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A Background on Learning Models and Generalization Bounds

A.1 Model and Generalization Bounds

We will work in the general non-realizable model of statistical learning theory also known as the
agnostic model of learning. In this model, the labels presented to the learner are arbitrary, and the
goal is to output a hypothesis that is competitive with the best fitting function from some fixed class:

Definition A (Agnostic Learning [5, 3]). A concept class C ⊆ YX is agnostically learnable with
respect to loss function l : Y ′ × Y → R+ (where Y ⊆ Y ′) and distribution D over X × Y , if for
every δ, ε > 0 there exists a learning algorithmA given access to examples drawn from D,A outputs
a hypothesis h : X → Y ′, such that with probability at least 1− δ,

E(x,y)∼D[l(h(x), y)] ≤ min
c∈C

E(x,y)∼D[l(c(x), y)] + ε. (1)

Furthermore, we say that C is efficiently agnostically learnable to error ε if A can output an h
satisfying Equation (1) with running time polynomial in n, 1/ε and 1/δ.

The agnostic model generalizes Valiant’s PAC model of learning [6], and so all of our results will
hold for PAC learning as well. The following is a well known theorem for proving generalization
based on Rademacher complexity.

Theorem A ([1]). LetD be a distribution over X ×Y and let l : Y ′×Y be a b-bounded loss function
that is L-Lispschitz in its first argument. Let F be a class of functions from X to Y ′ and for any
f ∈ F , and S = ((x1, y1), . . . , (xm, ym)) ∼ Dm and δ > 0, with probability at least 1− δ we have,∣∣∣∣∣E(x,y)∼D[l(f(x), y)]− 1

m

m∑
i=1

l(f(xi), yi)

∣∣∣∣∣ ≤ 4 · L · Rm(F) + 2 · b ·
√

log(1/δ)

2m

whereRm(F) is the Rademacher complexity of the function class F .

The Rademacher complexity of this linear class can be bounded by using the following theorem.

Theorem B ([4]). LetK be a subset of a Hilbert space equipped with inner product 〈·, ·〉 such that for
each x ∈ K, 〈x, x〉 ≤ X2, and letW = {x→ 〈x,w〉 | 〈w,w〉 ≤W 2} be a class of linear functions.
Then it holds that

Rm(W) ≤ X ·W ·
√

1

m
.

∗Work supported by a Microsoft Data Science Initiative Award.
†Part of this work was done while visiting the Simons Institute for Theoretical Computer Science.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



B Proof of Theorem 8

We bound the error for each of the approximations: sparsification, preconditioning and lagrangian
relaxation in the following lemma.
Lemma A. The errors due to the following approximations can be bounded as follows.

1. Error due to sparsification: ||K̄γᾱγ − Y ||2 ≤ ||Kγαγ − Y ||2 + η
√
m

λ+γ

2. Error due to preconditioning: ||Kγαγ − Y ||2 ≤ ||Kα− Y ||2 + γ
√
m

λ+γ

3. Error due to lagrangian relaxation: ||Kα− Y ||2 ≤ ||KαB − Y ||2 +
√
λmB

Proof. The errors can be bounded as follows.

1. We have,

||K̄γᾱγ − Y ||2 − ||Kγαγ − Y ||2
≤ ||K̄γᾱγ −Kγαγ ||2 (2)

= ||K̄γ

(
K̄γ + λmI

)−1
Y −Kγ (Kγ + λmI)

−1
Y ||2 (3)

= λm||
(
−
(
K̄γ + λmI

)−1
+ (Kγ + λmI)

−1
)
Y ||2 (4)

= λm||
(
K̄γ + λmI

)−1 (
K̄γ −Kγ

)
(Kγ + λmI)

−1
Y ||2 (5)

≤ λm||
(
K̄γ + λmI

)−1 ||2||K̄γ −Kγ ||2|| (K + (λ+ γ)mI)
−1 ||2||Y ||2 (6)

≤ ||K̄γ −Kγ ||2
(λ+ γ)

√
m
≤ η
√
m

λ+ γ
. (7)

Here 2 follows from triangle inequality, 3 follows from substitution and 4 follows from
using A (A+ cI)

−1
= (A+ cI − cI) (A+ cI)

−1
= I − c (A+ cI)

−1. 5 follows from
a−1−b−1 = −a−1 (a− b) b−1 and 6 follows from ||AB||2 ≤ ||A||2||B||2. Lastly 7 follows
from ||A−1||2 = λmin (A)

−1, λmin (A+ cI) ≥ c for psd A. We also use Kγ = K + γmI
and ||Y ||2 ≤

√
m.

