
A Proof for Section 2

Throughout our proof, we presume without loss of generality that the elements in x̄ =
(x̄1, x̄2, . . . , x̄d) are in descending order by their magnitude, i.e., |x̄1| ≥ |x̄2| ≥ · · · ≥ |x̄s| and
x̄i = 0 for s < i ≤ d. We also write [n] := {1, 2, . . . , n} for brevity.

Recall that the partial hard thresholding algorithm with freedom parameter r proceeds as follows at
the t-th iteration:

zt = xt−1 − η∇F (xt−1)

J t = St−1 ∪ supp
(

∇F (xt−1), r
)

yt = HTk(z
t
Jt)

St = supp
(

yt
)

xt = argmin
supp(x)⊂St

F (x)

We first prove the results that appear in Section 3.

Lemma 8 (Restatement of Lemma 5). Assume that F (x) is ρ−2k-RSC and ρ+2k-RSS. Consider the

PHT(r) algorithm with η < 1/ρ+2k. Further assume that the sequence of {xt}t≥0 satisfies

∥

∥xt − x̄
∥

∥ ≤ α · βt
∥

∥x0 − x̄
∥

∥+ ψ1,
∥

∥xt − x̄
∥

∥ ≤ γ
∥

∥x̄St

∥

∥+ ψ2,

for positive α, ψ1, γ, ψ2 and 0 < β < 1. Suppose that at the n-th iteration (n ≥ 0), Sn contains the
indices of top p (in magnitude) elements of x̄. Then, for any integer 1 ≤ q ≤ s − p, there exists an
integer ∆ ≥ 1 determined by

√
2 |x̄p+q| > αγ · β∆−1

∥

∥x̄{p+1,...,s}
∥

∥+Ψ

where

Ψ = αψ2 + ψ1 +
1

ρ−2k
‖∇2F (x̄)‖ ,

such that Sn+∆ contains the indices of top p + q elements of x̄ provided that Ψ ≤
√
2λx̄min for

some λ ∈ (0, 1).

Proof. We aim at deriving a condition under which [p + q] ⊂ Sn+∆. To this end, it suffices to
enforce

min
j∈[p+q]

∣

∣zn+∆
j

∣

∣ > max
i∈S

∣

∣zn+∆
i

∣

∣ . (7)

On one hand, for any j ∈ [p+ q],

∣

∣zn+∆
j

∣

∣ =
∣

∣

∣

(

xn+∆−1 − η∇F (xn+∆−1)
)

j

∣

∣

∣

≥ |x̄j | −
∣

∣

∣

(

xn+∆−1 − x̄− η∇F (xn+∆−1)
)

j

∣

∣

∣

≥ |x̄p+q| −
∣

∣

∣

(

xn+∆−1 − x̄− η∇F (xn+∆−1)
)

j

∣

∣

∣
.

On the other hand, for all i ∈ S,
∣

∣zn+∆
i

∣

∣ =
∣

∣

(

xn+∆−1 − x̄− η∇F (xn+∆−1)
)

i

∣

∣ .

Hence, we know that to guarantee (7), it suffices to ensure for all j ∈ [p+ q] and i ∈ S that

|x̄p+q| >
∣

∣

∣

(

xn+∆−1 − x̄− η∇F (xn+∆−1)
)

j

∣

∣

∣
+
∣

∣

(

xn+∆−1 − x̄− η∇F (xn+∆−1)
)

i

∣

∣ .
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Note that the right-hand side is upper bounded as follows:

1√
2

∣

∣

∣

(

xn+∆−1 − x̄− η∇F (xn+∆−1)
)

j

∣

∣

∣
+

1√
2

∣

∣

(

xn+∆−1 − x̄− η∇F (xn+∆−1)
)

i

∣

∣

≤
∥

∥

∥

(

xn+∆−1 − x̄− η∇F (xn+∆−1)
)

{j,i}

∥

∥

∥

≤
∥

∥

∥

(

xn+∆−1 − x̄− η∇F (xn+∆−1) + η∇F (x̄)
)

