
Appendix

A Submodular Continuous Functions on Conic Lattices and the Reduction

Motivated by the objectives that can not be modeled by continuous submodular functions, we
consider the more general submodular continuous functions over lattices induced by conic inequalities.
Furthermore we provide a reduction to the original (DR-)submodular optimization problem.

A.1 Definitions and Properties

Let us look at the proper cone that will be used to define a conic inequality firstly. A cone K ✓ Rn

is a proper cone if it is convex, closed, solid (having nonempty interior) and pointed (contains no
line, i.e., x 2 K,�x 2 K implies x = 0). A proper cone K can be used to define a conic inequality
(a.k.a. generalized inequality [5, Chapter 2.4]): a �K b iff b� a 2 K, which also defines a partial
ordering since the binary relation �K is reflexive, antisymmetric and transitive. Then it is easy to see
that (X ,�K) is a partial ordered set (poset).

If two elements a, b 2 X have a least upper bound (greatest lower bound), it is denoted as the “join”:
a _ b (the “meet”: a ^ b). A lattice is a poset that contains the join and meet of each pair of its
elements [17]. A “lattice cone” [15] is the proper cone that can be used to define a lattice. Note that
not all conic inequalities can be used to define a lattice. For example, the positive semidefine cone
KPSD = {A 2 Rn⇥n|A is symmetric, A ⌫ 0} is a proper cone, but its induced ordering can not be
used to define a lattice. There is a simple counter example to show this in Appendix F.2.

Specifically, we name the lattice that can be defined through a conic inequality as “conic lattice”,
since it is of particular interest for modeling the real-world applications in this paper.
Definition 4 (Conic Lattice). Given a poset (X ,�K) induced by the conic inequality �K, if there
exist joint and meet operations for every pair of elements (a, b) in X ⇥ X , s.t. a _ b and a ^ b are
still in X , then we call (X ,�K) a conic lattice.

In one word, a conic lattice (X ,�K) is a lattice induced by a conic inequality �K. In the following
we introduce a class of conic lattices to model the applications in this work. We further provide a
general characterization about submodularity on this conic lattice.

Orthant conic lattice. Given a sign vector ↵ 2 {±1}n, the orthant cone is defined as K
↵

:=

{x 2 Rn | x
i

↵
i

� 0, 8i 2 [n]}, one can see that K
↵

is a proper cone. For any two points
a, b 2 X , one can further define the join and meet operations: (a _ b)

i

:= ↵
i

max{↵
i

a
i

,↵
i

b
i

},
(a ^ b)

i

:= ↵
i

min{↵
i

a
i

,↵
i

b
i

}, 8i 2 [n]. Then one can show that the poset (X ,�K
↵

) is a conic
lattice.

A function f : X 7! R is submodular on a lattice [37; 16] if for all (x,y) 2 X ⇥ X , it holds that,

f(x) + f(y) � f(x _ y) + f(x ^ y). (12)

One can establish the characterizations of submodularity on the orthant conic lattice (X ,�K
↵

)

similarly as that in [4]:
Proposition 2 (Characterizations of Submodularity on Orthant Conic Lattice (X ,�K

↵

)). If a function
f is is submodular on the lattice (X ,�K

↵

) (called K
↵

-submodular), then we have the following two
equivalent characterizations:
a) 8a, b 2 X s.t. a �K

↵

b, 8i s.t. a
i

= b
i

, 8k 2 R+ s.t. (ke
i

+ a) and (ke
i

+ b) are still in X , it
holds that,

↵
i

[f(ke
i

+ a)� f(a)] � ↵
i

[f(ke
i

+ b)� f(b)]. (weak DR) (13)

b) If f is twice differentiable, then 8x 2 X it holds,

↵
i

↵
j

r2
ij

f(x)  0, 8i, j 2 [n], i 6= j. (14)

Proposition 2 can be proved by directly generalizing the proof of Proposition 1 in [4], proof is omitted
here due to the high similarity. Next, we generalize the definition of DR-submodularity to the conic
lattice (X ,�K

