
Appendices
[Supplementary material for Hongyuan Mei & Jason Eisner, “The Neural Hawkes Process: A Neu-
rally Self-Modulating Multivariate Point Process,” NIPS 2017.]

A Model Details

In this appendix, we discuss some qualitative properties of our models and give details about how
we handle boundary conditions.

A.1 Discussion of the Transfer Function

As explained in section 3.2, when we allow inhibition and inertia, we need to pass the total activation
through a non-linear transfer function f : R → R+ to obtain a positive intensity function. This
was our equation (3a), namely λk(t) = f(λ̃k(t)).

What non-linear function f should we use? The ReLU function f(x) = max(x, 0) seems at first a
natural choice. However, it returns 0 for negative x; we need to keep our intensities strictly positive
at all times when an event could possibly occur, to avoid infinitely bad log-likelihood at training
time or infinite log-loss at test time.

A better choice would be the “softplus” function f(x) = log(1 + exp(x)), which is strictly positive
and approaches ReLU when x is far from 0. Unfortunately, “far from 0” is defined in units of x, so
this choice would make our model sensitive to the units used to measure time. For example, if we
switch the units of t from seconds to milliseconds, then the base intensity f(µk) must become 1000
times lower, forcing µk to be very negative and thus creating a much stronger inertial effect.

To avoid this problem, we introduce a scale parameter s > 0 and define f(x) = s log(1+exp(x/s)).
The scale parameter s controls the curvature of f(x), which approaches ReLU as s → 0, as shown
in Figure 5. We can regard f(x), x, and s as rates, with units of inverse time, so that f(x)/s and
x/s are unitless quantities related by softplus. We actually learn a separate scale parameter sk for
each event type k, which will adapt to the rate of events of that type.

3 2 1 0 1 2
activation

0.0

0.5

1.0

1.5

2.0

in
te

n
si

ty

soft-plus
ReLU
s=0.1
s=0.5
s=1.5

Figure 5: The softplus function is a soft approximation to a rectified linear unit (ReLU), approaching it as x
moves away from 0. We use it to ensure a strictly positive intensity function. We incorporate a scale parameter
s that controls the curvature.

A.2 Boundary Conditions for the LSTM

We initialize the continuous-time LSTM’s hidden state to h(0) = 0, and then have it read a spe-
cial beginning-of-stream (BOS) event (k0, t0), where k0 is a special event type (i.e., expanding the

12

LSTM’s input dimensionality by one) and t0 is set to be 0. Then equations (5)–(6) define c1 (from
c0

def
= 0), c̄1, δ1, and o1. This is the initial configuration of the system as it waits for the first event to

happen: this initial configuration determines the hidden state h(t) and the intensity functions λk(t)
over t ∈ (0, t1]

We do not generate the BOS event but only condition on it, which is why the log-likelihood formula
(section 2) only sums over i = 1, 2, This design is well-suited to various settings. In some
settings, time 0 is special. For example, if we release children into a carnival and observe the stream
of their actions there, then BOS is the release event and no other events can possibly precede it.
In other settings, data before time 0 are simply missing, e.g., the observation of a patient starts in
midlife; nonetheless, BOS in this case usefully indicates the beginning of the observed sequence. In
both kinds of settings, the initial configuration just after reading BOS characterizes the model’s belief
about the unknown state of the true system just after time 0, as it waits for event 1. Computing the
initial configuration by explicitly transitioning on BOS ensures that the initial hidden state h(0+)

def
=

limt→0+ h(t) falls in the space of hidden states achievable by LSTM transitions. More important,
in future work, we will be able to attach metadata about the sequence as a “mark” to the BOS event
(see footnote 13), and the LSTM can learn how these metadata affect the initial configuration.

To allow finite streams, we could optionally choose to identify one of the observable types in
{1, 2, . . . ,K} as a special end-of-stream (EOS) event after which the stream cannot possibly con-
tinue. If the model generates EOS, all intensities are permanently forced to 0—the LSTM is no
longer consulted, so it is not necessary for the model parameters to explain why no further events
are observed on the interval [0, T]: that is, the second term of equation (1) can be omitted. The
integral in equation (8) should therefore be taken from t = 0 to the time of the EOS event or T ,
whichever is smaller.

A.3 Closure Under Superposition

Decomposable models have the nice property that they are closed under superposition of event
streams. Let E and E ′ be random event streams, on a common time interval [0, T] but over dis-
joint sets of event types. If each stream is distributed according to a Hawkes process, then their
superposition—that is, E ∪ E ′ sorted into temporally increasing order—is also distributed according
to a Hawkes process. It is easy to exhibit parameters for such a process, using a block-diagonal
matrix of αj,k so that the two sets of event types do not influence each other. The closure property
also holds for our decomposable self-modulating process, and for the same simple reason.

This is important since in various real settings, some event types tend not to interact. For example,
the activities of two people Jay and Kay rarely influence each other,8 although they are simultane-
ously monitored and thus form a single observed stream of events. We want our model to handle
such situations naturally, rather than insisting that Kay always reacts to what Jay does.