{j,i}

∥

∥

∥
+ η

∥

∥(∇F (x̄)){j,i}
∥

∥

≤ φ2k
∥

∥xn+∆−1 − x̄
∥

∥+ η ‖∇2F (x̄)‖
≤ φ2kα · β∆−1 ‖xn − x̄‖+ φψ1 + η ‖∇2F (x̄)‖ ,

where φ2k is given by Lemma 17. Note that φ2k < 1 whenever 0 < η < 1/ρ+2k. Moreover,

‖xn − x̄‖ ≤ γ ‖x̄Sn‖+ ψ2 ≤ γ
∥

∥

∥
x̄[p]

∥

∥

∥
+ ψ2 = γ

∥

∥x̄{p+1,...,s}
∥

∥+ ψ2.

Put all the pieces together, we have

1√
2

∣

∣

∣

(

xn+∆−1 − x̄− η∇F (xn+∆−1)
)

j

∣

∣

∣
+

1√
2

∣

∣

(

xn+∆−1 − x̄− η∇F (xn+∆−1)
)

i

∣

∣

≤ αγ · β∆−1
∥

∥x̄{p+1,...,s}
∥

∥+ αψ2 + ψ1 + η ‖∇2F (x̄)‖

≤ αγ · β∆−1
∥

∥x̄{p+1,...,s}
∥

∥+ αψ2 + ψ1 +
1

ρ−2k
‖∇2F (x̄)‖ .

Therefore, when

√
2 |x̄p+q| > αγ · β∆−1

∥

∥x̄{p+1,...,s}
∥

∥+ αψ2 + ψ1 +
1

ρ−2k
‖∇2F (x̄)‖ ,

we always have (7). Note that the above holds as far as Ψ := αψ2 + ψ1 +
1

ρ−

2k

‖∇2F (x̄)‖ is strictly

smaller than
√
2 |x̄s|.

Theorem 9 (Restatement of Theorem 6). Assume same conditions as in Lemma 5. Then PHT(r)

successfully identifies the support of x̄ using

(

log 2
2 log(1/β) +

log(αγ/(1−λ))
log(1/β) + 2

)

s number of itera-

tions.

Proof. We partition the support set S = [s] into K folds S1, S2, . . . , SK , where each Si is defined
as follows:

Si = {si−1 + 1, . . . , si}, ∀ 1 ≤ i ≤ K.

Here, s0 = 0 and for all 1 ≤ i ≤ K , the quantity si is inductively given by

si = max
{

q : si−1 + 1 ≤ q ≤ s and |x̄q| >
1√
2

∣

∣x̄si−1+1

∣

∣

}

.

In this way, we note that for any two index sets Si and Sj , Si ∩ Sj = ∅ if i 6= j. We also know by
the definition of si that

|x̄si+1| ≤
1√
2

∣

∣x̄si−1+1

∣

∣ , ∀ 1 ≤ i ≤ K − 1. (8)

Now we show that after a finite number of iterations, say n, the union of the Si’s is contained in Sn,
i.e., the support set of the iterate xn. To this end, we prove that for all 0 ≤ i ≤ K ,

i
⋃

t=0

St ⊂ Sn0+n1+···+ni (9)

for some ni’s given below. Above, S0 = ∅.

We pick n0 = 0 and it is easy to verify that S0 ⊂ S0. Now suppose that (9) holds for i− 1. That is,
the index set of the top si−1 elements of x̄ is contained in Sn0+···+ni−1 . Due to Lemma 5, (9) holds
for i as long as ni satisfies

√
2 |x̄si | > αγ · βni−1

∥

∥x̄{si−1+1,...,s}
∥

∥+ Ψ, (10)
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where Ψ is given in Lemma 5. Note that
∥

∥x̄{si−1+1,...,s}
∥

∥

2
=
∥

∥x̄Si

∥

∥

2
+ · · ·+

∥

∥x̄SK

∥

∥

2

≤ (x̄si−1+1)
2 |Si|+ · · ·+ (x̄sr−1+1)