↵

):
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Definition 5 (K
↵

-DR-submodular). A function f : X 7! R is K
↵

-DR-submodular if 8a, b 2 X s.t.
a �K

↵

b, 8i 2 [n], 8k 2 R+ s.t. (ke
i

+ a) and (ke
i

+ b) are still in X , it holds that,

↵
i

[f(ke
i

+ a)� f(a)] � ↵
i

[f(ke
i

+ b)� f(b)]. (15)

In correspondence to the relation between DR-submodularity and submodularity over continuous
domains (Proposition 2 in [4]), one can easily get the similar relation (with highly similar proof) in
bellow:
Proposition 3 (K

↵

-submodular + coordinate-wise concave, K
↵

-DR-submodular). A function f is
K

↵

-DR-submodular iff it is K
↵

-submodular and coordinate-wise concave.

Combining (14) and Proposition 3, one can show that if f is twice differentiable and K
↵

-DR-
submodular, then 8x 2 X it holds that,

↵
i

↵
j

r2
ij

f(x)  0, 8i, j 2 [n]. (16)

Similarly, a function f is K
↵

-DR-supermodular iff �f is K
↵

-DR-submodular.

Remark: We only consider the orthant conic lattice (X ,�K
↵

) here, since it can already model
the applications in this paper. However, it is noteworthy that the framework can be generalized to
arbitrary conic lattices, which may be of interest to model more complicated applications. We left
this as future exploration.

A.2 A Reduction to Optimizing Submodular Functions over Continuous Domains

To be succint, in this section we only discuss the reduction for the K
↵

-DR-submodular maximization
problems. However, it is easy to see that the reduction works for all kinds of K

↵

-submodular
optimization problems, e.g., K

↵

-submodular minimization problem.

Suppose g is a K
↵

-DR-submodular function, and the K
↵

-DR-submodular maximization problem
is max

y2P0 g(y), where P 0
= {y 2 Rn|h

i

(y)  b
i

, 8i 2 [m],y ⌫K
↵

0} is down-closed w.r.t. the
conic inequality �K

↵

. The down-closedness here means if a 2 P 0 and 0 �K
↵

b �K
↵

a, then
b 2 P 0 as well.

Let A := diag(↵), and a function f(x) := g(Ax). One can see that if g is K
↵

-DR-submodular,
then f is DR-submodular: assume wlog.3 that g is twice differentiable, then r2f(x) = A>r2gA,
and r2

ij

f(x) = ↵
i

↵
j

r2
ij

g  0, so f is DR-submodular.

By the affine transformation y := Ax, one can transform the K
↵

-DR-submodular maximiza-
tion problem to be a DR-submodular maximization problem max

x2P g(Ax), where P = {x 2
Rn|h

i

(Ax)  b
i

, 8i 2 [m],Ax ⌫K
↵

0} is down-closed w.r.t. the ordinary component-wise inequal-
ity. To verify the down-closedness of P w.r.t. to the ordinary inequality here, let y1 = Ax1 2 P 0

(so x1 2 P). Suppose there is a point y2 = Ax2 s.t. 0 �K
↵

y2 �K
↵

y1. From the down-closedness
of P 0, we know that y2 2 P 0, thus x2 2 P . Looking at 0 �K

↵

y2 �K
↵

y1, it is equivalent to that
0  x2  x1. Thus we establish the down-closedness of P .

Given the reduction, we can reuse the algorithms for the original DR-submodular maximization
problem (P).

A.3 Proof for the Logistic Loss in Section 2.1

Remember that the logistic loss is:

l(x) =
1

m

X
m

j=1
f
j

(x) =

1

m

X
m

j=1
log(1 + exp(�y

j

x

>
z

j

)) (17)

Claim 3. l(x) in (17) is K
↵

-DR-supermodular.

