
Bayesian Compression for Deep Learning:
Appendix

Christos Louizos
University of Amsterdam
TNO Intelligent Imaging
c.louizos@uva.nl

Karen Ullrich
University of Amsterdam
k.ullrich@uva.nl

Max Welling
University of Amsterdam

CIFAR∗

m.welling@uva.nl

A. Detailed experimental setup

We implemented our methods in Tensorflow [1] and optimized the variational parameters using
Adam [5] with the default hyperparameters. The means of the conditional Gaussian qφ(W|z) were
initialized with the scheme proposed at [4], whereas the log of the standard deviations were initialized
by sampling from N (−9, 1e − 4). The parameters of qφ(z) were initialized such that the overall
mean of z is ≈ 1 and the overall variance is very low (≈ 1e− 8); this ensures that all of the groups
are active during the initial training iterations.

As for the standard deviation constraints; for the LeNet-300-100 architecture we constrained the
standard deviation of the first layer to be ≤ 0.2 whereas for the LeNet-5-Caffe we constrained
the standard deviation of the first layer to be ≤ 0.5. The remaining standard deviations were left
unconstrained. For the VGG network we constrained the standard deviations of the 64 and 128
feature map layers to be ≤ 0.1, the standard deviations of the 256 feature map layers to be ≤ 0.2
and left the rest of the standard deviations unconstrained. We also found beneficial the incorporation
of “warm-up” [8], i.e we annealed the negative KL-divergence from the prior to the approximate
posterior with a linear schedule for the first 100 epochs. We initialized the means of the approximate
posterior by the weights and biases obtained from a VGG network trained with batch normalization
and dropout on CIFAR 10. For our method we disabled batch-normalization during training.

As for preprocessing the data; for MNIST the only preprocessing we did was to rescale the digits to
lie at the [−1, 1] range and for CIFAR 10 we used the preprocessed dataset provided by [9].

Furthermore, do note that by pruning a given filter at a particular convolutional layer we can also
prune the parameters corresponding to that feature map for the next layer. This similarly holds for
fully connected layers; if we drop a given input neuron then the weights corresponding to that node
from the previous layer can also be pruned.

B. Standards for Floating-Point Arithmetic

Floating points values eventually need to be represented in a binary basis in a computer. The most
common standard today is the IEEE 754-2008 convention [7]. It defines x-bit base-2 formats,
officially referred to as binaryx, with x ∈ {16, 32, 64, 128}. The formats are also widely known as
half, single, double and quadruple precision floats, respectively and used in almost all programming
languages as a standard. The format considers 3 kinds of bits: one sign bit, w exponent bits and p
precision bits.

The Sign bit determines the sign of the number to be represented. The exponent E is an w-bit signed
integer, e.g. for single precision w = 8 and thus E ∈ [−127, 128]. In practice, exponents range from
is smaller since the first and the last number are reserved for special numbers. The true significand or
mantissa includes t bits on the right of the binary point. There is an implicit leading bit with value

∗Canadian Institute For Advanced Research.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Figure 1: A symbolic representation of the binaryx format [7].

Table 1: Floating point formats

Bits per Exponent Significand underflow overflow unit
Float width [bit] precision [bit] level level roundoff
64 11 52 2.22× 10−308 1.79×10308 2.22× 10−16

32 8 23 1.17× 10−38 3.40×1038 1.19× 10−7

16 5 10 6.10× 10−05 6.54×104 9.76× 10−4

one. A values is consequently decomposed as follows

mantissa = 1 +

t∑
i=1

bi2
−i (1)

value = (−1)sign bit × 2E ×mantissa. (2)

In table 1, we summarize common and less common floating point formats.

There is however the possibility to design a self defined format. There are 3 important quantities
when choosing the right specification: overflow, underflow and unit round off also known as machine
precision. Each one can be computed knowing the number of exponent and significant bits. in
our work for example we consider a format that uses significantly less exponent bits since network
parameters usually vary between [-10,10]. We set the unit round off equal to the precision and thus
can compute the significant bits necessary to represent a specific weight.

Beyond designing a tailored floating point format for deep learning, recent work also explored the
possibility of deep learning with mixed formats [6, 3]. For example, imagine the activations having
high precision while weights can be low precision.

C. Shrinkage properties of the normal-Jeffreys and horseshoe priors

(a) Empirical CDF (b) Prior on shrinkage coefficient

Figure 2: Comparison of the behavior of the log-uniform / normal-Jeffreys (NJ) prior and the
horseshoe (HS) prior (where s = 1). Both priors behave similarly at zero but the normal-Jeffreys has
an extremely heavy tail (thus making it non-normalizable).