2 |SK |
≤ (x̄si−1+1)

2
(

|Si|+ 2−1 |Si+1|+ · · ·+ 2i−K |SK |
)

< 2(x̄si)
2
(

|Si|+ 2−1 |Si+1|+ · · ·+ 2i−K |SK |
)

,

where the second inequality follows from (8) and the last inequality follows from the definition of
qi. Denote for simplicity

Wi := |Si|+ 2−1 |Si+1|+ · · ·+ 2i−K |SK | .
As we assumed Ψ ≤

√
2λx̄min, we get

αγ · βni−1
∥

∥x̄{si−1+1,...,s}
∥

∥+Ψ <
√
2αγ |x̄si |βni−1

√

Wi +
√
2λ |x̄si | .

Picking

ni = log1/β
αγ

√
Wi

1− λ
+ 2

guarantees (10). It remains to calculate the total number of iterations. In fact, we have

tmax = n0 + n1 + · · ·+ nK

=
1

2 log(1/β)

K
∑

i=1

logWi +K · log(αγ/(1− λ))

log(1/β)
+ 2K

ζ1
≤ K

2 log(1/β)
log

(

1

K

K
∑

i=1

Wi

)

+

(

log(αγ/(1− λ))

log(1/β)
+ 2

)

K

ζ2
≤ K

2 log(1/β)
log

(

2

K

K
∑

i=1

|Si|
)

+

(

log(αγ/(1− λ))

log(1/β)
+ 2

)

K

=
K

2 log(1/β)
log

2s

K
+

(

log(αγ/(1− λ))

log(1/β)
+ 2

)

K

ζ3
≤
(

log 2

2 log(1/β)
+

log(αγ/(1− λ))

log(1/β)
+ 2

)

s.

Above, ζ1 immediately follows by observing that the logarithmic function is concave. ζ2 uses the

fact that after rearrangement, the coefficient of |Si| is
∑i−1

j=0 2
−j which is always smaller than 2.

Finally, since the function a log(2s/a) is monotonically increasing with respect to a and 1 ≤ a ≤ s,
ζ3 follows.

Lemma 10 (Restatement of Lemma 7). Assume that F (x) satisfies the properties of RSC and RSS

at sparsity level k + s + r. Let ρ− := ρ−k+s+r and ρ+ := ρ+k+s+r . Consider the support set

J t = St−1 ∪ supp
(

∇F (xt−1), r
)

. We have for any 0 < θ ≤ 1/ρ+,

∥

∥x̄Jt

∥

∥ ≤ ν(1− θρ−)
∥

∥xt−1 − x̄
∥

∥+
ν

ρ−
‖∇s+rF (x̄)‖ ,

where ν =
√
s− r + 2. In particular, picking θ = 1/ρ+ gives

∥

∥x̄Jt

∥

∥ ≤ ν

(

1− 1

κ

)

∥

∥xt−1 − x̄
∥

∥+
ν

ρ−
‖∇s+rF (x̄)‖ .

Proof. Let T = supp
(

∇F (xt−1), r
)

. Then J t = St−1 ∪ T and St−1 ∩ T = ∅. Since T contains

the top r elements of ∇F (xt−1), we have that each element in T \ S is larger (in magnitude) than
that in S \ T . In particular, we observe for T 6= S that

1

|T \ S|
∥

∥

∥

(

∇F (xt−1)
)

T\S

∥

∥

∥

2

≥ 1

|S \ T |
∥

∥

∥

(

∇F (xt−1)
)

S\T

∥

∥

∥

2

,
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which implies

∥

∥

∥

(

∇F (xt−1)
)

T\S

∥

∥

∥
≥
√

r − |T ∩ S|
s− |T ∩ S|

∥

∥

∥

(

∇F (xt−1)
)

S\T

∥

∥

∥
≥
√

1

s− r + 1

∥

∥

∥

(

∇F (xt−1)
)

S\T

∥

∥

∥
.

