
Supplement: Hierarchical Implicit Models and
Likelihood-Free Variational Inference

Dustin Tran
Columbia University

Rajesh Ranganath
Princeton University

David M. Blei
Columbia University

A Noise versus Latent Variables

Hierarchical implicit models (HIMs) have two sources of randomness for each data point: the latent
variable zn and the noise εn; these sources of randomness get transformed to produce xn. Bayesian
analysis infers posteriors on latent variables. A natural question is whether one should also infer the
posterior of the noise.

The posterior’s shape—and ultimately if it is meaningful—is determined by the dimensionality of
noise and the transformation. For example, consider the generative adversarial network (GAN)
model, which has no local latent variable, xn = g(εn;θ). The conditional p(xn | εn) is a point
mass, fully determined by εn. When g(·;θ) is injective, the posterior p(εn |xn) is also a point
mass,

p(εn |xn) = I[εn = g−1(xn)],

where g−1 is the left inverse of g.This means for injective functions of the randomness (both noise
and latent variables), the “posterior” may be worth analysis as a deterministic hidden representation
[1], but it is not random.

The point mass posterior can be found via nonlinear least squares. Nonlinear least squares yields
the iterative algorithm

ε̂n = ε̂n − ρt∇ε̂nf(ε̂n)
>(f(ε̂n)− xn),

for some step size sequence ρt. Note the updates will get stuck when the gradient of f is zero.
However, the injective property of f allows the iteration to be checked for correctness (simply check
if f(ε̂n) = xn).

B Implicit Model Examples in Edward

We demonstrate implicit models via example implementations in Edward [5].

Fig. 1 implements a 2-layer deep implicit model. It uses tf.layers to define neural networks:
tf.layers.dense(x, 256) applies a fully connected layer with 256 hidden units and input x;
weight and bias parameters are abstracted from the user. The program generates N data points
xn ∈ R10 using two layers of implicit latent variables zn,1, zn,2 ∈ Rd and with an implicit likeli-
hood.

Fig. 2 implements a Bayesian GAN for classification. It manually defines a 2-layer neural network,
where for each data index, it takes features xn ∈ R500 concatenated with noise εn ∈ R as input.
The output is a label yn ∈ {−1, 1}, given by the sign of the last layer. We place a standard normal
prior over all weights and biases. Running this program while feeding the placeholder X ∈ RN×500

generates a vector of labels y ∈ {−1, 1}N .

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

1 import tensorflow as tf
2 from edward.models import Normal
3

4 # random noise is Normal(0, 1)
5 eps2 = Normal(tf.zeros([N, d]), tf.ones([N, d]))
6 eps1 = Normal(tf.zeros([N, d]), tf.ones([N, d]))
7 eps0 = Normal(tf.zeros([N, d]), tf.ones([N, d]))
8

9 # alternate latent layers z with hidden layers h
10 z2 = tf.layers.dense(eps2, 128, activation=tf.nn.relu)
11 h2 = tf.layers.dense(z2, 128, activation=tf.nn.relu)
12 z1 = tf.layers.dense(tf.concat([eps1, h2], 1), 128, activation=tf.nn.relu)
13 h1 = tf.layers.dense(z1, 128, activation=tf.nn.relu)
14 x = tf.layers.dense(tf.concat([eps0, h1], 1), 10, activation=None)

Figure 1: Two-layer deep implicit model for data points xn ∈ R10. The architecture alternates
with stochastic and deterministic layers. To define a stochastic layer, we simply inject noise by
concatenating it into the input of a neural net layer.

1 import tensorflow as tf
2 from edward.models import Normal
3

4 # weights and biases have Normal(0, 1) prior
5 W1 = Normal(tf.zeros([501, 256]), tf.ones([501, 256]))
6 W2 = Normal(tf.zeros([256, 1]), tf.ones([256, 1]))
7 b1 = Normal(tf.zeros(256), tf.ones(256))
8 b2 = Normal(tf.zeros(1), tf.ones(1))
9

10 # set up inputs to neural network
11 X = tf.placeholder(tf.float32, [N, 500])
12 eps = Normal(tf.zeros([N, 1]), tf.ones([N, 1]))
13

14 # y = neural_network([x, eps])
15 input = tf.concat([X, eps], 1)
16 h1 = tf.nn.relu(tf.matmul(input, W1) + b1)
17 h2 = tf.matmul(h1, W2) + b2
18 y = tf.reshape(tf.sign(h2), [-1]) # take sign, then flatten

Figure 2: Bayesian GAN for classification, taking X ∈ RN×500 as input and generating a vector of
labels y ∈ {−1, 1}N . The neural network directly generates the data rather than parameterizing a
probability distribution.