Proof of Claim 3. To show that l(x) is K
↵

-DR-supermodular, we can check the second-order con-
dition in (16), that is, whether it holds that ↵

p

↵
q

r2
pq

l(x) � 0, 8p, q 2 [n]. One can easily see

3If not one can still use other equivalent characterizations, for instance, the characterization in (12) or in (13)
to formulate this.
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that,

@l(x)

@x
p

=

1

m

X
m

j=1

�y
j

zj
p

exp (y
j

x

>
z

j

) + 1

@2l(x)

@x
p

@x
q

=

1

m

X
m

j=1

exp (y
j

x

>
z

j

)

[exp (y
j

x

>
z

j

) + 1]

2
zj
p

zj
q

.

Since ↵
p

= sign(zj
p

), so ↵
p

↵
q

r2
pq

l(x) � 0, 8p, q 2 [n]. Thus l(x) in (17) is K
↵

-DR-supermodular
according to (16).

B More Applications

We present more applications that fall into submodular or K
↵

-submodular optimization problems.
One class of notable examples are the objectives studied in [10] in the online setting. These objectives
are captured by the DR-submodular property over continuous domains. One can also refer to Section
2.2 in [3] to see more examples.

DR-submodular quadratic functions. Price optimization with continuous prices is a DR-
submodular quadratic optimization problem [22]. Another representative class of DR-submodular
quadratic objectives arises when computing the stability number s(G) of a graph G = (V,E) [30],
s(G)

�1
= min

x2� x

>
(A+ I)x, where A is the adjacency matrix of the graph G, � is the standard

simplex. This is an instance of a convex-constrained DR-submodular maximization problem.

Non-negative PCA (NN-PCA). NN-PCA [40; 29] is widely used as alternative models of PCA for
dimension reduction, since its projection involves only non-negative weights—a required property
in fields like economics, bioinformatics and computer vision. For a given set of m data points
z

j 2 Rn, j 2 [m], NN-PCA aims to solve the following non-convex optimization problem:

min

kxk21,x�0
f(x) := �1

2

x

>
⇣X

m

j=1
z

j

z

j

>⌘
x. (18)

Let A =

P
m

j=1 z
j

z

j

>, one can see that,

A
pp

=

X
m

j=1
(zj

p

)

2 � 0, A
pq

=

X
m

j=1
zj
p

zj
q

= A
qp

.

Let us make the following weak assumption: For one dimension/feature i, all the data points have
the same sign, i.e., sign(zj

i

) is the same for all j 2 [m] (which can be achieved by easily scaling
if not). Now, by choosing the sign vector ↵ 2 {±1}n to be ↵

p

= sign(zj
p

), 8p 2 [n], one can
easily verify that A

pq

↵
p

↵
q

� 0, 8p, q 2 [n]. Notice that r2f in (18) is �A, so it holds that
↵
p

↵
q

r2
pq

f  0, 8p, q 2 [n], thus f(x) is K
↵

-DR-submodular according to (16). Thus we can treat
(18) as a constrained K

↵

-DR-submodular minimization problem.

Submodular spectral functions. As discussed by [3], submodular spectral functions [14] in the
following form are DR-submodular,

f(x) = log det
⇣X

n

i=1
x
i

A
i

⌘
,x 2 Rn

+, (19)

where A
i

are positive definite matrices. One can check the DR-submodularity of f(x) by checking
its second-order-derivatives.

C The Subroutine Algorithm

Algorithm 3 is taken from [27], the only difference lies in the output: we output the solution x

(k0)

with the minimum non-stationarity, which is needed to apply the local-global relation. While [27]
outputs the solution in the last step. Since C

f

(P) is generally hard to evaluate, we used the classical
FRANK-WOLFE step size 2

k+2 in the experiments.
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Algorithm 3: NON-CONVEX FRANK-WOLFE (f,P,K, ✏,x(0)
)[27]

Input: max

x2P f(x), P: convex set, K: number of iterations, ✏: stopping tolerance
1 for k = 0, ...,K do
2 find v

