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8 GreedyMiser

As mentioned in the main paper GREEDYMISER can be viewed as a special case of our algorithm.
We repeat our objective function (Eq. (8) in the main paper):

Ok ≈ Õk =

N∑
i=1

[
gitk(xi) +

1

2
hit

2
k(xi) + λ∆Ψ(xi)

]
+ ∆Ψc (1)

where

gi = ∂ŷiL(yi, ŷi)
∣∣∣
ŷi=Tk−1(xi)

, (2a) hi = ∂2ŷiL(yi, ŷi)
∣∣∣
ŷi=Tk−1(xi)

, (2b)

∆Ψ(xi) = Ψ(k,xi)−Ψ(k − 1,xi), (2c) ∆Ψc = Ψc(k)−Ψc(k − 1). (2d)

GreedyMiser’s objective is given as Eq. (18) in [1]:
n∑
i=1

−riht(xi) +
λ

η

∑
α

cαψαFαt (3)

The different notations are shown in table 1. When the following restrictions are used in CEGB we
solve the same optimization problem as GREEDYMISER:

• Use only first order derivatives of the loss function (i.e. hi = 0).

• Limit trees to depth four and assume that the tree evaluation cost for all samples is constant
instead of taking into account the probabilities for reaching the different leaves.

• Assume that all features always have to computed for all samples at once instead of allowing
lazy computation in the split nodes.

• Use breadth-first instead of best-first tree growth.
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Table 1: CEGB and GreedyMiser notation for constructing a new tree
GREEDYMISER CEGB

boosting iteration t k
regression tree response ht(x) tk(x)
first order derivative −ri gi
second order derivative 0 hi
feature index α m
additional cost required by the next tree
for features computed for all samples at once cαφαFαt ∆Ψc

additional cost required by the next tree
for features computed for single samples on demand not part of the model ∆Ψf

additional cost required by the next tree
for evaluating the tree itself e (usually set to 1) α

∑Lk

l=0 |Il|

9 Trees constructed for the Yahoo LTR dataset

In this section we will show some examples for trees constructed by CEGB and GREEDYMISER for
the experiments shown in figure (2b) done using the Yahoo Learning to Rank dataset.

GREEDYMISER does not take the probabilties for reaching different leaves into account and therefore
is only capable of learning shallow trees. Even in those expensive features are used near the root
node for almost all samples.

CEGB is capable of learning deep trees that are nevertheless cheap to evaluate on average instead by
using a different cost penalty and making use of best-first growth. Many samples are classified using
only one or two very cheap splits while a small subset of samples reaches much deeper branches
which occasionally make use of the more expensive features.
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Figure 1: Different trees learned by GREEDYMISER: The number inside the split node denots the
feature index. The vertical position of nodes corresponds to the feature cost required for each sample
and the edge’s thickness represents the number of samples moving along this edge. The first tree
already uses feature 188 with a cost of β188 = 20 for a majority of all samples.
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Figure 2: Different trees learned by CEGB: The number inside the split node denots the feature
index. The vertical position of nodes corresponds to the feature cost required for each sample and
the edge’s thickness represents the number of samples moving along this edge. The different to the
trees learned by GREEDYMISER is easy to see: The majority of samples require at most two splits
until they reach their final leaf. The minority is sent through a much more complex subtree where
expensive features can be used. On average this results in a tree that is still cheap to evaluate but has
a much better predictve performance.
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Figure 3: Tree growth strategies: Split nodes are shown as circles, leaves as squares. For (3b) to
(3d) the number in each node indicates at which iteration it has been created. Assume that the split
nodes marked in red result in a bad tradeoff (high cost for moderate loss reduction) and the split
node marked in green result in a very good tradeoff (low cost for large loss reduction). When using
breadth-first (3b) or depth-first (3c) growth the bad split is created before the good split. When using
leaf-first growth in (3d) however the bad split is created at the very end because of the high cost
penalty while the good split is created directly after its parent node. Instead of limiting the depth,
the number of leaves can be limited - this strategy grows deep trees that are nevertheless cheap to
compute on average.
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10 Algorithm

In addition to the explanation given in the main paper we also show pseudo code for the construction
of individual trees and learning of the ensemble.

Algorithm 1 CEGB

Require: (xi, yi), α,β,γ,K ∈ N>0

Initialize: C̃ ∈ {0, 1}N×M , C̃im = 1
Initialize: D ∈ {0, 1}M , Dm = 1

1: T0 ← 0
2: for k = 1 to K do
3: gi = ∂ŷiL(yi, ŷi)

∣∣∣
ŷi=Tk−1(xi)

∀ i

4: hi = ∂2ŷiL(yi, ŷi)
∣∣∣
ŷi=Tk−1(xi)

∀ i
5: tk ← Result of Alg. (2)
6: Tk ← Tk−1 + tk
7: end for
8: return TK

Algorithm 2 BEST-FIRST TREE LEARNING

Require: (xi, gi, hi),β,γ, C̃,D
Initialize: a single leaf with all (xi, gi, hi)

1: for 1 to max_leaves do
2: Find best (split s, feature m, leaf p) using Eq. (13) with Ψsplit

f,k = γmDm +
∑
i∈Ip βmC̃im for

all terminal leaves
3: Convert p to a split node using split s
4: Add two new children to p
5: Set C̃im = 0 ∀i ∈ Ip
6: Set Dm = 0
7: end for
8: return Tree
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