstacle to repeating the 1-dimensional proof in
a straightforward matter (coordinate-by-coordinate) is that two or more of the points σi can have one or
more coordinates equal. We will use a linear change of coordinates to get past this technical obstacle. Let
A ∈ GL(d,R) be matrix such that there holds πk(Aσi) 6= πk(Aσj) for any i 6= j and any K = 1, . . . , d.
Such A exists, as every condition πk(Aσi) = πk(Aσj) defines a codimension-one submanifold in the space
GL(d,R), thus the complement of the union of all such submanifolds is a full dimension (and thus nonempty)
subset of GL(d,R). Using the one-dimensional construction we define functions pk(x), k = 1, . . . , d,
such that pk(πk(Aσi)) = 1

d
f(σi) and (pk)′(πk(Aσi)) = 0. Similarly, we construct qk(x) in such man-

ner qk(πk(Aσi)) = 0 and (qk)′(πk(Aσi)) = A−1g(σi). Note that those definitions a are valid because
πk(Aσi) 6= πk(Aσj) for i 6= j, so the right sides are well-defined unique numbers.

It remains to put all the elements together. This is done as follows. First we extend pk, qk to the whole space
R “trivially”, i.e. for any x ∈ R, x = (x1, . . . , xd) we define P k(x) := pk(xk). Similarly, Qki (x) := qki (xk).
Finally, h(x) :=

∑d
k=1 P

k(Ax) +
∑d
k=1Q

k(Ax). This function has the desired properties. Indeed for every
σi we have

h(σi) =
d∑
k=1

P k(Aσi) +
d∑
k=1

Qk(Aσi) =
d∑
k=1

pk(πk(Aσi)) +
d∑
k=1

0 = f(σi)

and
∂h

∂x
(σi) =

d∑
k=1

(P k)′(Aσi) +

d∑
k=1

(Qk)′(Aσi) =

d∑
k=1

0 +

d∑
k=1

∂Qk

∂x
(πk(Aσi)) =

A

d∑
k=1

(0, . . . , (qk)′(πk(Aσi))

k

, . . . , 0)T = A ·A−1g(σi) = g(σi).

This completes the proof.

Proposition 3. There holds Ksob(FG) < Kreg(FG) and Ksob(FPL) < Kreg(FPL).

Proof. Gaussian PDF functions form a 2-parameter family 1√
2πσ2

e
− (x−µ)2

2σ2 . Therefore, determining f

in that family is equivalent to determining the values of µ and σ2. Given α = 1√
2πσ2

e
− (x−µ)2

2σ2 , β =

− x−µ
σ2
√

2πσ2
e
− (x−µ)2

2σ2 , we get β
α

= −x−µ
σ2 and 2 ln(

√
2πα) = − ln(σ2) − (x−µ)2

σ2 . Thus 2 ln(
√

2πα) =

12

− ln(σ2)− β2

α2 σ
2. The right hand side is a strictly decreasing function of σ2. Substituting its unique solution to

β
α

= −x−µ
σ2 we determine µ. Thus Ksob is equal to 1 for the family of Gaussian PDF functions.

On the other hand, there holds Kreg > 2 for the family of Gaussian PDF functions. For example, N(2, 1)
and N(2.847..., 1.641...) have the same values at x = 0 and x = 3 (existence of a “real” solution near this
approximate solution is an immediate consequence of the Implicit Function Theorem). This ends the proof for
the FG family

We will discuss the family FPL now. Every linear function is uniquely determined by its value at a single point
and its derivative. Thus, for any function f ∈ FPL, as the partition D = D1 ∪ . . . ∪Dn is fixed, it is sufficient
to know the values and the values of the derivative of f in σ1 ∈ Dn, . . . , σ1 ∈ Dn to determine it uniquely. On
the other hand, we need at least d+ 1 (recall that d is the dimension of the domain of f) in each of the domains
Di to determine f uniquely, if we are allowed to look only at the values.

Proposition 4. If an approximator SG(h, y|θ) produces a valid gradient vector field of some scalar function L
then approximator’s Jacobian matrix has to be symmetric.