(k) s.t. hv(k),rf(x(k)
)i � max

v2Phv,rf(x(k)
)i; // LMO

3 d

k

 v

(k) � x

(k), g
k

:= hd
k

,rf(x(k)
)i ; // gk: non-stationarity measure

4 if g
k

 ✏ then return x

(k);
5 Option I: �

k

2 argmin

�2[0,1]f(x
(k)

+ �d(k)
), Option II: �

k

 min{ gk

C

, 1} for
C � C

f

(P) ;
6 x

(k+1)  x

(k)
+ �

k

d

(k) ;

Output: x(k0) and g
k

0
= min0kK

g
k

; // modified output solution compared to [27]

D Proofs for Properties

D.1 Proof of Lemma 1

Proof of Lemma 1. Since f is DR-submodular, so it is concave along any direction v 2 ±Rn

+. We
know that x _ y � x � 0 and x ^ y � x  0, so from the strong DR-submodularity in (6),

f(x _ y)� f(x)  hrf(x),x _ y � xi � µ

2

kx _ y � xk2,

f(x ^ y)� f(x)  hrf(x),x ^ y � xi � µ

2

kx ^ y � xk2.

Summing the above two inequalities and notice that x _ y + x ^ y = x+ y, we arrive,

(y � x)

>rf(x) � f(x _ y) + f(x ^ y)� 2f(x) +
µ

2

(kx _ y � xk2 + kx ^ y � xk2)

= f(x _ y) + f(x ^ y)� 2f(x) +
µ

2

ky � xk2,

the last equality holds since kx _ y � xk2 + kx ^ y � xk2 = ky � xk2.

D.2 Proof of Proposition 1

Proof of Proposition 1. Consider the point z⇤
:= x _ x

⇤ � x = (x

⇤ � x) _ 0. One can see that: 1)
0  z

⇤  x

⇤; 2) z⇤ 2 P (down-closedness); 3) z⇤ 2 Q (because of z⇤  ¯

u� x). From Lemma 1,

hx⇤ � x,rf(x)i+ 2f(x) � f(x _ x

⇤
) + f(x ^ x

⇤
) +

µ

2

kx� x

⇤k2, (20)

hz⇤ � z,rf(z)i+ 2f(z) � f(z _ z

⇤
) + f(z ^ z

⇤
) +

µ

2

kz � z

⇤k2. (21)

Let us first of all prove the following key Claim.

Claim 1. It holds that f(x _ x

⇤
) + f(x ^ x

⇤
) + f(z _ z

⇤
) + f(z ^ z

⇤
) � f(x⇤

).

Proof of Claim 1. Firstly, we are going to prove that

f(x _ x

⇤
) + f(z _ z

⇤
) � f(z⇤

) + f((x+ z) _ x

⇤
), (22)

which is equivalent to f(x _ x

⇤
) � f(z⇤

) � f((x + z) _ x

⇤
) � f(z _ z

⇤
). It can be shown that

x _ x

⇤ � z

⇤
= (x+ z) _ x

⇤ � z _ z

⇤. Combining this with the fact that z⇤  z _ z

⇤, and using
the DR property (see (1)) implies (22). Then we establish,

x _ x

⇤ � z

⇤
= (x+ z) _ x

⇤ � z _ z

⇤ . (23)

We will show that both the RHS and LHS of the above equation are equal to x: for the LHS of (23)
we can write x _ x

⇤ � z

⇤
= x _ x

⇤ � (x _ x

⇤ � x) = x. For the RHS of (23) let us consider any
coordinate i 2 [n],

(x
i

+ z
i

) _ x⇤
i

� z
i

_ z⇤
i

= (x
i

+ z
i

) _ x⇤
i

� ((x
i

+ z
i

)� x
i

) _ ((x
i

_ x⇤
i

)� x
i

) = x
i

,
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where the last equality holds easily for the two situations: (x
i

+ z
i

) � x⇤
i

and (x
i

+ z
i

) < x⇤
i

.