Since ∇F (xt−1) is supported on St−1, the LHS reads as

∥

∥

∥

(

∇F (xt−1)
)

T\S

∥

∥

∥
=
∥

∥

∥

(

∇F (xt−1)
)

T\(S∪St−1)

∥

∥

∥
=

1

θ

∥

∥

∥

(

xt−1 − θ∇F (xt−1)− x̄
)

T\(S∪St−1)

∥

∥

∥
.

Now we look at the RHS. It follows that
∥

∥

∥

(

∇F (xt−1)
)

S\T

∥

∥

∥
=
∥

∥

∥

(

∇F (xt−1)
)

S\(T∪St−1)

∥

∥

∥

=
1

θ

∥

∥

∥

(

xt−1 − θ∇F (xt−1)− x̄
)

S\(T∪St−1)
+ x̄S\(T∪St−1)

∥

∥

∥

≥ 1

θ

∥

∥x̄S\(T∪St−1)

∥

∥− 1

θ

∥

∥

∥

(

xt − θ∇F (xt)− x̄
)

S\(T∪St−1)

∥

∥

∥
.

Hence,
∥

∥x̄Jt

∥

∥

=
∥

∥x̄S\(T∪St−1)

∥

∥

≤
√
s− r + 1

∥

∥

∥

(

xt−1 − θ∇F (xt−1)− x̄
)

T\(S∪St−1)

∥

∥

∥
+
∥

∥

∥

(

xt−1 − θ∇F (xt−1)− x̄
)

S\(T∪St−1)

∥

∥

∥

≤
√
s− r + 1

∥

∥

∥

(

xt−1 − θ∇F (xt−1)− x̄
)

T\S

∥

∥

∥
+
∥

∥

∥

(

xt−1 − θ∇F (xt−1)− x̄
)

S\T

∥

∥

∥

≤ ν
∥

∥

(

xt−1 − θ∇F (xt−1)− x̄
)

T∆S

∥

∥

≤ ν
∥

∥

(

xt−1 − θ∇F (xt−1)− x̄+ θ∇F (x̄)
)

T∆S

∥

∥+ νθ ‖(∇F (x̄))T∆S‖
≤ νφk+s+r

∥

∥xt−1 − x̄
∥

∥+ νθ ‖(∇F (x̄))T∆S‖ ,

where ν =
√
s− r + 2 and the last inequality uses Lemma 18. For any 0 < θ ≤ 1/ρ+, we have

∥

∥x̄Jt

∥

∥ ≤ ν(1− θm)
∥

∥xt−1 − x̄
∥

∥+
ν

ρ−
‖∇s+rF (x̄)‖ .

A.1 Proof of Prop. 2

Proof. Recall that we set k = s. Using Lemma 11, we have

F (xt)− F (x̄) ≤ µt

(

F (xt−1)− F (x̄)
)

,

where µt = 1− 2ρ−2sη(1− ηρ+2s) ·
|St\St−1|

|St\St−1|+|S\St−1| . Now combining this with Prop. 21, we have

∥

∥xt − x̄
∥

∥ ≤
√
2κ

√
µ1µ2 . . . µt

∥

∥x0 − x̄
∥

∥+
3

ρ−2s
‖∇2sF (x̄)‖ .

Note that before the algorithm terminates, 1 ≤
∣

∣St \ St−1
∣

∣ ≤ r. Hence,

µt ≤ 1− 2ηρ−2s(1− ηρ+2s)

1 + s
=: µ.

It then follows that

∥

∥xt − x̄
∥

∥ ≤
√
2κ(

√
µ)t
∥

∥x0 − x̄
∥

∥+
3

η
‖∇2sF (x̄)‖ . (11)

Lemma 19 tells us

∥

∥xt − x̄
∥

∥ ≤ κ
∥

∥x̄St

∥

∥+
1

η
‖∇sF (x̄)‖ . (12)
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Hence, in light of Lemma 5 and Theorem 6, we obtain that PHT(r) recovers the support using at
most

tmax =

(

log 2

log(1/µ)
+

log(2κ)

log(1/µ)
+

2 log(κ/(1− λ))

log(1/µ)
+ 2

)

‖x̄‖0

iterations. Note that picking η = O(1/ρ+2s), we have µ = O(1 − 1
κ) and log(1/µ) = O(1/κ). This

gives the O(sκ log κ) bound.