2. Similar to the above proof, we have,

||Kγαγ − Y ||2 − ||Kα− Y ||2
≤ ||Kγαγ −K(K + λmI)−1Y ||2 (8)

= ||Kγ (Kγ + λmI)
−1
Y −K (K + λmI)

−1
Y ||2 (9)

= λm|| (Kγ + λmI)
−1

(Kγ −K) (K + λmI)
−1
Y ||2 (10)

≤ λm|| (K + (λ+ γ)mI)
−1 ||2||γmI||2|| (K + λmI)

−1 ||2||Y ||2 (11)

≤ γ
√
m

λ+ γ
. (12)

3. Since α minimizes Optimization Problem 4, we have

||Kα− Y ||22 ≤||Kα− Y ||22 + λmαTKα (13)

≤ ||KαB − Y ||22 + λmαTBKαB (14)

≤ ||KαB − Y ||22 + λmB (15)

where the last inequality follows from αTBKαB ≤ B by the constraint of the bounded
optimization problem. Taking the square-root, we get,

||Kα− Y ||2 ≤
√
||KαB − Y ||22 + λmB ≤ ||KαB − Y ||2 +

√
λmB (16)
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Note that K̄ᾱγ = Kγα
∗ by the definition of α∗, from the previous lemma, we have,

||K̄ᾱγ − Y ||2 − ||KαB − Y ||2 ≤
η
√
m

λ+ γ
+
γ
√
m

λ+ γ
+
√
λmB = β (17)

where β = (η+γ)
√
m

λ+γ +
√
λmB. Squaring and then dividing by m on both sides, we get

1

m
||K̄γᾱγ − Y ||22 ≤

1

m
||KαB − Y ||22 + 2

β

m
||KαB − Y ||2 +

β2

m
(18)

≤ 1

m
||KαB − Y ||22 + 2

β√
m

+
β2

m
(19)

≤ 1

m
||KαB − Y ||22 + 3

β√
m

(20)

The second inequality follows from ||KαB − Y ||22 ≤ ||Y ||22 ≤ m since 0 is a feasible solution for
Optimization Problem 3. The last inequality follows from assuming β√

m
≤ 1 which holds for our

choice of β. Setting the values in the lemma satisfies the last inequality gives us β ≤ ε
√
m
3 giving us

the desired bound.

C Proof of Theorem 10

Observe that,

dη(Kγ) = tr(Kγ(Kγ + ηmI)−1)

=

m∑
i=1

λi(Kγ)

λi(Kγ) + ηm

≤
j∑
i=1

λi(Kγ)

λi(Kγ)
+

m∑
i=j+1

λi(Kγ)

ηm

≤ j +

m∑
i=j+1

γm+ λi(K)

ηm

≤ j + 1 +

m∑
i=j+1

λi(K)

ηm

Here the second equality follows from trace of matrix being equal to the sum of the eigenvalues and
the last follows from γm ≤ η.

1. For (C, p)-polynomial eigenvalue decay with p > 1,
m∑

i=k+1

λi(K)

ηm
=

m∑
i=k+1

Ci−p

η
≤ C

η

∫ ∞
k+1

i−pdi =
C(k + 1)−p+1

(p− 1)η

Substituting j =
(

C
(p−1)η

)1/p
we get the required bound.

2. For C-exponential eigenvalue decay,
m∑

i=k+1

λi(K)

ηm
=

m∑
i=k+1

Ce−i

η
≤

∞∑
i=k+1

Ce−i

η
=

Ce−k

(e− 1)η

Substituting j = log
(

C
(e−1)η

)
we get the required bound.