Next, we are going to prove that,
f(z⇤

) + f(x ^ x

⇤
) � f(x⇤

) + f(0) (24)
it is equivalent to f(z⇤

) � f(0) � f(x⇤
) � f(x ^ x

⇤
), which can be done similarly by the DR

property: Notice that
x

⇤ � x ^ x

⇤
= x _ x

⇤ � x = z

⇤ � 0 and 0  x ^ x

⇤

thus (24) holds from the DR property. Combining (22) and (24) one can get,
f(x _ x

⇤
) + f(z _ z

⇤
) + f(x ^ x

⇤
) + f(z ^ z

⇤
) � f(x⇤

) + f(0) + f((x+ z) _ x

⇤
) + f(z ^ z

⇤
)

� f(x⇤
) (non-negativity of f ) .

Combining (20) and (21) and Claim 1 it reads,

hx⇤�x,rf(x)i+ hz⇤�z,rf(z)i+ 2(f(x) + f(z)) � f(x⇤
) +

µ

2

(kx�x⇤k2 + kz�z⇤k2) (25)

From the definition of non-stationarity in (8) one can get,

gP(x) := max

v2P
hv � x,rf(x)i

x

⇤2P
� hx⇤ � x,rf(x)i (26)

gQ(z) := max

v2Q
hv � z,rf(z)i

z

⇤2Q
� hz⇤ � z,rf(z)i (27)

Putting together (25) to (27) we can get,

2(f(x) + f(z)) � f(x⇤
)� gP(x)� gQ(z) +

µ

2

(kx� x

⇤k2 + kz � z

⇤k2).

so it arrives max{f(x), f(z)} � 1
4 [f(x

⇤
)� gP(x)� gQ(z)] +

µ

8 (kx� x

⇤k2 + kz � z

⇤k2).

E Proofs for Algorithms

E.1 Proof of Theorem 1

Proof of Theorem 1. Let gP(x), gQ(z) to be the non-stationarity of x and z, respectively. Since we
are using the NON-CONVEX FRANK-WOLFE (Algorithm 3) as subroutine, according to [27, Theorem
1], one can get,

gP(x)  min

⇢
max{2h1, Cf

(P)}p
K1 + 1

, ✏1

�

gQ(z)  min

⇢
max{2h2, Cf

(Q)}p
K2 + 1

, ✏2

�
,

Plugging the above into Proposition 1 we reach the conclusion in (10).

E.2 Proof of Lemma 2

Lemma 2. Assume x

(0)
= 0. For k = 0, ...,K � 1, it holds x(k)

i

 ū
i

[1� (1� �)t
(k)

/�

], 8i 2 [n].

Proof of Lemma 2. We prove by induction. First of all, it holds when k = 0, since x
(0)
i

= 0, and
t(0) = 0 as well. Assume it holds for k. Then for k + 1, we have

x
(k+1)
i

= x
(k)
i

+ �v
(k)
i

 x
(k)
i

+ �(ū
i

� x
(k)
i

) (constraint of shrunken LMO) (28)

= (1� �)x
(k)
i

+ �ū
i

 (1� �)ū
i

[1� (1� �)t
(k)

/�

] + �ū
i

(induction) (29)

= ū
i

[1� (1� �)t
(k+1)

/�

].
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E.3 Proof of Lemma 3

Lemma 3 (Generalized from Lemma 7 in [8]). Given ✓ 2 (0, ¯u], let �0
= min

i2[n]
ūi
✓i

. Then for all
x 2 [0,✓], it holds f(x _ x

⇤
) � (1� 1

�

0 )f(x
⇤
).

Proof of Lemma 3. Consider r(�) = x

⇤
+ �(x _ x

⇤ � x

⇤
), it is easy to see that r(�) � 0, 8� � 0.