C KL Uniqueness

An integral probability metric measures distance between two distributions p and q,

d(p, q) = sup
f∈F
|Epf − Eqf |.

Integral probability metrics have been used for parameter estimation in generative models [2] and for
variational inference in models with tractable density [4]. In contrast to models with only local latent
variables, to infer the posterior, we need an integral probability metric between it and the variational
approximation. The direct approach fails because sampling from the posterior is intractable.

An indirect approach requires constructing a sufficiently broad class of functions with posterior
expectation zero based on Stein’s method [4]. These constructions require a likelihood function
and its gradient. Working around the likelihood would require a form of nonparametric density
estimation; unlike ratio estimation, we are unaware of a solution that sufficiently scales to high
dimensions.

As another class of divergences, the f divergence is

d(p, q) = Eq

[
f

(
p

q

)]
.

2

Unlike integral probability metrics, f divergences are naturally conducive to ratio estimation, en-
abling implicit p and implicit q. However, the challenge lies in scalable computation. To subsample
data in hierarchical models, we need f to satisfy up to constants f(ab) = f(a) + f(b), so that the
expectation becomes a sum over individual data points. For continuous functions, this is a defining
property of the log function. This implies the KL-divergence from q to p is the only f divergence
where the subsampling technique in our desiderata is possible.

D Hinge Loss

Let r(xi, zi,β; θ) output a real value, as with the log loss in Section 4. The hinge loss is
Dhinge = Ep(xn,zn |β)[max(0, 1− r(xn, zn,β;θ))]+

Eq(xn,zn |β)[max(0, 1 + r(xn, zn,β;θ))].

We minimize this loss function by following unbiased gradients. The gradients are calculated anal-
ogously as for the log loss. The optimal r∗ is the log ratio.

E Comparing Bayesian GANs with MAP to GANs with MLE

In Section 4, we argued that MAP estimation with a Bayesian GAN enables analysis over discrete
data, but GANs—even with a maximum likelihood objective [3]—cannot. This is a surprising result:
assuming a flat prior for MAP, the two are ultimately optimizing the same objective. We compare
the two below.

For GANs, assume the discriminator outputs a logit probability, so that it’s unconstrained instead of
on [0, 1]. GANs with MLE use the discriminative problem

max
θ

Eq(x)[log σ(D(x;θ))] + Ep(x;w)[log(1− σ(D(x;θ)))].

They use the generative problem
min
w

Ep(x;w)[− exp(D(x))].

Solving the generative problem with reparameterization gradients requires backpropagating through
data generated from the model, x ∼ p(x;w). This is not possible for discrete x. Further, the
exponentiation also makes this objective numerically unstable and thus unusable in practice.

Contrast this with Bayesian GANs with MLE (MAP and a flat prior). This applies a point mass vari-
ational approximation q(w′) = I[w′ = w]. It maximizes the evidence lower bound (ELBO),

max
w

Eq(w)[log p(w)− log q(w)] +

N∑
n=1

r(xn,w).

The first term is zero for a flat prior p(w) ∝ 1 and point mass approximation; the problem reduces
to

max
w

N∑
n=1

r(xn,w).

Solving this is possible for discrete x: it only requires backpropagating gradients through r(x,w)
with respect to w, all of which is differentiable. Further, the objective does not require a numerically
unstable exponentiation.

Ultimately, the difference lies in the role of the ratio estimators. Recall for Bayesian GANs, we use
the ratio estimation problem

Dlog = Ep(x;w)[− log σ(r(x,w;θ))]+

Eq(x)[− log(1− σ(r(x,w;θ)))].

The optimal ratio estimator is the log-ratio r∗(x,w) = log p(x |w) − log q(x). Optimizing it
with respect to w reduces to optimizing the log-likelihood log p(x |w). The optimal discriminator
for GANs with MLE has the same ratio, D∗(x) = log p(x;w)− log q(x); however, it is a constant
function with respect to w. Hence one cannot immediately substituteD∗(x) as a proxy to optimizing
the likelihood. An alternative is to use importance sampling; the result is the former objective
[3].