In this section we will provide some insights about the behavior of each of the priors we employ by
following the excellent analysis of [2]; we can perform a change of variables and express the scale
mixture distribution of eq.3 in the main paper in terms of a shrinkage coefficient, λ = 1

1+z2 :

λ ∼ p(λ); w ∼ N
(

0,
1− λ
λ

)
. (3)

2

It is easy to observe that eq. 3 corresponds to a continuous relaxation of the spike-and-slab prior:
when λ = 0 we have that p(w|λ = 0) = U(−∞,∞), i.e. no shrinkage/regularization for w, when
λ = 1 we have that p(w|λ = 1) = δ(w = 0), i.e. w is exactly zero, and when λ = 1

2 we have that
p(w|λ = 1

2) = N (0, 1). Now by examining the implied prior on the shrinkage coefficient λ for both
the log-uniform and the horseshoe priors we can better study their behavior. As it is explained at [2],
the half-Cauchy prior on z corresponds to a beta prior on the shrinkage coefficient, p(λ) = B(1

2 ,
1
2),

whereas the normal-Jeffreys / log-uniform prior on z corresponds to p(λ) = B(ε, ε) with ε ≈ 0.
The densities of both of these distributions can be seen at Figure 2b. As we can observe, the log-
uniform prior posits a distribution that concentrates almost all of its mass at either λ ≈ 0 or λ ≈ 1,
essentially either pruning the parameter or keeping it close to the maximum likelihood estimate due
to p(w|λ ≈ 1) = U(−∞,∞). In contrast the horseshoe prior maintains enough probability mass for
the in-between values of λ and thus can, potentially, offer better regularization and generalization.

D. Negative KL-divergences for log-normal approximating posteriors

Let q(z) = LN (µ, σ2) be a log-normal approximating posterior. Here we will derive the negative
KL-divergences to q(z) from inverse gamma, gamma and half-normal distributions.

Let p(z) be an inverse gamma distribution, i.e. p(z) = IG(α, β). The negative KL-divergence can
be expressed as follows:

−KL(q(z)||p(z)) =

∫
q(z) log p(z)dz −

∫
q(z) log q(z)dz. (4)

The second term is the entropy of the log-normal distribution which has the following form:

Hq = −
∫
q(z) log q(z)dz =

1

2
log σ2 + µ+

1

2
+

1

2
log(2π). (5)

The first term is the negative cross-entropy of the log-normal approximate posterior from the inverse-
Gamma prior:

−CEqp =

∫
q(z)

(
α log β − log Γ(α)− (α+ 1) log z)− β

z

)
dz (6)

= α log β − log Γ(α)− (α+ 1)Eq(z)[log z]− β Eq(z)[z−1]. (7)

Since the natural logarithm of a log-normal distribution LN (µ, σ2) follows a normal distribution
N (µ, σ2) we have that Eq(z)[log z] = µ. Furthermore we have that if x ∼ LN (µ, σ2) then 1

x ∼
LN (−µ, σ2), therefore Eq(z)[z−1] = exp(−µ+ σ2

2). Putting everything together we have that:

−CEqp = α log β − log Γ(α)− (α+ 1)µ− β exp(−µ+
σ2

2
). (8)

Therefore the negative KL-divergence is:

−KL(q(z)||p(z)) = α log β − log Γ(α)− αµ− β exp(−µ+ 0.5σ2)+

+ 0.5(log σ2 + 1 + log(2π)). (9)

Now let p(z) be a Gamma prior, i.e. p(z) = G(α, β). We have that the negative cross-entropy
changes to:

−CEqp =

∫
q(z)

(
− α log β − log Γ(α)− z

β
+ (α− 1) log z

)
dz (10)

= −α log β − log Γ(α)− β−1 Eq(z)[z] + (α− 1)Eq(z)[log z] (11)

= −α log β − log Γ(α)− β−1 exp(µ+
σ2

2
) + (α− 1)µ. (12)

Therefore the negative KL-divergence is:

−KL(q(z)||p(z)) = −α log β − log Γ(α) + αµ− β−1 exp(µ+ 0.5σ2)+

+ 0.5(log σ2 + 1 + log(2π)). (13)

3

Now, by employing the aforementioned we can express the negative KL-divergence from
p(sa, sb, α̃, β̃) to qφ(sa, sb, α̃, β̃) as follows:

−KL(qφ(sa)||p(sa)) = log τ0 − τ−1
0 exp

(
µsa +

1

2
σ2
sa

)
+

1

2

(
µsa + log σ2

sa + 1 + log 2
)

(14)

−KL(qφ(sb)||p(sb)) = − exp
(1

2
σ2
sb
− µsb

)
+

1

2

(
− µsb + log σ2

sb
+ 1 + log 2

)
(15)

−KL(qφ(α̃)||p(α̃)) =

A∑
i

(
− exp

(
µα̃i +

1

2
σ2
α̃i

)
+

1

2

(
µα̃i + log σ2

α̃i
+ 1 + log 2

))
(16)

−KL(qφ(β̃)||p(β̃)) =

A∑
i

(
− exp

(1

2
σ2
β̃i
− µβ̃i

)
+

1

2

(
− µβ̃i

+ log σ2
β̃i

+ 1 + log 2
))
, (17)

with the KL-divergence for the weight distribution qφ(W̃) given by eq.8 in the main paper.