Thus, as section 3.2.2 noted, we have designed our neurally self-modulating process to preserve this
ability to insulate event k from event j. By setting specific elements of wk to 0, one could ensure
that the intensity function λk(t) depends on only a subset S of the LSTM hidden nodes. Then by
setting specific LSTM parameters, one would make the nodes in S insensitive to events of type j:
events of type j should open these nodes’ forget gates (f = 1) and close their input gates (i = 0)—
as section 3.2.2 suggested—so that their cell memories c(t) and hidden states h(t) do not change at
all but continue decaying toward their previous steady-state values.9 Now events of type j cannot
affect the intensity λk(t).

For example, the hidden states in S are affected in the same way when the LSTM reads
(k, 1), (j, 3), (j, 8), (k, 12) as when it reads (k, 1), (k, 12), even though the intervals ∆t between
successive events are different. In other words, the architecture “knows” that 2 + 5 + 4 = 11. The
simplicity of this solution is a consequence of how our design does not encode the time intervals

8Their surnames might be Box and Cox, after the 19th-century farce about a day worker and a night worker
unknowingly renting the same room. But any pair of strangers would do.

9To be precise, we can achieve this arbitrarily closely, but not exactly, because a standard LSTM gate cannot
be fully opened or closed. The openness is traditionally given by a sigmoid function and so falls in (0, 1), never
achieving 1 or 0 exactly unless we are willing to set parameters to ±∞. In practice this should not be an issue
because relatively small weights can drive the sigmoid function extremely close to 1 and 0—in fact, σ(37) = 1
in 64-bit floating-point arithmetic.

13

numerically, but only reacts to these intervals indirectly, through the interaction between the timing
of events and the spontaneous decay of the hidden states. The memory cells of S decay for a total
duration of 11 between the two k events, even if that interval has been divided into subintervals
2 + 5 + 4.

With this method, we can explicitly construct a superposition process with LSTM state space
Rd+d′—the cross product of the state spaces Rd and Rd′ of the original processes—in which Kay’s
events are not influenced at all by Jay’s.

If we know a priori that particular event types interact only weakly, we can impose an appropriate
prior on the neural Hawkes parameters. And in future work with large K, we plan to investigate the
use of sparsity-inducing regularizers during parameter estimation, to create an inductive bias toward
models that have limited interactions, without specifying which particular interactions are present.

Superposition is a formally natural operation on event streams. It barely arises for ordinary sequence
models, such as language models, since the superposition of two sentences is not well-defined unless
all of the words carry distinct real-valued timestamps. However, there is an analogue from formal
language theory. The “shuffle” of two sentences is defined to be the set of possible interleavings of
their words—i.e., the set of superpositions that could result from assigning increasing timestamps
to the words of each sentence, without duplicates. It is a standard exercise to show that regular lan-
guages are closed under shuffle. This is akin to our remark that neural-Hawkes-distributed random
variables are closed under superposition, and indeed uses a similar cross-product construction on the
finite-state automata. An important difference is that the shuffle construction does not require dis-
joint alphabets in the way that ours requires disjoint sets of event types. This is because finite-state
automata allow nondeterministic state transitions and our processes do not.

A.4 Missing Data Discussion

We discussed the case of missing data in section 1. Supppose the true complete-data distribution
p∗ is itself an unknown neural Hawkes process. As section 1 pointed out, a sufficient statistic for
prediction from the incompletely observed past would be the posterior distribution over the true
hidden neural state t of the unknown process, which was reached by reading the complete past. We
would ideally obtain our predictions by correctly modeling the missing observations and integrating
over them. However, inference would be computationally quite expensive even if p∗ were known,
to say nothing of the case where p∗ is unknown and we must integrate over its parameters as well.

We instead train a neural model that attempts to bypass these problems. The hope is that our model’s
hidden state, after it reads only the observed incomplete past, will be nearly as predictive as the
posterior distribution above.

We can illustrate the goal with reference to the experiment in section 6.3. There, the true complete-
data distribution p∗ happened to be a classical Hawkes process, but we censored some event types.
We then modeled the observed incomplete sequence as if it were a complete sequence. In this
setting, a Hawkes process will in general be unable to fit the data well, which is why the neural
Hawkes process has an advantage in all 31 experiments.

What goes wrong with using the Hawkes model? Suppose that in the true Hawkes model p∗, type 1
is rare but strongly excites type 2 and type 3, which do not excite themselves or each other. Type 1
events are missing in the observed sequence.

What is the correct predictive distribution in this situation (with knowledge of p∗)? Seeing lots of
type 2 events in a row suggests that they were preceded by a (single) missing type 1 event, which
predicts a higher intensity for type 3 in future. The more type 2 events we see, the surer we are
that there was a type 1 event, but we doubt that there were multiple type 1 events, so the predicted
intensity of type 3 is expected to increase sublinearly as P (type = 1) approaches 1.

As neural networks are universal function approximators , a neural Hawkes model may be able to
recognize and fit this sublinear behavior in the incomplete training data. However, if we fit only
a Hawkes model to the incomplete training data, it would have to posit that type 2 excites type 3
directly, so the predicted intensity of type 3 would incorrectly increase linearly with the number of
type 2 events.

14

B Algorithmic Details

In this appendix, we elaborate on the details of algorithms.

