
Appendices
A Test Statistic in Equation (4)

The null hypothesis Hij

0,Y,S can be written in the following matrix form: C� = 0 where C is
a |S| ⇥ (2|S|) matrix such that non-zero entries of C are [C]

k,k

= 1, [C]
k,k+|S| = �1, for all

1  k  |S|, and � is a (2|S|)⇥ 1 vector which is equal to

"
�(i)
S

(Y )

�(j)
S

(Y )

#
.

The hypothesis tests in the form of C� = 0 can be performed by F -tests (see Section 3.6 and
Appendix C.7 in [18]). In particular, for the null hypothesis Hij

0,Y,S , the following statistic
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, the above statistic is equal to (4).

B Proof of Lemma 1

In a given environment E
i

, for any set S ✓ N(Y ), using representation (2), we have:
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where SCH := S \ CH(Y ) and the ancestral set AN(X) of a variable X consists of X and all the
ancestors of nodes in X . Therefore
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If the variance of N
Y

is not changed, then for the choice of S = PA(Y ), the second summation
vanishes, and in the first summation, we have: c

k

= b(i)
k

for all X
k

2 AN(Y )\{Y } and b(i)
Y

= 0 due
to regressing Y on its parents. Therefore, the variance of residual remains unvaried. Otherwise, if the
variance of N

Y

changes across two environments, then this change may cancel out only for specific
values of the variances of other exogenous noises, which according to a similar reasoning as the one
in Assumption 1, we assume that this case does not happen.

C Proof of Lemma 2

Suppose X is the parent of Y . Consider environments E
i

, E
j

2 E . It suffices to show that if
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(Y ). Using representation (2), X and Y can be expressed
as follows
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Hence we have
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in the expression for �
Y

(X), the first summation contains the same exogenous noises as the numerator
while the second summation contains terms related to the variance of other orthogonal exogenous
noises. Therefore, by Assumption 1, �(i)
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(X) only if for all k : X
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remains unchanged. In this case, we will also have �(i)
X

(Y ) = �(j)
X

(Y ). Note that �
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(Y ) can always
remain unchanged if the exogenous noise of variables in AN(X) affect Y only through X .
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