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1 Path simulations

The probability of simulating a path © = [z, ..., Zx_1] in a forward simulation is
K—1
Prlx] = H Ty (wk|TE-1) po(To) -
k=1

The probability of generating the same path in a reverse simulation is:

K-1
Prlx] = Ty (wo|w1) - - T -1 (Tx—2|TK 1) P (TR 1) = H T (vp—1lor) pr(TK-1) -
k=1
The weight of a path is
H fk+1 T)
fr(zr)
where pi,(z) = fr(x)/Z), with Zy, = [ fir(z da: is the stationary distribution of 7.
1.1 Jarzynski equality
The Jarzynski equaliy (JE) states:
Z = (w)y (1

where (-) y indicates an average over paths generated in forward simulations according to Py.
JE follows from [[1} 2]

(w)s = [ wle]Psle]Dlal

f . K-1
:/ H kH k) X Tr(xk|zrp—1) po(xo) dxg - - - dr g1
fu(xr) P
K-1
T (x| vp—1) fr(Tr-1)
= dra - dr
/fK I'K 1 kl;[l fk l‘k) X0 TR —1 (2)
zZ e (z |x ) pr(Tr_1)
K k| Tk—1)Pe(Tr—1
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where we used

T _ - 1
/ b (Tk|TK—1) pr(Th—1) dip_ i = /Tk(xk‘xkfl)pk(xkfl)dl'kfl _ Pr(y) -1
Pk (k) pr (k) pr (k)
We can also use the sampled paths «(*) to approximate the target distribution, because
1
pr(r) = - (T (z|lrr-1) w)y

which follows directly from the second last expression in equations (2] For each generated path a(?)

we have to generate just one more state by drawing from asg() ~ TK(a:|m ¥ _1)- These samples can

then be used to approximate the target by

w® §(z — 2
> w

1.2 Detailed fluctuation theorem

The detailed fluctuation theorem [3| 4] follows from comparing the probabilities of generating « in a
forward and reverse simulation:

Prle] _  Trxa(rx-1|lrk—2)---Ti(z1]zo) po(wo)
Pylz] T1($0|331)"'TK 1(@r_2|rrk_1)pr(TK-1)

_ po(zo) Tk (xg|Tr—1)
- pr(Tr_1) Tk Tp—1|Tk)
_ po(zo) pr(Tr)
pr(rr-1) = Pr(Th-1) 3)

_ZK 11 Jr(xr)
f

= exp{W[x] — AF'}

where detailed balance was assumed in the third equation. One interpretation of the detailed fluctua-
tion theorem is that it gives the importance weights when a forward simulation is used to generate
samples of the reverse ensemble and vice versa [2]]. From a physical perspective the fluctuation
theorem expresses microscopic reversibility [3} 14]].

1.3 Relation to thermodynamic integration

According to inequalities (7) from the main text, (log w) ; = —(W) ; provides a lower bound of the
log evidence. In case of thermal sampling of a Bayesian model, we have:

K-1

Wr=D_ (Brt1 — Be)(E)q,
which approaches
<W>f — (6k+1 - Bk)<E>Pk

for large K and/or large NV since, q; — py.

Recall that thermodynamic integration (TI) is based on the identity [S]:

1
o2 =~ [ (B} ds



where (-) 3 are equilibrium averages. For a finitely spaced inverse temperature schedule, we can
approximate the TI integral by

log Z ~ — Z(Bk-{-l = Be)(E)p,
%

because (-)g, = (-)p,. The approximate formula is identical to the average work. That is, for large
K and/or large N the lower bound — (W) ; approaches the log evidence and becomes identical to
thermodynamic integration.

2 Gaussian kernel

This section provides background information about the toy model used in sections 4 and 5 of the
main text. Let’s define the normal distribution as

1 1
N (@ p,0%) = s eXP{—%Q (z — M)Q}

with mean p and standard deviation o > 0. The following convolution theorem holds for Gaussian
distributions:

/N(:r; p1,00) N (5 o, 03) de = N (pa; o, 0f + 03) -
Furthermore we have:

T;N(x’; (z —a)/b,c/b?)