E. Visualizations

(a)

(b)

(c)

Figure 3: Distribution of the thresholds for the Sparse Variational Dropout 3a, Bayesian Compression
with group normal-Jeffreys (BC-GNJ) 3b and group Horseshoe (BC-GHS) 3c priors for the three
layer LeNet-300-100 architecture. It is easily observed that there are usually two well separable
groups with BC-GNJ and BC-GHS, thus making the choice for the threshold easy. Smaller values
indicate signal whereas larger values indicate noise (i.e. useless groups).

4

(a)

(b)

(c)

Figure 4: Distribution of the bit precisions for the Sparse Variational Dropout 4a, Bayesian Com-
pression with group normal-Jeffreys (BC-GNJ) 4b and group Horseshoe (BC-GHS) 4c priors for the
three layer LeNet-300-100 architecture. All of the methods usually require far fewer than 32bits for
the weights.

F. Algorithms for the feedforward pass

Algorithms 1, 2, 3, 4 describe the forward pass using local reparametrizations for fully connected and
convolutional layers with the approximate posteriors for the Bayesian Compression (BC) with group
normal-Jeffreys (BC-GNJ) and group Horseshoe (BC-GHS) priors employed at the experiments. For
the fully connected layers we coupled the scales for each input neuron whereas for the convolutional
we couple the scales for each output feature map. Mw,Σw are the means and variances of each layer,
H is a minibatch of activations of size K. For the first layer we have that H = X where X is the
minibatch of inputs. For the convolutional layers Nf are the number of convolutional filters, ∗ is the
convolution operator and we assume the [batch, height, width, feature maps] convention.

5

Algorithm 1 Fully connected BC-GNJ layer h.
Require: H,Mw,Σw

1: Ê ∼ N (0, 1)

2: Z = µz + σz � Ê

3: Ĥ = H� Z
4: Mh = ĤMw

5: Vh = Ĥ2Σw

6: E ∼ N (0, 1)
7: return Mh +

√
Vh �E

Algorithm 2 Convolutional BC-GNJ layer h.
Require: H,Mw,Σw

1: Mh = H ∗Mw

2: Vh = H2 ∗Σw

3: Ê ∼ N (0, 1)
4: µ̂z = reshape(µz, [K, 1, 1, Nf])
5: σ̂z = reshape(σz, [K, 1, 1, Nf])

6: Z = µ̂z + σ̂z � Ê
7: E ∼ N (0, 1)
8: return Mh � Z +

√
Vh � Z2 �E

Algorithm 3 Fully connected BC-GHS layer h.
Require: H,Mw,Σw

1: ε̂ ∼ N (0, 1)
2: µs = .5µsa + .5µsb
3: σs =

√
.25σ2

sa + .25σ2
sb

4: log s = µs + σs � ε̂
5: µz̃ = .5µα̃ + .5µβ̃ + log s

6: σz̃ =
√
.25σ2

α̃ + .25σ2
β̃

7: Ê ∼ N (0, 1)

8: Z = exp(µz̃ + σz̃ � Ê)
9: Ĥ = H� Z

10: Mh = ĤMw

11: Vh = Ĥ2Σw

12: E ∼ N (0, 1)
13: return Mh +

√
Vh �E

Algorithm 4 Convolutional BC-GHS layer h.
Require: H,Mw,Σw

1: Mh = H ∗Mw

2: Vh = H2 ∗Σw

3: ε̂ ∼ N (0, 1)
4: µs = .5µsa + .5µsb
5: σs =

√
.25σ2

sa + .25σ2
sb

6: log s = reshape(µs + σs � ε̂, [K, 1, 1, 1])
7: µz̃ = reshape(.5µα̃ + .5µβ̃ , [K, 1, 1, Nf])

8: σz̃ = reshape(
√
.25σ2

α̃ + .25σ2
β̃
, [K, 1, 1, Nf])

9: Ê ∼ N (0, 1)

10: Z = exp(µz̃ + log s + σz̃ � Ê)
11: E ∼ N (0, 1)
12: return Mh � Z +

√
Vh � Z2 �E

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,

et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

[2] C. M. Carvalho, N. G. Polson, and J. G. Scott. The horseshoe estimator for sparse signals. Biometrika, 97
(2):465–480, 2010.

[3] P. Gysel. Ristretto: Hardware-oriented approximation of convolutional neural networks. Master’s thesis,
University of California, 2016.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, pages
1026–1034, 2015.

[5] D. Kingma and J. Ba. Adam: A method for stochastic optimization. International Conference on Learning
Representations (ICLR), San Diego, 2015.

[6] D. D. Lin and S. S. Talathi. Overcoming challenges in fixed point training of deep convolutional networks.
Workshop ICML, 2016.

[7] M. Sites. Ieee standard for floating-point arithmetic. 2008.

[8] C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther. Ladder variational autoencoders.
arXiv preprint arXiv:1602.02282, 2016.

[9] S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146, 2016.

6

