
A Proof of the Main Results

In this section we prove the main results. We first prove that the proposed estimators achieve near-
optimal statistical rates of convergence. Then we prove the supporting lemma on our data-driven
approach of truncation.

A.1 Proof of Theorem 3.2

Proof. We denote by cW the solution of the convex program in (3.3). Also, let W ⇤ = �
⇤
�
⇤>. In the

following, we establish an upper bound for kcW �W
⇤
k2.

Since W
⇤ is feasible for the optimization problem in (3.3), we have

hcW, e⌃i � �kcWk1 � hW
⇤
, e⌃i � �kW

⇤
k1. (A.1)

We denote ⌃⇤ = E[Y ·T (X)]. Note that �⇤ is the leading eigenvector of ⌃⇤. Then (A.1) is equivalent
to

hcW �W
⇤
, e⌃� ⌃⇤

i � �kcWk1 + �kW
⇤
k1 � h⌃⇤

,W
⇤
�cW i. (A.2)

The following Lemma in [33] establishes an upper bound for the first term on the left-hand side of
(A.2).
Lemma A.1. Let ⌦ 2 R

d⇥d be a symmetric matrix and let �1 � �2 � . . .�d the eigenvalues of ⌦
in descending order. For any ` 2 [d� 1] such that �` � �`+1 > 0, let ⇧` 2 R

d⇥d be the projection
matrix for the subspace spanned by the eigenvectors of ⌦ corresponding to �1, . . . ,�`. Then for any
⇤ 2 R

d⇥d satisfying 0 � � � Id and Trace(⇤) = k, we have

(�` � �`+1) · k⇧k � ⇤k2F  2h⌦,⇧k � ⇤i.

Note that W ⇤ is the projection matrix for the subspace spanned by �
⇤. Applying Lemma A.1 to ⌃⇤

with ` = 1, we have

h⌃⇤
,W

⇤
�cW i � C0/2 · kcW �W

⇤
k
2
F, (A.3)

where C0 > 0 is defined in (3.2). In addition, by Hölder’s inequality, we have

hcW �W
⇤
, e⌃� ⌃⇤

i  ke⌃� ⌃⇤
k1 · kcW �W

⇤
k1. (A.4)

In what follows, we bound ke⌃� ⌃⇤
k1.

Lemma A.2. Let e⌃ be defined in (3.5) and we define ⌃⇤ = E[Y · T (X)]. Under Assumption 3.1,
for any truncation level ⌧ > 0 in (3.4), with probablity at least 1� d

�2, we have

ke⌃� ⌃⇤
k1  9M · ⌧

�3 + 2⌧3 · log d/n+ 2
p
5M · log d/n. (A.5)

Proof. See §A.3 for a detailed proof.

By this lemma, if we set ⌧ = (1.5Mn/ log d)1/6, then with probability at least 1� d
�1,

ke⌃� ⌃⇤
k1  (2

p
5 + 2

p
6) ·

p
M log d/n  10

p
M log d/n. (A.6)

Thus by setting � = 10
p

M log d/n we have ke⌃� ⌃⇤
k1  � with probability at least 1� d

�2.

Then combining (A.2), (A.3), and (A.4) we have

�

⇣
kcW �W

⇤
k1 � kcWk1 + kW

⇤
k1

⌘
� C0/2 · kcW �W

⇤
k
2
F. (A.7)

Note that W ⇤ = �
⇤
�
⇤> and that �⇤ is s⇤-sparse. We denote the support of W ⇤ by J , which is given

by

J =
�
(j, k) 2 [d]⇥ [d] : �⇤

j
· �

⇤
k
6= 0

 
.

Then by seperation of the `1-norm, we have

kcWk1 = kcWJ k1 + kcWJ ck1 and kcW �W
⇤
k1 = kcWJ �W

⇤
J k1 + kcWJ ck1,
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