Let us now consider the following transition kernel which involves three parameters a, b, c:
T(z|z") = N(z;a+ba’,c).

Then the action of the kernel on a normal distribution with parameters p, o is:

/T(a:|x’)./\/'(a:’; w0 de = /‘—;N(x’; (x —a)/b,c/b*) N (25 i, o) da’
1

N(z;a+ba',c) =

= m/\/’(,u; (x —a)/b,c/b* + %)

= N(ac;a—i—b,u,c—i—bQJQ).
We choose a, b, ¢ such that N (; 1, 02) is the invariant distribution of T'(z|2’):
a=(1-byu, c=(1-b"s.
Then for any 7 € [0, 1]
T(zla") = N (z;y + (L= ), (1 = 7%)0?) )

has the desired stationary distribution. The parameter 7 determines how quickly the Markov chain
generated by 7" converges to the stationary distribution. For 7 = 0, the convergence is immediate; for
7 — 1, the convergence becomes infinitely slow.

The composition of two transition kernels with parameters 71, t1, 01 and 7o, o, 02 results in a new
kernel with parameters:

T T1T2
1
- —— (1= 1—
I 177,172[( 1)1 + 71 (1 — 7o) s |
1
o2 = W[(l_ D)ot + (L —15)03 ].

Repeated composition of the same transition kernel gives the n-th power
T"(xla’) = N (25 (L= 7"+ 7", (1= 7°")0?)

that is, we simply have to raise 7 to its n-th power: 77" = T;». If we let n — oo, 7" — 0 and
T"(z|2') — N (z; u, 0?) as it should.



3 Bennett’s acceptance ratio
For two work distributions p; (W) = ¢;(W)/¢; (i = 0, 1), we have

[ V) a0(W) () W = cathan)o = 1 (haohs
where h is a general function of the work. Therefore the ratio

(hgo)1
(hq1)o

is an estimator of the ratio of the normalizing constants ¢; /¢o. Assuming we have equally many
samples W;; from p; (W), the sample version of the ratio estimator is

22 h(Whj) go(Why)
> h(Woj) a1 (Woy)

In [6L 7} 15]], it is shown that the relative mean squared error

(=5

1
po(W) + p1(W)
resulting in an implicit estimator, because p; depends on ¢;. Therefore, we have:

r=

’f:

is minimized for

h(W)

q0(W1;) 20 (W1;)
A= Zj po(Wij)+p1(Waj) _ Zj q0(Wi;)+r qi(Wiy)

q1(Wo,) 71 (Woj)
Zj po(Wo;)+p1(Woj;) Zj q0(Wo;)+r g1 (Woy)

According to Crooks’ fluctuation theorem, we have gy o< py and q; o p fe_W

implicit equation

, resulting in the

Y Tren Wiy Y Tren Wiy
J 1+7 exp{—-Wi;} P x J 147 exp{—W1y;}

> TRl > T Tem T
J *4exp{Wo;} J 14+7= 1T exp{Wo;, }

’f‘:

Identifying simulation 0/1 with the forward/reverse simulation gives:

1
Zi 1+7 exp{—W,E” }
Z 1

T4 T X .
U 14p-l exp{Wj(f’)}

Now r = ¢1/¢op = 1/Z, resulting in the multiplicative update:

Zi = - (i)
7 Zx L2 oWy ¥ )

1
Zi 142-1 exp{—WT(,i)}

which are the iterations used to compute the BAR estimator.

4 Histogram estimator

In DOS estimation [8l, 9], we want to reconstruct the density of states g(E) from energy samples
that we generated according to F; ~ g(E) e™?¥ /Z(j3;). We use the following analogy to use DOS
estimation algorithms for the estimation of the work distribution p:

EoW, g(E)ep(W), Be{o1}.