B.1 Likelihood Function

For the proposed models, given complete observations of an event stream over the time interval
[0, T], the log-likelihood of the parameters turns out to be given by the simple formula shown in
section 4. We start by giving the full derivation of that formula, repeated here:

` =
∑
i:ti≤T

log λki(ti)−
∫ T

t=0

λ(t)dt︸ ︷︷ ︸
call this Λ

(8)

First, we define N(t) = |{h : th ≤ t}| to be the count of events (of any type) preceding time
t. So given the past history Hi, the number of events in (ti−1, t] is denoted as ∆N(ti−1, t)

def
=

N(t) −N(ti−1). Let Ti > ti−1 be the random variable of the next event time and let Ki+1 be the
random variable of the next event type. The cumulative distribution function and probability density
function of Ti (conditioned onHi) are given by:

F (t) = P (Ti ≤ t) = 1− P (Ti > t) (9a)
= 1− P (∆N(ti−1, t) = 0) (9b)

= 1− exp

(
−
∫ t

ti−1

λ(s)ds

)
(9c)

= 1− exp (Λ(ti−1)− Λ(t)) (9d)
f(t) = exp (Λ(ti−1)− Λ(t))λ(t) (9e)

where Λ(t) =
∫ t

0
λ(s)ds and λ(t) =

∑K
k=1 λk(t).

Moreover, given the past historyHi and the next event time ti, the distribution of ki is given by:

P (Ki = ki | ti) =
λki(ti)

λ(ti)
(10)

Therefore, we can derive the likelihood function as follows:

L =
∏
i:ti≤T

Li =
∏
ti≤T

{f(ti)P (Ki = ki | ti)} (11a)

=
∏
i:ti≤T

{exp (Λ(ti−1)− Λ(ti))λki(ti)} (11b)

and

`
def
= logL (12a)

=
∑
i:ti≤T

log λki(ti)−
∑
i:ti≤T

(Λ(ti)− Λ(ti−1)) (12b)

=
∑
i:ti≤T

log λki(ti)− Λ(T) (12c)

=
∑
i:ti≤T

log λki(ti)−
∫ T

t=0

λ(t)dt (12d)

B.2 Monte Carlo Gradient and Training Speed

We can locally maximize the log-likelihood ` from equation (8) using any stochastic gradient
method. For this, we need to be able to get an unbiased estimate of the gradient ∇` with re-
spect to the model parameters. This is straightforward to obtain by back-propagation. The trick

15

Algorithm 1 Integral Estimation (Monte Carlo)

Input: interval [0, T]; model parameters and
events (k1, t1), . . . for determining λj(t)

Λ← 0;∇Λ← 0
for N samples : . e.g., take N > 0 proportional to T

draw t ∼ Unif(0, T)
for j ← 1 to K :

Λ += λj(t) . via current model parameters
∇Λ += ∇λj(t) . via back-propagation

Λ← TΛ/N ; ∇Λ← T∇Λ/N . weight the samples
return (Λ,∇Λ)

for handling the integral in equation (8) is that the single function evaluation Tλ(t) at a random
t ∼ Unif(0, T) gives an unbiased estimate of the entire integral—that is, its expected value is Λ. Its
gradient via back-propagation is therefore a unbiased estimate of∇Λ (since gradient commutes with
expectation). The Monte Carlo algorithm in Algorithm 1 averages over several samples to reduce
the variance of this noisy estimator.

Each step of Adam training computes the gradient on a training sequence. With P params, this takes
timeO(IP) for Hawkes andO((I+M)P) for neural Hawkes, if I is the number of observed events
and M is the number of samples used to estimate the integral. We take M = O(I) in practice (see
Appendix C.2), so we have runtime O(IP) like Hawkes.

Note that our stochastic gradient is unbiased for any M ; large M merely reduces its variance. The
gradient for the Hawkes process has 0 variance, since it has analytical form and does not require
sampling at all.

B.3 Thinning Algorithm for Sampling Sequences

If we wish to draw sequences from the self-modulating models of 3.2, we can adopt the thinning
algorithm (Lewis and Shedler, 1979; Liniger, 2009) that is commonly used for the multivariate
Hawkes process, as shown in Algorithm 2. We explain the algorithm here and illustrate its concep-
tion in Figure 6.

Suppose we have already sampled the first i− 1 events. The K event types are now in a race to see
who generates the next event. (Typically, the winning type will have relatively high intensity.) In our
model, that next event will join the multivariate event stream as (ki, ti), whereupon it updates the
LSTM state and thus modulates the subsequent intensities that will be used to sample event i+ 1.

How do we conduct the race? For each event type k, let the function λik : (ti−1,∞) → R≥0 map
each time t to the intensity λik(t) that our model will define at time t provided that event i has not yet
happened in the interval (ti−1, t). For each k independently, we draw the time ti,k of the next event
from the non-homogeneous Poisson process over (ti−1,∞) whose intensity function is λik. We then
take ti = mink ti,k and ki = argmink ti,k. That is, we keep just the earliest of the K events. We
cannot keep the rest because they are not correctly distributed according to the new intensities as
updated by the earliest event.