Proof. This comes directly from the fact that order of differentiation does not matter, so if we assume that there
exists L such that SG(h, y|θ) = ∂L

∂h
then

∀ij Jac(SG)ij = ∂SG(h,y|θ)i
∂hj

= ∂2L
∂hi∂hj

= ∂2L)
∂hj∂hi

=
∂SG(h,y|θ)j

∂hi
= Jac(SG)ji

2 Artificial Datasets

Dataset 20 training samples 100 training samples

Regular Sobolev Regular Sobolev

Figure 5: Ackley function (on the left) and its models using regular neural network training (left part
of each plot) and Sobolev Training (right part). We also plot the vector field of the gradients of each
predictor underneath the function plot.

Functions used (visualised at Figures 5-11):

• Ackley’s

f(x, y) = −20 exp
(
−0.2

√
0.5(x2 + y2)

)
− exp (0.5(cos(2πx) + cos(2πy))) + e+ 20,

for x, y ∈ [−5, 5]× [−5, 5]

• Beale’s
f(x, y) = (1.5− x+ xy)2 + (2.25− x+ xy2)2 + (2.625− x+ xy3)2,

for x, y ∈ [−4.5, 4.5]× [−4.5, 4.5]

• Booth
f(x, y) = (x+ 2y − 7)2 + (2x+ y − 5)2,

for x, y ∈ [−10, 10]× [−10, 10]

13

Dataset 20 training samples 100 training samples

Regular Sobolev Regular Sobolev

Figure 6: Beale function (on the left) and its models using regular neural network training (left part
of each plot) and Sobolev Training (right part). We also plot the vector field of the gradients of each
predictor underneath the function plot.

Dataset 20 training samples 100 training samples

Regular Sobolev Regular Sobolev

Figure 7: Booth function (on the left) and its models using regular neural network training (left part
of each plot) and Sobolev Training (right part). We also plot the vector field of the gradients of each
predictor underneath the function plot.

• Bukin
f(x, y) = 100

√
|y = 0.01x2|+ 0.01|x+ 10|,

for x, y ∈ [−15,−5]× [−3, 3]

• McCormick
f(x, y) = sin(x+ y) + (x− y)2 − 1.5x+ 2.5y + 1,

for x, y ∈ [−1.5, 4]× [−3, 4]

• Rosenbrock
f(x, y) = 100(y − x2)2 + (x− 1)2,

for x, y ∈ [−2, 2]× [−2, 2]

• Styblinski-Tang
f(x, y) = 0.5(x4 − 16x2 + 5x+ y4 − 16y2 + 5y),

for x, y ∈ [−5, 5]× [−5, 5]

Networks were trained using the Adam optimiser with learning rate 3e − 5. Training set has been sampled
uniformly from the domain provided. Test set consists always of 10,000 points sampled uniformly from the
same domain.

14

Dataset 20 training samples 100 training samples

Regular Sobolev Regular Sobolev

Figure 8: Bukin function (on the left) and its models using regular neural network training (left part
of each plot) and Sobolev Training (right part). We also plot the vector field of the gradients of each
predictor underneath the function plot.

Dataset 20 training samples 100 training samples

Regular Sobolev Regular Sobolev

Figure 9: McCormick function (on the left) and its models using regular neural network training (left
part of each plot) and Sobolev Training (right part). We also plot the vector field of the gradients of
each predictor underneath the function plot.

3 Policy Distillation

Agents policies are feed forward networks consisting of:

• 32 8x8 kernels with stride 4

• ReLU nonlinearity

• 64 4x4 kernels with stride 2

• ReLU nonlinearity

• 64 3x3 kernels with stride 1

• ReLU nonlinearity

• Linear layer with 512 units

• ReLU nonlinearity

• Linear layer with 3 (Pong), 4 (Breakout) or 6 outputs (Space Invaders)

• Softmax

They were trained with A3C [16] over 80e6 steps, using history of length 4, greyscaled input, and action repeat
4. Observations were scaled down to 84x84 pixels.

15

Dataset 20 training samples 100 training samples

Regular Sobolev Regular Sobolev

Figure 10: Rosenbrock function (on the left) and its models using regular neural network training
(left part of each plot) and Sobolev Training (right part). We also plot the vector field of the gradients
of each predictor underneath the function plot.

Dataset 20 training samples 100 training samples

Regular Sobolev Regular Sobolev

Figure 11: Styblinski-Tang function (on the left) and its models using regular neural network training
(left part of each plot) and Sobolev Training (right part). We also plot the vector field of the gradients
of each predictor underneath the function plot.