3

0 50 100 150 200 250

Training iterations of q(β; λ)

1200

1000

800

600

400

200

0

E
st

im
at

e
of

 lo
g
 q

(x
)

Comparison of true to estimated ratio

0 50 100 150 200 250

Training iterations of r(x, β; θ)

2500

2000

1500

1000

500

0

E
st

im
at

e
of

 lo
g
 q

(x
)

Comparison of true to estimated ratio

0 50 100 150 200 250

Training iterations of r(x, β; θ)

120

100

80

60

40

20

0

E
st

im
at

e
of

 lo
g
 q

(x
)

Comparison of true to estimated ratio

Figure 3: (left) Difference of ratios over steps of q. Low variance on y-axis means more stable.
Interestingly, the ratio estimator is more accurate and stable as q converges to the posterior. (middle)
Difference of ratios over steps of r; q is fixed at random initialization. The ratio estimator doesn’t
improve even after many steps. (right) Difference of ratios over steps of r; q is fixed at the posterior.
The ratio estimator only requires few steps from random initialization to be highly accurate.

F Stability of Ratio Estimator

With implicit models, the difference from standard KL variational inference lies in the ratio estima-
tion problem. Thus we would like to assess the accuracy of the ratio estimator. We can check this
by comparing to the true ratio under a model with tractable likelihood.

We apply Bayesian linear regression. It features a tractable posterior which we leverage in our
analysis. We use 50 simulated data points {yn ∈ R2,xn ∈ R}. The optimal (log) ratio is

r∗(x,β) = log p(x |β)− log q(x).

Note the log-likelihood log p(x |β) minus r∗(x,β) is equal to the empirical distribution∑
n log q(xn), a constant. Therefore if a ratio estimator r is accurate, its difference with log p(x |β)

should be a constant with low variance across values of β.

See Fig. 3. The top graph displays the estimate of log q(x) over updates of the variational approx-
imation q(β); each estimate uses a sample from the current q(β). The ratio estimator r is more
accurate as q exactly converges to the posterior. This matches our intuition: if data generated from
the model is close to the true data, then the ratio is more stable to estimate.

An alternative hypothesis for Fig. 3 is that the ratio estimator has simply accumulated information
during training. This turns out to be untrue; see the bottom graphs. On the left, q is fixed at a
random initialization; the estimate of log q(x) is displayed over updates of r. After many updates, r
still produces unstable estimates. In contrast, the right shows the same procedure with q fixed at the
posterior. r is accurate after few updates.

Several practical insights appear for training. First, it is not helpful to update r multiple times before
updating q (at least in initial iterations). Additionally, if the specified model poorly matches the data,
training will be difficult across all iterations.

The property that ratio estimation is more accurate as the variational approximation improves is
because q(xn) is set to be the empirical distribution. (Note we could subtract any density q(xn)
from the ELBO in Equation 4.) Likelihood-free variational inference finds q(β) that makes the
observed data likely under p(xn |β), i.e., p(xn |β) gets closer to the empirical distribution at values
sampled from q(β). Letting q(xn) be the empirical distribution means the ratio estimation problem
will be less trivially solvable (thus more accurate) as q(β) improves.

Note also this motivates why we do not subsume inference of p(β |x) in the ratio in order to en-
able implicit global variables and implicit global variational approximations. Namely, estimation
requires comparing samples between the prior and the posterior; they rarely overlap for global vari-
ables.

References
[1] Donahue, J., Krähenbühl, P., and Darrell, T. (2017). Adversarial feature learning. In Interna-

tional Conference on Learning Representations.

[2] Dziugaite, G. K., Roy, D. M., and Ghahramani, Z. (2015). Training generative neural networks
via maximum mean discrepancy optimization. In Uncertainty in Artificial Intelligence.

4

[3] Goodfellow, I. J. (2014). On distinguishability criteria for estimating generative models. In
ICLR Workshop.

[4] Ranganath, R., Tran, D., and Blei, D. M. (2016). Hierarchical variational models. In Interna-
tional Conference on Machine Learning.

[5] Tran, D., Kucukelbir, A., Dieng, A. B., Rudolph, M., Liang, D., and Blei, D. M. (2016). Edward:
A library for probabilistic modeling, inference, and criticism. arXiv preprint arXiv:1610.09787.

5

	Noise versus Latent Variables
	Implicit Model Examples in Edward
	KL Uniqueness
	Hinge Loss
	Comparing Bayesian GANs with MAP to GANs with MLE
	Stability of Ratio Estimator