But how do we draw the next event time ti,k from the non-homogeneous Poisson process given
by λik? Recall from 3.1 that a draw from such a point process is actually a whole set of times in
(ti−1,∞): we will take ti,k to be the earliest of these. In theory, this set is drawn by independently
choosing at each time t ∈ (ti−1,∞), with infinitesimal probability proportional to λik(t), whether
an event occurs. One could do this by independently applying rejection sampling at each time
t: choose with larger probability λ∗ whether a “proposed event” occurs at time t, and if it does,
accept the proposed event with probability only λik(t)/λ∗ ≤ 1. This is equivalent to simultanously
drawing a set of proposed times from a homogenous Poisson process with constant rate λ∗, and then
“thinning” that proposed set, as illustrated in Figure 6. This approach helps because it is easy to draw
from the homogenous process: the intervals between successive proposed events are IID Exp(λ∗),
so it is easy to sample the events in sequence. The inner repeat loop in Algorithm 2 lazily carries
out just enough of this infinite homogenous draw from λ∗ to determine the time ti,k of the earliest
accepted event, which is the earliest event in the non-homogeneous draw from λik, as desired.

16

Intensity

Time

Intensity

Time

Intensity

Time

Figure 6: Sampling the next event, using the same visual notation as in Figure 1. The x axis shows a prefix
of the infinite interval (ti−1,∞). In the first graph, gold events are proposed from a homogeneous Poisson
process with intensity λ∗ (gold straight line). In the second graph, the purple curve λi1 randomly accepts some
of these gold events, with probability λi1(t)/λ∗ for the event at time t; here it accepts three of the ones shown
and rejects the others. In the third graph, the surviving type-1 events (purple squares) are interleaved with the
surviving type-2 events (green pentagons). The next event is the earliest one among these surviving candidates.
In practice, these sequences are constructed lazily so that we find only the earliest surviving event of each
type. This is possible because the inter-arrival times between gold proposed events are distributed as Exp(λ∗),
making it straightforward to enumerate any finite prefix of a random infinite gold sequence.

Algorithm 2 Data Simulation (thinning algorithm)

Input: interval [0, T]; model parameters
t0 ← 0; i← 1
while ti−1 < T : . draw event i, as it might fall in [0,T]

for k = 1 to K : . draw “next” event of each type
find upper bound λ∗ ≥ λik(t) for all t ∈ (ti−1,∞)
t← ti−1

repeat
draw ∆ ∼ Exp(λ∗), u ∼ Unif(0, 1)
t += ∆ . time of next proposed event

until uλ∗ ≤ λik(t) . accept proposal with prob λi
k(t)

λ∗

ti,k ← t

ti ← mink ti,k; ki ← argmink ti,k . earliest event wins
i← i+ 1

return (k1, t1), . . . (ki−1, ti−1)

Finally, how do we construct the upper bound λ∗ on λik? Recall that both of our self-modulating
models (equations (3a) and (4a)) define λik = fk(λ̃ik), where fk is monotonically non-decreasing. In
both cases, λ̃ik is a sum of bounded functions on (ti−1,∞) (equations (3b) and (4)). In other words,
we can express λ̃ik(t) as µ + g1(t) + · · · + gn(t). We can therefore replace each g function by its
upper bound to obtain λ∗ = fk(µ + maxt g1(t) + · · · + maxt gn(t)), in which the argument to fk
is a finite constant.

Specifically, in equation (3b), each summand αkh,k exp(−δkh,k(t − ti)) is upper-bounded by
max(αkh,k, 0). In equation (4), each summand wkdhd(t) = wkd · oid · (2σ(2cd(t)) − 1) is upper-
bounded by maxc∈{cid,c̄id} wkd · oid · (2σ(2c) − 1). Note that the coefficients αki,k and wkd may
be either positive or negative.

While Algorithm 2 is classical and intuitive, we also implemented a more efficient variant. Instead
of drawing the next event from each of K different non-homogeneous Poisson processes and keep-
ing the earliest, we can construct a single non-homogenous Poisson process with aggregate intensity
function λi(t) =

∑K
k=1 λ

i
k(t) over (ti−1,∞). An upper bound λ∗ on this aggregate function can

be obtained by summing the upper bounds on the individual λik functions. We then use the thinning
algorithm only to sample the next event time ti from this aggregate process λi. Finally, we “dis-
aggregate” by choosing ki from the distribution p(k | ti) = λik(ti)/λ

i(ti).10 This is equivalent to
Algorithm 2. In terms of Figure 6, this more efficient version enumerates a gold sequence that is the
union of the K gold sequences, and stops with the first accepted gold event. Thus, whereas Figure 6

10In practice, acceptance and disaggregation can be combined into a single step. That is, each succes-
sive event t proposed from the homogeneous Poisson(λ∗) process is either kept as type k, with probability
λik(t)/λ∗, or rejected, with probability 1 − λi(t)/λ∗. If it is accepted, we have found our next event (ki, ti).
If it is rejected, we increment t by ∆ ∼ Exp(λ∗) to get the next proposed event.