Remark: Based on the above analysis, observe that we only need the eigenvalue decay to hold after
the jth eigenvalue for j defined above. Thus the top j − 1 eigenvalues need not be constrained.
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D Proof of Theorem 11

For S = (xi, yi)mi=1 and hS the output of the compression scheme, we have

1

m

m∑
i=1

(hS(xi)− yi)2 ≤
1

m

m∑
i=1

∑
j∈I

(K(xj , xi) + γm1[xj = xi])α̃∗j − yi

2

(21)

≤ 1

m

m∑
i=1

∑
j∈I

(K(xj , xi) + γm1[xj = xi])α∗j − yi

2

+
ε

2
(22)

=
1

m
||Kγα

∗ − Y ||22 +
ε

2
(23)

=
1

m
||K̄γᾱγ − Y ||22 +

ε

2
(24)

=
1

m
||KαB − Y ||22 +

ε

2
+
ε

2
(25)

= min
h∈Hψ

(
1

m

m∑
i=1

(h(xi)− yi)2
)

+ ε (26)

Here 21 follows from the fact that since the output is in [0, 1] clipping only reduces the loss, 22
follows from the precision used while compressing and since square loss is 2-Lipschitz, 23 follows
from representing it in the matrix form, 24 follows since α∗ = K−1γ K̄γᾱγ by definition, 25 follows
from Theorem 8 with the given parameters satisfying the theorem for ε/2 and lastly 26 follows from
the definition of αB .

The size of the above scheme can be bounded using the following lemma.
Lemma B. The bit complexity of the side information of the selection scheme κ given above is
O
(
d log

(
d
δ

)
log
(√

mBMd log(d/δ)
ε4

))
where d is the η-effective dimension of Kγ for η = ε3

5832B and

γ = ε3

5832Bm .

Proof. From the selection scheme we can bound the norm of α∗ = K−1γ K̄γᾱγ for γ = ε3

5832Bm , the
side information, as follows,

||α∗||2 = ||K−1γ K̄γᾱγ ||2 (27)

= ||K−1γ K̄γ(K̄γ + λmI)−1Y ||2 (28)

≤ ||K−1γ ||2||K̄γ(K̄γ + λmI)−1||2||Y ||2 (29)

≤ 1

γm
· 1 ·
√
m (30)

=
1

γ
√
m

=
5832
√
mB

ε3
. (31)

Thus we can upper bound the bit complexity of the non-decimal part of α∗ as,∑
i∈I

log (|α∗i |) =
1

2

|I|∑
i=1

log
(

(α∗i )
2
)

≤ |I|
2

log

(∑|I|
i=1 (α∗i )

2

|I|

)

≤ |I| log

(
||α∗||2√
|I|

)
≤ |I| log

(
5832
√
mB

ε3

)
where |I| = O

(
d log

(
d
δ

))
according to Theorem 7. Since each non-zero index has ε

4M |I| precision,

we need |I| log
(

4M |I|
ε

)
bits for the decimal part. Combining the two-parts we get the required

bound.
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E Proof of Theorem 13

Since C is ε0-approximated by Hψ we have,

min
h∈Hψ

(
1

m

m∑
i=1

(h(xi)− yi)2
)
≤ min

c∈C

(
1

m

m∑
i=1

(c(xi)− yi)2
)

+ 2ε0 ≤
1

m

m∑
i=1

(c∗(xi)− yi)2 + 2ε0

where c∗ ∈ C be such that it minimizes E(x,y)∼D(c(x) − y)2 over all c ∈ C. The first inequality
follows from square loss being 2-Lipschitz and the last inequality follows from c∗ being a feasible
solution.

Let K be the empirical gram matrix corresponding to kψ on S. Let hS be the hypothesis output
by Algorithm 1 with input (S,K, ε1, δ/4, B,M) for ε1 > 0 chosen later. From Theorem 11 with
probability 1− δ/4, we have

1

m

m∑
i=1

(hS(xi)− yi)2 ≤ min
h∈Hψ

(
1

m

m∑
i=1

(h(xi)− yi)2
)

+ ε1.

We know that for every c ∈ C, the square loss is bounded by 1, thus using Chernoff-Hoeffding
inequality, with probability 1− δ/4, we have

1

m

m∑
i=1

(c∗(xi)− yi)2 ≤ E(x,y)∼D(c∗(x)− y)2 + ε2

where ε2 =
√

log(4/δ)
2m .