Lemma 11. Consider the PHT(r) algorithm. Suppose that F (x) is ρ−k+s-RSC and ρ+2k-RSS. Using

the parameter k = s and η < 1/ρ+2s, we have

F (xt)− F (x̄) ≤ µt

(

F (xt−1)− F (x̄)
)

,

where µt = 1− 2ηρ−2s(1− ηρ+2s) ·
|St\St−1|

|St\St−1|+|S\St−1| .

Proof. Using the RSS property, we have

F (zt
St)− F (xt−1) ≤

〈

∇F (xt−1), zt
St − xt−1

〉

+
ρ+2s
2

∥

∥zt
St − xt−1

∥

∥

2

ζ1
=
〈

∇St\St−1F (xt−1), zt
St\St−1

〉

+
ρ+2s
2

(∥

∥

∥
zt
St\St−1

∥

∥

∥

2

+
∥

∥zt
St∩St−1 − xt−1

St∩St−1

∥

∥

2
+
∥

∥

∥
xt−1
St−1\St

∥

∥

∥

2 )

ζ2
≤
〈

∇St\St−1F (xt−1), zt
St\St−1

〉

+ ρ+2s

∥

∥

∥
zt
St\St−1

∥

∥

∥

2

ζ3
= − η(1− ηρ+2s)

∥

∥∇St\St−1F (xt−1)
∥

∥

2
.

Above, we observe that ∇F (xt−1) is supported on St−1 and we simply docompose the support
set St ∪ St−1 into three mutually disjoint sets, and hence ζ1 holds. To see why ζ2 holds, we

note that for any set Ω ⊂ St−1, zt
Ω = xt−1

Ω . Hence, zt
St∩St−1 = xt−1

St∩St−1 . Moreover, since

xt−1
St−1\St = zt

St−1\St and any element in zt
St−1\St is not larger than that in zt

St\St−1 (recall that St

is obtained by hard thresholding), we have

∥

∥

∥
xt−1
St−1\St

∥

∥

∥
≤
∥

∥

∥
zt
St\St−1

∥

∥

∥
where we use the fact that

|St \ St| =
∣

∣St \ St−1
∣

∣. Therefore, ζ2 holds. Finally, we write zt
St\St−1 = −η∇St\St−1F (xt−1)

and obtain ζ3.

Since xt is a minimizer of F (x) over the support set St, it immediately follows that

F (xt)− F (xt−1) ≤ F (zt
St)− F (xt−1) ≤ −η(1− ηρ+2s)

∥

∥∇St\St−1F (xt−1)
∥

∥

2
.

Now we invoke Lemma 12 and pick η ≤ 1/ρ+2s,

F (xt)− F (xt−1) ≤ −2mη(1− ηρ+2s) ·
∣

∣St \ St−1
∣

∣

|St \ St−1|+ |S \ St−1|
(

F (xt−1)− F (x̄)
)

,

which gives

F (xt)− F (x̄) ≤ µt

(

F (xt−1)− F (x̄)
)

,

where µt = 1− 2ηρ−2s(1− ηρ+2s) ·
|St\St−1|

|St\St−1|+|S\St−1| .