17

DATASET K # OF EVENT TOKENS SEQUENCE LENGTH

TRAIN DEV TEST MIN MEAN MAX

SYNTHETIC 5 ≈ 480449 ≈ 60217 ≈ 60139 20 ≈ 60 100
RETWEETS 3 1739547 215521 218465 50 109 264
MEMETRACK 5000 93267 14932 15440 1 3 31
MIMIC-II 75 ≈ 1946 ≈ 228 ≈ 245 2 4 33
STACKOVERFLOW 22 ≈ 343998 ≈ 39247 ≈ 97168 41 72 736
FINANCIAL 2 ≈ 298710 ≈ 33190 ≈ 82900 829 2074 3319

Table 1: Statistics of each dataset. We write “≈ N” to indicate that N is the average value over multiple splits
of one dataset (MIMIC-II, Stack Overflow, Financial Transaction); the variance is small in each such case.

DATASET K D # OF MODEL PARAMETERS

SE-MPP D-SM-MPP N-SM-MPP

SYNTHETIC 5 256 55 60 922117
RETWEETS 3 256 21 24 921091
MEMETRACK 5000 64 50005000 50010000 702856

Table 2: Size of each trained model on each dataset. The number of parameters of neural Hawkes process is
followed by the number of hidden nodes D in its LSTM (chosen automatically on dev data).

had to propose two type-1 events in order to get the first accepted type-1 event (the leftmost purple
event), the more efficient version would not have had to spend time proposing either of those, be-
cause an earlier proposed event (the leftmost green event) had already been accepted and determined
to be of type 2.

C Experimental Details

In this appendix, we elaborate on the details of data generation, processing, and experimental results.

C.1 Dataset Statistics

Table 1 shows statistics about each dataset that we use in this paper.

C.2 Training Details

We used a single-layer LSTM (Graves, 2012) in section 3.2.2, selecting the number of hidden nodes
from a small set {64, 128, 256, 512, 1024} based on the performance on the dev set of each dataset.
We empirically found that the model performance is robust to these hyperparameters.

When estimating integrals with Monte Carlo sampling, N is the number of sampled negative obser-
vations in Algorithm 1, while I is the number of positive observations. In practice, setting N = I
was large enough for stable behavior, and we used this setting during training. For evaluation on dev
and test data, we took N = 10 I for extra accuracy, or N = I when I was very large.

For learning, we used the Adam algorithm with its default settings (Kingma and Ba, 2015). Adam
is a stochastic gradient optimization algorithm that continually adjusts the learning rate in each
dimension based on adaptive estimates of low-order moments. Our training objective was unreg-
ularized log-likelihood.11 We initialized the Hawkes process parameters and sk scale factors to 1,
and all other non-LSTM parameters (section 3.2.2) to small random values from N (0, 0.01). We
performed early stopping based on log-likelihood on the held-out dev set.

11L2 regularization did not appear helpful in pilot experiments, at least for our dataset size and when sharing
a single regularization coefficient among all parameters.

18

1.385

1.380

1.375

1.370

1.365

1.360

1.270

1.265

1.260

1.255

1.250

1.245

1.08

1.06

1.04

1.02

1.00

0.98

0.090

0.095

0.100

0.105

0.110

0.255

0.260

0.265

0.270

0.420

0.425

0.430

0.435

0.440

0.445

0.450

0.455

0.010

0.008

0.006

0.004

0.002

1.468

1.524

1.522

1.520

1.518

1.516

1.50

1.49

1.48

1.47

1.46

1.45

1.44

1.43

Figure 7: Log-likelihood (reported in nats per event) of each model on held-out synthetic data. Rows (top-down)
are log-likelihood on the entire sequence, time interval, and event type. On each row, the figures (from left to
right) are datasets generated by SE-MPP, D-SM-MPP and N-SM-MPP. In each figure, the models (from left to
right) are Oracle, SE-MPP, D-SM-MPP and N-SM-MPP. Larger values are better. Note that log-likelihood for
continuous variables can be positive, since it uses the log of a probability density that may be > 1.

C.3 Model Sizes

The size of each trained model on each dataset is shown in Table 2. Our neural model has many
parameters for expressivity, but it actually has considerably fewer parameters than the other models
in the large-K setting (MemeTrack).

C.4 Pilot Experiments on Simulated Data

Our hope is that the neural Hawkes process is a flexible tool that can be used to fit naturally occurring
data. As mentioned in section 6.1, we first checked that we could successfully fit data generated
from known distributions. That is, when the generating distribution actually fell within our model
family, could our training procedure recover the distribution in practice? When the data came from
a decomposable process, could we nonetheless train our neural process to fit the distribution well?

We used the thinning algorithm (Appendix B.3) to sample event streams from different processes
with randomly generated parameters: (a) a standard Hawkes process (SE-MPP, section 3.1), (b) our
decomposable self-modulating process (D-SM-MPP, section 3.2.1), (c) our neural self-modulating
processes (N-SM-MPP, section 3.2.2). We then tried to fit each dataset with all these models.12

The results are shown in Figure 7. We found that all models were able to fit the (a) and (b) datasets
well with no statistically significant difference among them, but that the (c) models were substan-
tially and significantly better at fitting the (c) datasets. In all cases, the (c) models were able to obtain
a low KL divergence from the true generating model (the difference from the oracle column). This
result suggests that the neural Hawkes process may be a wise choice: it introduces extra expressive
power that is sometimes necessary and does not appear (at least in these experiments) to be harmful
when it is not necessary.