Now the output of hS lies in [0, 1] thus for all (x, y), (y − hS(x))2 lies in [0, 1]. Thus viewing hS as
the output of the compression scheme (κ, ρ) of size k (Theorem 11), by Theorem 4, we have with
probability 1− δ/4,∣∣∣∣∣E(x,y)∼D(hS(x)− y)2 − 1

m

m∑
i=1

(hS(xi)− yi)2
∣∣∣∣∣ ≤

√√√√ ε3
m

m∑
i=1

(hS(xi)− yi)2+ε3 ≤ ε3+
√
ε3 ≤ 2

√
ε3

where ε3 = 50 · k log(m/k)+log(4/δ)
m .

Combining the above, we have with probability 1− δ,

E(x,y)∼D(hS(x)− y)2 ≤ 1

m

m∑
i=1

(hS(xi)− yi)2 + 2
√
ε3 (32)

≤ min
h∈Hψ

(
1

m

m∑
i=1

(h(xi)− yi)2
)

+ ε1 + 2
√
ε3 (33)

≤ 1

m

m∑
i=1

(c∗(xi)− yi)2 + 2ε0 + ε1 + 2
√
ε3 (34)

≤ min
c∈C

(
E(x,y)∼D(c(x)− y)2

)
+ 2ε0 + ε1 + ε2 + 2

√
ε3 (35)

Using Theorem 10 we can bound k depending on the different eigenvalue decay assumption. Now
we set ε1 = ε/3 and substituting for m. Recall that ε2 and ε3 are functions of m and for the chosen
m, they are bounded by ε/3 giving us the desired bound. Since Algorithm 1 runs in time poly(m, n)
we get the required time complexity.

F Proof of Theorem 15

We use the following theorem that follows directly from the structural results in [2] (and uses the
composed-kernel technique of Zhang et al. [7]).
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Theorem C. Consider the following hypothesis classHMKd = {x→ 〈v, ψ(x)〉|v ∈ KMKd , 〈v, v〉 ≤
B} where KMKd is the Hilbert space corresponding to the Multinomial Kernel 3 and ψ is the corre-
sponding feature vector. For D > 0, consider the composed class H(D) = {x→ 〈v, ψ(D)(x)〉|v ∈
K(D), 〈v, v〉 ≤ B} where ψ(D) is the feature vector of the D-times composed kernel K(D) 4. Then
for X = Sn−1,

1. Single ReLU: Crelu = N [σrelu, 0, ·, 1] is ε-approximated by Hd for d = O(1/ε) and
B = 2(τ/ε) with M = d+ 1,

2. Network of ReLUs: Crelu−D = N [σrelu, D,W, T ] is ε-approximated by H(D) for B =

2(τW
DDT/ε)D with M = 2,

3. Network of Sigmoids: Csig−D = N [σsig, D,W, T ] is ε-approximated by H(D) for B =

2(τT log(WDD/ε))D with M = 2,

for some sufficiently large constant τ > 0.

The proof follows from applying Theorem 13 to the appropriate kernel from previous theo-
rem and substituting the corresponding eigenvalue decays to compute the sample size needed
by Algorithm 1 for learnability. For example, for the case of single ReLU, M = poly(1/ε),
B = 2(τ/ε) and we take p ≥ ξ/ε. So for any C = (n · 1/ε)ζp, we obtain sample complexity
m = Õ((C2(τ/ε))1/p log(M)/ε2+3/p) = poly(n, 1/ε). Since the algorithm takes time at most
poly(m,n), we obtain the required result.

G Proof of Corollary 16

By assumption the 2-norm of each weight vector is bounded by 1, which implies that the 1-norm
of the weight vector to the one hidden unit at layer two is at most

√
`. Also observe that, the

maximum 2-norm of any input vector z to a hidden unit with weight vector w is bounded by
√
`

hence |w · x| ≤
√
`. Using these properties we can apply Theorem 15 with parameters W =

√
`,

T =
√
` and D = 1 to obtain the required result.
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