Notice that �0 � 1. Let y = r(�0
) = x

⇤
+ �0

(x _ x

⇤ � x

⇤
), it is easy to see that y � 0, it also hold

that y  ū: Consider one coordinate i, 1) if x
i

� x⇤
i

, then y
i

= x⇤
i

+�0
(x

i

�x⇤
i

)  �0x
i

 �0✓
i

 ū
i

;
2) if x

i

< x⇤
i

, then y
i

= x⇤
i

 ū
i

. So f(y) � 0.

Note that
x _ x

⇤
= (1� 1

�0 )x
⇤
+

1

�0y = (1� 1

�0 )r(0) +
1

�0 r(�
0
),

since f is concave along r(�), so it holds that,

f(x _ x

⇤
) � (1� 1

�0 )f(x
⇤
) +

1

�0 f(y) � (1� 1

�0 )f(x
⇤
).

E.4 Proof of Theorem 2

Proof of Theorem 2. First of all, let us prove the Claim:

Claim 2. For k = 0, ...,K�1 it holds f(x(k+1)
) � (1��)f(x(k)

)+�(1��)t(k)
/�f(x⇤

)� LD

2

2 �2,

Proof of Claim 2. Consider a point z(k)
:= x

(k) _ x

⇤ � x

(k), one can observe that: 1) z(k) 
¯

u � x

(k); 2) since x

(k) � 0,x⇤ � 0, so z

(k)  x

⇤, which implies that z(k) 2 P (from down-
closedness of P). So z

(k) is a candidate solution for the new LMO (Step 3). We have,

f(x(k+1)
)� f(x(k)

) � �hrf(x(k)
),v(k)i � L

2

�2kv(k)k2 (Quadratic lower bound from (5))

� �hrf(x(k)
),v(k)i � L

2

�2D2
(diameter of P)

� �hrf(x(k)
), z(k)i � L

2

�2D2
(shrunken LMO)

� �(f(x(k)
+ z

(k)
)� f(x(k)

))� L

2

�2D2
(concave along z

(k)
)

= �[f(x(k) _ x

⇤
)� f(x(k)

)]� L

2

�2D2

� �[(1� 1

�0 )f(x
⇤
)� f(x(k)

)]� L

2

�2D2
(Lemma 3)

= �[(1� �)t
(k)

/�f(x⇤
)� f(x(k)

)]� L

2

�2D2

where the last equality comes from setting ✓ :=

¯

u(1� (1� �)t
(k)

/�

) according to Lemma 2, thus
�0

= min

i

ūi
✓i

= (1� (1� �)t
(k)

/�

)

�1.

After rearrangement, we reach the claim.

Then, let us prove Theorem 2 by induction.

First of all, it holds when k = 0 (notice that t(0) = 0). Assume that it holds for k. Then for k + 1,
considering the fact e�t �O(�)  (1� �)t/� when 0 < �  t  1 and Claim 2 we get,

f(x(k+1)
)

� (1� �)f(x(k)
) + �(1� �)t

(k)
/�f(x⇤

)� LD2

2

�2
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� (1� �)f(x(k)
) + �[e�t

(k)

�O(�)]f(x⇤
)� LD2

2

�2 (30)

� (1� �)[t(k)e�t

(k)

f(x⇤
)� LD2

2

k�2 �O(�2
)f(x⇤

)] + �[e�t

(k)

�O(�)]f(x⇤
)� LD2

2

�2

= [(1� �)t(k)e�t

(k)

+ �e�t

(k)

]f(x⇤
)� LD2

2

�2
[(1� �)k + 1]� [(1� �)O(�2

) + �O(�)]f(x⇤
)

� [(1� �)t(k)e�t

(k)

+ �e�t

(k)

]f(x⇤
)� LD2

2

�2
(k + 1)�O(�2

)f(x⇤
). (31)

Let us consider the term [(1� �)t(k)e�t

(k)

+ �e�t

(k)

]f(x⇤
). We know that the function g(t) = te�t

is concave in [0, 2], so g(t(k) + �)� g(t(k))  �g0(t(k)), which amounts to

[(1� �)t(k)e�t

(k)

+ �e�t

(k)

]f(x⇤
) � (t(k) + �)e�(t(k)+�)f(x⇤

) = t(k+1)e�t

(k+1)

f(x⇤
) (32)

Plugging (32) into (31) we get,

f(x(k+1)
) � t(k+1)e�t

(k+1)

f(x⇤
)� LD2

2

�2
(k + 1)�O(�2

)f(x⇤
).