12Details of data generation can be found in Appendix C.4.

19

We used Algorithm 2 to sample event streams from three different processes with randomly gener-
ated parameters: (a) a standard Hawkes process (SE-MPP), (b) our decomposable self-modulating
process (D-SM-MPP), (c) our neural self-modulating processes (N-SM-MPP). We then tried to fit
each dataset with all these models.

For each dataset, we took K = 5 as the number of event types. To generate each event sequence, we
first chose the sequence length I (number of event tokens) uniformly from {20, 21, 22, . . . , 100} and
then used the thinning algorithm to sample the first I events over the interval [0,∞). For subsequent
training or testing, we treated this sequence (appropriately) as the complete set of events observed on
the interval [0, T] where T = tI , the time of the last generated event. For each dataset, we generate
8000, 1000 and 1000 sequences for the training, dev, and test sets respectively.

For SE-MPP, we sampled the parameters as µk ∼ Unif[0.0, 1.0], αj,k ∼ Unif[0.0, 1.0], and δj,k ∼
Unif[10.0, 20.0]. The large decay rates δj,k were needed to prevent the intensities from blowing up
as the sequence accumulated more events. For D-SM-MPP, we sampled the parameters as µk ∼
Unif[−1.0, 1.0], αj,k ∼ Unif[−1.0, 1.0], and δj,k ∼ Unif[10.0, 20.0]. For N-SM-MPP, we sampled
parameters from Unif[−1.0, 1.0].

The results are shown in Figure 7, including log-likelihood (reported in nats per event) on the se-
quences and the breakdown of time interval and event types.

Another interesting question is whether the trained neural Hawkes model accurately predicts the
real-valued intensities, since for the synthetic data we actually know the intensities. This is a more
direct evaluation of whether the model is accurately recovering the dynamics of the underlying
generative process. Here we compared only SE-MPP and N-SM-MPP.

All types behaved similarly, so we report only averages over theK types. For both processes (a) and
(c), the true intensity’s variance was about 30% of the squared mean intensity. Thus, the intensity
changes enough over time that predicting it at particular times is not a trivial challenge. To determine
how well a model predicted the true intensity function, we measured the mean squared error (MSE)
of predicted intensity at a large sample of times in the held-out test seqs, and report the MSE here
as a percentage of the variance of the true intensity. By this construction, a simple baseline of
predicting each event type’s mean intensity at all times would get 100% MSE.

Both the Hawkes and neural-Hawkes models predict the Hawkes intensities (a) accurately, at 1%
MSE. This is similar to the leftmost column of Figure 7, where both models essentially achieved
oracle performance. By contrast, for the complex neural Hawkes intensities (c), the neural Hawkes
model achieves 9% MSE (still quite good) whereas Hawkes does far worse at 70% MSE. This is
similar to the rightmost column of Figure 7, where the neural Hawkes model approached oracle
performance but the Hawkes model did much worse.

C.5 Retweet Dataset Details

The Retweets dataset (section 6.2) includes 166076 retweet sequences, each corresponding to some
original tweet. Each retweet event is labeled with the retweet time relative to the original tweet
creation, so that the time of the original tweet is 0. (The original tweet serves as the beginning-of-
stream (BOS) marker as explained in Appendix A.2.) Each retweet event is also marked with the
number of followers of the retweeter. As usual, we assume that these 166076 streams are drawn
independently from the same process, so that retweets in different streams do not affect one another.

Unfortunately, the dataset does not specify the identity of each retweeter, only his or her popularity.
To distinguish different kinds of events that might have different rates and different influences on
the future, we divide the events into K = 3 types: retweets by “small,” “medium” and “large” users.
Small users have fewer than 120 followers (50% of events), medium users have fewer than 1363
(45% of events), and the rest are large users (5% events). Given the past retweet history, our model
must learn to predict how soon it will be retweeted again and how popular the retweeter is (i.e.,
which of the three categories).

We randomly sampled disjoint train, dev and test sets with 16000, 2000 and 2000 sequences re-
spectively. We truncated sequences to a maximum length of 264, which affected 20% of them. For
computing training and test likelihoods, we treated each sequence as the complete set of events ob-
served on the interval [0, T], where 0 denotes the time of the original tweet (which is not included
in the sequence) and T denotes the time of the last tweet in the (truncated) sequence.