According to Crooks’ fluctuation theorem, we have:

WO~ py (W), WD ~pp(W)e W /2.



We want to estimate p from all samples W = {W}l), ..U {qul), ...} where W; are the elements
of the joint set. We define the normalization constant of the work distribution:

cla) = /e_O‘W pr(W)dW
then the evidence is Z = ¢(1)/¢(0) according to Crooks’ fluctuation theorem.

Given py, the likelihood of generating W(i), W,Ei) is:
Llpy] = Zlogpf(Wj) — Nylogc(0) — Nyloge(1).
J

The maximum likelihood estimator is obtained by setting the functional derivative
SLlpsl 2o 6(W —Wj) Ny N W
dpr(W) pr(W) c(0) (1)
to zero, which gives the implicit equation

5 h(W)

W) = x—~—w

o e

where h(W) = 3_, 6(W — W;) is the histogram of all simulated work values. This is an implicit
equation, since ¢(0) and ¢(1) depend on ps. We have:

e*()éWJ'
N,

é(a)zfmwmvvzzm-
i tane

We can show that by iterating these equations, we obtain the unique maximum likelihood estimate of
pr and c(a) [8]. After convergence of the iterations, the maximum likelihood estimate of py is:

) . 1
br(W) = pj6(W = W) with pjo¢ g
7 o) T

If we are only interested in the evidence, we have to cycle over the following iterations:

N Zj NfeA J—W

g = NeZ -
1

W

For Ny = N,., this equation simplifies to

Z 1

J 1+ZeWi

Zj Z+61*W.7’

A similar equation can be obtained from BAR:

Z [ S
P 142 exp{w )}

Z 1

i Ztexp{-w,"}

Z:

Z:

Following [9]], we can also derive a Gibbs sampler for p¢ and c(«):

pj ~ g(l,ao + aq exp{—Wj})

a0 ~G(Ny, > p)) (6)
i

ar ~G(Ny, > pjexp{-W;})
i

where the interpretation of the auxiliary parameters is a; = N;/c;.



5

Sequential Monte Carlo

Instead of using an inverse temperature we define:

k
fe(w) = =(@) [ p(wlz, M), fo(x) = ()
=1

assuming that the data are independent. The weight of an entire path is:

H fk“ x;; H P(Yrsaler, M)

where K is the number of data.

References

(1]
(2]
(3]

(4]
(5]

(6]

(7]

(8]

(9]

C. Jarzynski. Nonequilibrium equality for free energy differences. Phys Rev Lett, 78:2690-2693, 1997.
R. M. Neal. Annealed importance sampling. Statistics and Computing, 11:125-139, 2001.

G. E. Crooks. Nonequilibrium measurements of free energy differences for microscopically reversible
Markovian systems. Journal of Statistical Physics, 90(5-6):1481-1487, 1998.

G. E. Crooks. Excursions in statistical dynamics. PhD thesis, University of California at Berkeley, 1999.

A. Gelman and X. Meng. Simulating normalizing constants: From importance sampling to bridge sampling
to path sampling. Statistical Science, 13:163—185, 1998.

C. H. Bennett. Efficient estimation of free energy differences from Monte Carlo data. J. Comput. Phys.,
22:245, 1976.

X.-L. Meng and W. H. Wong. Simulating ratios of normalizing constants via a simple identity: a theoretical
exploration. Statistica Sinica, pages 831-860, 1996.

M. Habeck. Evaluation of marginal likelihoods using the density of states. In Proceedings of the Fifteenth
International Conference on Artificial Intelligence and Statistics (AISTATS), volume 22, pages 486-494.
JMLR: W&CP 22, 2012.

M. Habeck. Bayesian estimation of free energies from equilibrium simulations. Phys Rev Lett,
109(10):100601, 2012.



	Path simulations
	Jarzynski equality
	Detailed fluctuation theorem
	Relation to thermodynamic integration

	Gaussian kernel
	Bennett's acceptance ratio
	Histogram estimator
	Sequential Monte Carlo