Thus proving the induction, and proving the theorem as well.

F Miscellaneous Results

F.1 Verifying DR-submodularity of the Objectives

Softmax extension. For softmax extension, the objective is,

f(x) = log det (diag(x)(L� I) + I) ,x 2 [0, 1]n.

Its DR-submodularity can be established by directly applying Lemma 3 in [20]: [20, Lemma 3]
immediately implies that all entries ofr2f are non-positive, so f(x) is DR-submodular.

Multilinear extension. The DR-submodularity of multilinear extension can be directly recognized
by considering the conclusion in Appendix A.2 of [3] and the fact that multilinear extension is
coordinate-wise linear.

KL(x). The Kullback-Leibler divergence between q
x

and p, i.e.,
P

S✓V q
x

(S) log q

x

(S)
p(S) is,

KL(x) = �
X

S✓V

Y

i2S

x
i

Y

j /2S

(1� x
j

)F (S) +
X

n

i=1
[x

i

log x
i

+ (1� x
i

) log(1� x
i

)] + logZ.

The first term is the negative of a multilinear extension, so it is DR-supermodular. The second term
is separable, and coordinate-wise convex, so it will not affect the off-diagonal entries ofr2KL(x),
it will only contribute to the diagonal entries. Now, one can see that all entries of r2KL(x) are
non-negative, so KL(x) is DR-supermodular w.r.t. x.

F.2 A Counter Example to Show PSD Cone is not Lattice

The positive semidefine cone KPSD = {A 2 Rn⇥n|A is symmetric, A ⌫ 0} is a proper cone, but
not a lattice cone. That is, it can not be used to define a lattice over the space of symmetric matrices.

Let us consider the two dimensional symmetric matrix space S2. Specifically, the following two
symmetric matrices,

X =


1 0

0 0

�
,Y =


0 0

0 1

�
.

For the conic inequality �KPSD , assume that there exists a least upper bound, i.e., the join of X,Y:
Z := X _Y. From the definition of least upper bound, 8W 2 S2 it should hold that,

W ⌫KPSD X and W ⌫KPSD Y iff W ⌫KPSD Z. (33)
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Suppose Z =


b a
a c

�
. Firstly, consider W to be diagonal matrices, one can verify that Z must be in

the form of

1 a
a 1

�
, then considering W = I forcing Z to be I.

Now let W =

2
3


2 1

1 2

�
, which is ⌫KPSD X and ⌫KPSD Y. However, W � I = 1

3


1 2

2 1

�
/2 KPSD,

thus contradicting (33).

G Additional Experimental Results

We generate the down-closed polytope constraints in the same form and same way as that for
DR-submodular quadratic functions.

Figure 5 shows the function values returned by different solvers w.r.t. n, for which the random
polytope constraints were generated with exponential distribution. Specifically, the random polytope
is in the form of P = {x 2 Rn

+ | Ax  b,x  ¯

u,A 2 Rm⇥n

++ , b 2 Rm

+}. Each entry of A was
sampled from Exp(1) + ⌫, where ⌫ = 0.01 is a small positive constant. We set b = 2 ⇤ 1m, and
set ¯

u to be the tightest upper bound of P by ū
j

= min

i2[m]
bi
Aij

, 8j 2 [n]. One can see that the
TWO-PHASE FRANK-WOLFE has the best performance, while non-monotone FRANK-WOLFE and
PROJGRAD have comparable performance.
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Figure 5: Results on softmax instances with random polytope constraints generated from exponential
distribution.
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