20

Du Model N-SM-MPP

Models

37.2

37.4

37.6

37.8

38.0

38.2

38.4

E
rr

o
rR

a
te

 %

Du Model N-SM-MPP

Models

12

14

16

18

20

22

E
rr

o
rR

a
te

 %

Du Model N-SM-MPP

Models

53.4

53.6

53.8

54.0

54.2

54.4

54.6

54.8

E
rr

o
rR

a
te

 %

Du Model N-SM-MPP

Models

1.0

1.2

1.4

1.6

1.8

2.0

2.2

R
M

S
E

Du Model N-SM-MPP

Models

5.6

5.8

6.0

6.2

6.4

6.6

R
M

S
E

Du Model N-SM-MPP

Models

9.70

9.75

9.80

9.85

R
M

S
E

Figure 8: Prediction results
on Financial Transactions,
MIMIC-II, and Stack Over-
flow datasets (from left to
right). Error bars show stan-
dard deviation over 5 exper-
iments with different train-
dev-test splits. For predic-
tion of the types ki (top row),
our method achieved lower
error in 4/5, 5/5, and 5/5 of
the experiments. For predic-
tion of the times ti (bottom
row), our method achieved
lower error in 5/5, 2/5, and
0/5 of the experiments.

Figure 9 shows the learning curves of all the models, broken down by the log-probabilities of the
event types and the time intervals separately. The scatterplot Figure 10 is a copy of Figure 3, and
Figure 11 breaks down the log-likelihood by event type and time interval.

C.6 MemeTrack Dataset Details

The MemeTrack dataset (section 6.2) contains time-stamped instances of meme use in articles and
posts from 1.5 million different blogs and news sites, spanning 10 months from August 2008 till
May 2009, with several hundred million documents.

As in Retweets, we decline to model the appearance of novel memes. Each novel meme serves as
the BOS event for a stream of mentions on other websites, which we do model. The K event types
correspond to the different websites. Given one meme’s past trajectory across websites, our model
must learn to predict how soon it will be mentioned again and where.

We used the version of the dataset processed by Gomez Rodriguez et al. (2013), which selected the
top 5000 websites in terms of the number of memes they mentioned. We truncated sequences to a
maximum length of 32, which affected only 1% of them. We randomly sampled disjoint train, dev
and test sets with 32000, 5000 and 5000 sequences respectively, treating them as before.

Because our current implementation does not allow for a marked BOS event (see Appendix A.2), we
currently ignore where the novel meme was originally posted, making the unfortunate assumption
that the stream of websites is independent of the originating website. Even worse, we must assume
that the stream of websites is independent of the actual text of the meme. However, as we see, our
novel models have some ability to recover from these forms of missing data.

Figure 12 shows the learning curves of the breakdown of log-likelihood with the same format as Fig-
ure 9. Figures 13 and 14 show the scatterplots in the same format as Figures 10 and 11.

C.7 Prediction Task Details

Finally, we give further details of the prediction experiments from section 6.4. To avoid tuning on
the test data, we split the original training set into a new training set and a held-out dev set. We train
our neural model and that of Du et al. (2016) on the new training set, and choose hyper-parameters
on the held-out dev set. Following Du et al. (2016), we consider three datasets, and use five different
train-dev-test splits of each dataset to generate the experimental results in Figure 8. (None of the
test sets’ examples were used during manual development of our system.)

21

125 250 500 1000 2000 4000 8000 16000
number of training sequences

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

lo
g
-l

ik
e
lih

o
o
d
 p

e
r

e
v
e
n
t

N-SM-MPP
D-SM-MPP
SE-MPP

125 250 500 1000 2000 4000 8000 16000
number of training sequences

40

30

20

10

0

lo
g
-l

ik
e
lih

o
o
d
 p

e
r

e
v
e
n
t

N-SM-MPP
D-SM-MPP
SE-MPP

Figure 9: Learning curves (with 95% error bars) of all these models on the Retweets dataset, broken down by
the log-probabilities of just the event types (left graph) and just the time intervals (right graph).

10 8 6 4 2 0 2
N-SM-MPP

10

8

6

4

2

0

2

S
E
-M

P
P

10 8 6 4 2 0 2
N-SM-MPP

10

8

6

4

2

0

2
D

-S
M

-M
P
P

Figure 10: A larger copy of Figure 3, repeated here for convenience.

2.5 2.0 1.5 1.0 0.5
N-SM-MPP

2.5

2.0

1.5

1.0

0.5

S
E
-M

P
P

10 8 6 4 2 0 2
N-SM-MPP

10

8

6

4

2

0

2

S
E
-M

P
P

Figure 11: Scatterplots of N-SM-MPP vs. SE-MPP on Retweets. Same comparison as the left graph in Fig-
ure 10, but broken down by the log-probabilities of the event types (left graph) and the time intervals (right
graph).

22

1000 2000 4000 8000 16000 32000
number of training sequences

11

10

9

8

7

6

5

lo
g
-l

ik
e
lih

o
o
d
 p

e
r

e
v
e
n
t

N-SM-MPP
D-SM-MPP
SE-MPP

1000 2000 4000 8000 16000 32000
number of training sequences

2000

1500

1000

500

0

500

lo
g
-l

ik
e
lih

o
o
d
 p

e
r

e
v
e
n
t

N-SM-MPP
D-SM-MPP
SE-MPP

Figure 12: Learning curve (with 95% error bars) of all three models on the MemeTrack dataset, broken down
by the log-probabilities of the event types (left graph) and the time intervals (right graph).