Data has been gathered by running trained policy to gather 100K frames (thus for 400K actual steps). Split
into train and test sets has been done time-wise, ensuring that test frames come from different episodes than the
training ones.

Distillation network consists of:

• 16 8x8 kernels with stride 4

• ReLU nonlinearity

• 32 4x4 kernels with stride 2

• ReLU nonlinearity

• Linear layer with 256 units

• ReLU nonlinearity

• Linear layer with 3 (Pong), 4 (Breakout) or 6 outputs (Space Invaders)

• Softmax

and was trained using Adam optimiser with learning rate fitted independently per game and per approach between
1e− 3 and 1e− 5. Batch size is 200 frames, randomly selected from the training set.

16

4 Synthetic Gradients

All models were trained using multi-GPU optimisation, with Sync main network updates and Hogwild SG
module updates.

4.1 Meaning of Sobolev losses for synthetic gradients

In the setting considered, the true label y is used only as a conditioning, however one could also provide
supervision for ∂m(h, y|θ)/∂y. So what is the actual effect this Sobolev losses have on SG estimator? For L
being log loss, it is easy to show, that they are additional penalties on matching log p(h, y) to log ph, namely:

‖∂m(h, y|θ)/∂y − ∂L(h, y)/∂y‖2 = ‖ log p(h|θ)− log ph‖2

‖m(h, y|θ)− L(h, y)‖2 = (log p(h|θ)ŷ − log phŷ)2,

where ŷ is the index of “1” in the one-hot encoded label vector y. Consequently loss supervision makes sure
that the internal prediction log p(h|θ) for the true label ŷ is close to the current prediction of the whole model
log ph. On the other hand matching partial derivatives wrt. to label makes sure that predictions for all the classes
are close to each other. Finally if we use both – we get a weighted sum, where penalty for deviating from the
prediction on the true label is more expensive, than on all remaining ones6.

4.2 Cifar10

All Cifar10 experiments use a deep convolutional network of following structure:

• 64 3x3 kernels with stride 1

• BatchNorm and ReLU nonlinearity

• 64 3x3 kernels with stride 1

• BatchNorm and ReLU nonlinearity

• 128 3x3 kernels with stride 2

• BatchNorm and ReLU nonlinearity

• 128 3x3 kernels with stride 1

• BatchNorm and ReLU nonlinearity

• 128 3x3 kernels with stride 1

• BatchNorm and ReLU nonlinearity

• 256 3x3 kernels with stride 2

• BatchNorm and ReLU nonlinearity

• 256 3x3 kernels with stride 1

• BatchNorm and ReLU nonlinearity

• 256 3x3 kernels with stride 1

• BatchNorm and ReLU nonlinearity

• 512 3x3 kernels with stride 2

• BatchNorm and ReLU nonlinearity

• 512 3x3 kernels with stride 1

• BatchNorm and ReLU nonlinearity

• 512 3x3 kernels with stride 1

• BatchNorm and ReLU nonlinearity

• Linear layer with 10 outputs

• Softmax

6Adding ∂L/∂y supervision on toy MNIST experiments increased convergence speed and stability, however
due to TensorFlow currently not supporting differentiating cross entropy wrt. to labels, it was omitted in our
large-scale experiments.

17

with L2 regularisation of 1e− 4. The network is trained in an asynchronous manner, using 10 GPUs in parallel.
Each worker uses batch size of 32. The main optimiser is Stochastic Gradient Descent with momentm of 0.9.
The learning rate is initialised to 0.1 and then dropped by an order of magniture after 40K, 60K and finally after
80K updates.

Each of the three SG modules is a convolutional network consisting of:

• 128 3x3 kernels with stride 1

• ReLU nonlinearity

• Linear layer with 10 outputs

• Softmax

It is trained using the Adam optimiser with learning rate 1e− 4, no learning rate schedule is applied. Updates of
the synthetic gradient module are performed in a Hogwild manner. Losses used for both loss prediction and
gradient estimation are L1.

For direct SG model we used architecture described in the original paper – 3 resolution preserving layers of 128
kernels of 3x3 convolutions with ReLU activations in between. The only difference is that we use L1 penalty
instead of L2 as empirically we found it working better for the tasks considered.