Lemma 12. Consider the PHT(r) algorithm and assume F (x) is ρ−k+s-RSC. Then for all t ≥ 1,

∥

∥∇St\St−1F (xt−1)
∥

∥

2 ≥ 2ρ−k+sδt
(

F (xt−1)− F (x̄)
)

,

where

δt =

∣

∣St \ St−1
∣

∣

|St \ St−1|+ |S \ St−1| .
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Proof. The lemma holds clearly for either St = St−1 or F (xt) ≤ F (x̄). Hence, in the following
we only prove the result by assuming St 6= St−1 and F (xt) > F (x̄). Due to the RSC property, we
have

F (x̄)− F (xt−1)−
〈

∇F (xt−1), x̄− xt−1
〉

≥ ρ−k+s

2

∥

∥x̄− xt−1
∥

∥

2
,

which implies

〈

∇F (xt−1),−x̄
〉

≥ ρ−k+s

2

∥

∥x̄− xt−1
∥

∥

2
+ F (xt−1)− F (x̄)

≥
√

2ρ−k+s

∥

∥x̄− xt−1
∥

∥

√

F (xt−1)− F (x̄).

By invoking Lemma 13 with u = ∇F (xt−1) and z = −x̄ therein, we have

〈

∇F (xt−1),−x̄
〉

≤
√

|S \ St−1|
|St \ St−1| + 1

∥

∥∇St\St−1F (xt−1)
∥

∥ ·
∥

∥x̄S\St−1

∥

∥

=

√

|S \ St−1|
|St \ St−1| + 1

∥

∥∇St\St−1F (xt−1)
∥

∥ ·
∥

∥(x̄− xt)S\St−1

∥

∥

≤
√

|S \ St−1|
|St \ St−1| + 1

∥

∥∇St\St−1F (xt−1)
∥

∥ ·
∥

∥x̄− xt
∥

∥ .

It is worth mentioning that the first inequality above holds because ∇F (xt−1) is supported on St−1

and St \ St−1 contains the
∣

∣St \ St−1
∣

∣ number of largest (in magnitude) elements of ∇F (xt−1).
Therefore, we obtain the result.

Lemma 13 (Lemma 1 in [28]). Let u and z be two distinct vectors and letW = supp (u)∩supp (z).
Also, let U be the support set of the top r (in magnitude) elements in u. Then, the following holds
for all r ≥ 1:

〈u, z〉 ≤
√

⌈ |W |
r

⌉

‖uU‖ · ‖zW ‖ .

A.2 Proof of Theorem 3

Proof. Let ρ− := ρ−2s+r and ρ+ := ρ+2s+r. Let φ := φ2s+r = 1 − ηρ− be the quantity given in
Lemma 17. Using Lemma 14, we obtain

∥

∥xt − x̄
∥

∥ ≤
(√

2φκ+ ν(κ− 1)
)

∥

∥xt−1 − x̄
∥

∥+
2ν + 4

ρ−
‖∇s+rF (x̄)‖ ,

where ν =
√
s− r + 2. We need to ensure that the convergence coefficient is smaller than 1.

Consider η = η′/ρ+ with η′ ∈ (0, 1] for which φ = 1− η′/κ. It follows that

√
2φκ+ ν(κ− 1) =

√
2(κ− η′) + ν(κ− 1) ≤ (

√
2 + ν)(κ− η′).

Hence, when we pick 1− 1√
2+ν

< η′ ≤ 1, and the condition number satisfies

κ < η′ +
1√
2 + ν

,

the sequence of xt − x̄ contracts. On the other hand, using Lemma 19 we get

∥

∥xt − x̄
∥

∥ ≤ κ
∥

∥x̄St

∥

∥+
1

ρ−
‖∇sF (x̄)‖ .

Hence, applying Lemma 5 and Theorem 6 we obtain the result.
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Lemma 14. Consider the PHT(r) algorithm with k = s. Suppose that F (x) is ρ−2s+r-RSC and

ρ+2s+r-RSS. Further suppose that κ < 2. Let the step size η ≤ 1/ρ+2s+r. Then it holds that

∥

∥xt − x̄
∥

∥ ≤
(√

2φκ+ ν(κ− 1)
)

∥

∥xt−1 − x̄
∥

∥+
2ν + 4

ρ−2s+r

‖∇s+rF (x̄)‖ ,

where φ = 1− ηρ−2s+r and ν =
√
s− r + 2.

Proof. Consider the vector zt
Jt . It is easy to see that J t \St contains the r smallest elements of zt

Jt .