400000 300000 200000 100000 0
N-SM-MPP

400000

300000

200000

100000

0

S
E
-M

P
P

400 300 200 100 0
N-SM-MPP

400

300

200

100

0

D
-S

M
-M

P
P

Figure 13: Scatterplot of N-SM-MPP vs. SE-MPP (left graph) and vs. D-SM-MPP (right graph) on MemeTrack.
N-SM-MPP outperforms D-SM-MPP on 93.02% of the test sequences. This is not obvious from the plot,
because almost all of the 5000 points are crowded near the upper right corner. Most of the visible points are
outliers where N-SM-MPP performs unusually badly—and D-SM-MPP typically does even worse.

20 15 10 5
N-SM-MPP

20

15

10

5

S
E
-M

P
P

400000 300000 200000 100000 0
N-SM-MPP

400000

300000

200000

100000

0

S
E
-M

P
P

Figure 14: Scatterplots of N-SM-MPP vs. SE-MPP on MemeTrack. Same comparison as the left graph of
Figure 13, but broken down by the log-probabilities of the event types (left graph) and the time intervals (right
graph).

23

D Ongoing and Future Work

We are currently exploring several extensions to deal with more complex datasets. Based on our
survey of existing datasets, we are particularly interested in handling:

• immediate events (ti−1 = ti), as discussed in footnote 1
• “baskets” of events (several events that are recorded as occuring simultaneously but without

a specified order, e.g., the purchase of an entire shopping cart)
• hard constraints on the event type sequence k1, k2, . . .

• marked events13 and annotated events14

• causation by external events (artificial clock ticks, periodic holidays, weather)
• richer drift functions15

• hybrid of D-SM-MPP and N-SM-MPP, allowing direct influence from past events
• multiple agents each with their own state, who observe one another’s actions (events)

More important, we are interested in modeling causality. The current model might pick up that a
hospital visit elevates the instantaneous probability of death, but this does not imply that a hospital
visit causes death. (In fact, the severity of an earlier illness is usually the cause of both.)

A model that can predict the result of interventions is called a causal model. Our model family can
naturally be used here: any choice of parameters defines a generative story that follows the arrow of
time, which can be interpreted as a causal model in which patterns of earlier events cause later events
to be more likely. Such a causal model predicts how the distribution over futures would change if
we intervened in the stream of events.

In general, one cannot determine the parameters of a causal model based on purely observational
data (Pearl, 2009). Thus, in future, we plan to determine such parameters through randomized
experiments by deploying our model family as an environment model within reinforcement
learning. A reinforcement learning agent tests the effect of random interventions to discover their
effect (exploration) and thus orchestrate more rewarding futures (exploitation).

In our setting, the agent is able to stochastically insert or suppress certain event types and observe the
effect on subsequent events. Then our LSTM-based model will discover the causal effects of such
actions, and the reinforcement learner will discover what actions it can take to affect future reward.
Ultimately this could be a vehicle for personalized medical decision-making. Beyond the medical
domain, a quantified-self smartphone app may intervene by displaying fine-grained advice on eat-
ing, sleeping, exercise, and travel; a charitable agency may intervene by sending a social worker to
provide timely counseling or material support; a social media website may increase positive engage-
ment by intelligently distributing posts; or a marketer may stimulate consumption by sending more
targeted advertisements.

13A “mark” is some structured data attached to an event: for example, the textual content associated with
a tweet, or the medical records associated with a doctor visit. The model should predict the marks from each
event and its underlying hidden state, and they should be fed back into the LSTM as additional input.

14Humans may be asked to classify the events in an event stream or the relationships among its events.
Unlike marks, these annotations are not involved in the process that generates the event stream, and so are not
fed into the LSTM as input. Rather, they are assumed to be generated post hoc by the human from the entire
observed stream—and may depend on the human’s implicit reconstruction of the hidden states. We can use
any available annotations to help reconstruct the hidden states (Zaidan and Eisner, 2008), if we model them as
stochastic functions of the hidden states. In particular, annotations on the training data serve as side information
to improve training of the model. As a simple example, an annotation of the training event (ki, ti) could be
assumed to depend also on the subsequent LSTM state h(t+i)

def
= lim

t→t+i
h(t).

15We expect the exponential drift in equation (7) to be expressive enough in most settings. In principle,
however, one might want to allow periodic fluctuation of the intensity between events, say by using a complex
exponential in (7). Another way to increase expressivity would be to compute drift using the LSTM itself,
by injecting special “clock tick” events into the input stream at regular intervals (compare Xiao et al., 2017b).
Each clock tick event (ki, ti) causes a rich nonlinear update of the LSTM state via equations (5)–(6), except
that it should always set ci+1 = c(ti) for continuity. In this design, the interval between ordinary events is
modeled piecewise—it is divided up into short pieces by the clock ticks, with c(t) on each piece modeled using
our current function family.

24

	Model Details
	Discussion of the Transfer Function
	Boundary Conditions for the LSTM
	Closure Under Superposition
	Missing Data Discussion

	Algorithmic Details
	Likelihood Function
	Monte Carlo Gradient and Training Speed
	Thinning Algorithm for Sampling Sequences

	Experimental Details
	Dataset Statistics
	Training Details
	Model Sizes
	Pilot Experiments on Simulated Data
	Retweet Dataset Details
	MemeTrack Dataset Details
	Prediction Task Details

	Ongoing and Future Work