4.3 Imagenet

All ImageNet experiments use ResNet50 network with L2 regularisation of 1e− 4. The network is trained in an
asynchronous manner, using 34 GPUs in parallel. Each worker uses batch size of 32. The main optimiser is
Stochastic Gradient Descent with momentum of 0.9. The learning rate is initialised to 0.1 and then dropped by
an order of magnitude after 100K, 150K and finally after 175K updates.

The SG module is a convolutional network, attached after second ResNet block, consisting of:

• 64 3x3 kernels with stride 1

• ReLU nonlinearity

• 64 3x3 kernels with stride 2

• ReLU nonlinearity

• Global averaging

• 1000 1x1 kernels

• Softmax

It is trained using the Adam optimiser with learning rate 1e− 4, no learning rate schedule is applied. Updates of
the synthetic gradient module are performed in a Hogwild manner. Sobolev losses are set to L1.

Regular data augmentation has been applied during training, taken from the original Inception V1 paper.

5 Gradient-based attention transfer

Zagoruyko et al. [31] recently proposed a following cost for transfering attention model f to model g parametrised
with θ, under the cost L:

Ltransfer(θ) = L(g(x|θ)) + α‖∂L(g(x|θ))/∂x− ∂L(f(x))/∂x‖2 (3)

where the first term simply is the original minimisation problem, and the other measures loss sensitivity of the
target (f) and tries to match the corresponding quantity in the model g. This can be seen as a Sobolev training
under four additional assumptions:

1. ones does not model f , but rather L(f(x)) (similarly to our Synthetic Gradient model – one constructs
loss predictor),

2. L(f(x)) = 0 (target model is perfect),

3. loss being estimated is non-negative (L(·) ≥ 0)

4. loss used to measure difference in predictor values (loss estimates) is L1.

18

If we combine these four assumptions we get

Lsobolev(θ) = ‖L(g(x|θ))− L(f(x))‖1 + α‖∂L(g(x|θ))/∂x− ∂L(f(x))/∂x‖2
= ‖L(g(x|θ))‖1 + α‖∂L(g(x|θ))/∂x− ∂L(f(x))/∂x‖2

= L(g(x|θ)) + α‖∂L(g(x|θ))/∂x− ∂L(f(x))/∂x‖2.

Note, however than in general these approaches are not the same, but rather share the idea of matching gradients
of a predictor and a target in order to build a better model.

In other words, Sobolev training exploits derivatives to find a closer fit to the target function, while the transfer loss
proposed adds a sensitivity-matching term to the original minimisation problem instead. Following observation
make this distinction more formal.

Remark 2. Lets assume that a target function L ◦ f belongs to hypotheses spaceH, meaning that there exists
θf such that L(g(·|θf)) = L(f(·)). Then θf is a minimiser of Sobolev loss, but does not have to be a minimiser
of transfer loss defined in Eq. (3).

Proof. By the definition of Sobolev loss it is non-negative, thus it suffices to show that Lsobolev(θf) = 0, but

Lsobolev(θf) = ‖L(g(x|θf))− L(f(x))‖+ α‖∂L(g(x|θf))/∂x− ∂L(f(x))/∂x‖
= ‖L(f(x))− L(f(x))‖+ α‖∂L(f(x))/∂x− ∂L(f(x))/∂x‖ = 0.

By the same argument we get for the transfer loss

Ltransfer(θf) = L(g(x|θf)) + α‖∂L(g(x|θf))/∂x− ∂L(f(x))/∂x‖
= L(g(x|θf)) + α‖∂L(f(x))/∂x− ∂L(f(x))/∂x‖ = L(g(x|θf)).

Consequently, if there exists another θh such that L(g(x|θh)) < L(g(x|θf)) − α‖∂L(g(x|θh))/∂x −
∂L(f(x))/∂x‖, then θf is not a minimiser of the loss considered.

To show that this final constraint does not lead to an empty set, lets consider a class of constant functions
g(x|θ) = θ, and L(p) = ‖p‖2. Lets fix some θf > 0 that identifies f , and we get:

Ltransfer(θf) = L(g(x|θf)) = θ2f > 0

and at the same time for any |θh| < θf (i.e. θh = θf/2) we have:

Ltransfer(θh) = L(g(x|θh)) + α‖∂L(g(x|θh))/∂x− ∂L(g(x|θf))/∂x‖
= θ2h + α(0− 0) = θ2h < θ2f = Ltransfer(θf).

19