Hence, for any subset T ⊂ J t such that |T | ≥ r, we have
∥

∥

∥
zt
Jt\St

∥

∥

∥
≤
∥

∥zt
T

∥

∥ .

In particular, we choose T = J t \ S and obtain
∥

∥

∥
zt
Jt\St

∥

∥

∥
≤
∥

∥

∥
zt
Jt\S

∥

∥

∥
.

Eliminating the common contribution from J t \ (St ∪ S) gives
∥

∥

∥
zt
Jt∩S\St

∥

∥

∥
≤
∥

∥

∥
zt
Jt∩St\S

∥

∥

∥
. (13)

The LHS of (13) reads as
∥

∥

∥
zt
Jt∩S\St

∥

∥

∥
=
∥

∥(xt−1 − η∇F (xt−1)− x̄)Jt∩S\St + x̄Jt\St

∥

∥

≥
∥

∥x̄Jt\St

∥

∥−
∥

∥(xt−1 − η∇F (xt−1)− x̄)Jt∩S\St

∥

∥ ,

while the RHS (13) is given by
∥

∥

∥
zt
Jt∩St\S

∥

∥

∥
=
∥

∥(xt−1 − η∇F (xt−1)− x̄)Jt∩St\S
∥

∥ .

Hence, we have
∥

∥x̄Jt\St

∥

∥ ≤
∥

∥(xt−1 − η∇F (xt−1)− x̄)Jt∩S\St

∥

∥+
∥

∥(xt−1 − η∇F (xt−1)− x̄)Jt∩St\S
∥

∥

≤
√
2
∥

∥(xt−1 − η∇F (xt−1)− x̄)Jt

∥

∥

≤
√
2φ2s+r

∥

∥xt−1 − x̄
∥

∥+
√
2η ‖∇k+rF (x̄)‖ ,

where we use Lemma 18 for the last inequality and φ2s+r = 1 − ηρ−2s+r for η ≤ 1/ρ+2s+r. On the
other hand, Lemma 7 shows that

∥

∥x̄Jt

∥

∥ ≤ ν

(

1− 1

κ

)

∥

∥xt−1 − x̄
∥

∥+
ν

ρ−2s+r

‖∇s+rF (x̄)‖ ,

where ν =
√
s− r + 2. The fact St = (J t \ St) ∪ J t implies

∥

∥x̄St

∥

∥ ≤
∥

∥x̄Jt\St

∥

∥+
∥

∥x̄Jt

∥

∥

≤
(√

2φ2s+r + ν

(

1− 1

κ

))

∥

∥xt−1 − x̄
∥

∥+

(

√
2η +

ν

ρ−2s+r

)

‖∇k+rF (x̄)‖ .

Next, we invoke Lemma 19 to get

∥

∥xt − x̄
∥

∥ ≤ κ
∥

∥x̄St

∥

∥+
1

ρ−2s+r

‖∇kF (x̄)‖ .

Therefore,

∥

∥xt − x̄
∥

∥ ≤
(√

2φ2s+rκ+ ν(κ− 1)
)

∥

∥xt−1 − x̄
∥

∥+

(

√
2ηκ+

νκ

ρ−2s+r

+
1

ρ−2s+r

)

‖∇s+rF (x̄)‖

≤
(√

2φ2s+rκ+ ν(κ− 1)
)

∥

∥xt−1 − x̄
∥

∥+
2ν + 4

ρ−2s+r

‖∇s+rF (x̄)‖ ,

where we use the assumption that κ < 2 and η ≤ 1/ρ+2s+r < 1/ρ−2s+r for the last inequality.
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A.3 Proof of Theorem 4

Proof. Using Lemma 15, we have

F (xt)− F (x̄) ≤ µ
(

F (xt−1)− F (x̄)
)

,

where

µ = 1− ηρ−2k(1− ηρ+2k)

2
.

Now Prop. 21 suggests that

∥

∥xt − x̄
∥

∥ ≤
√
2κ (

√
µ)

t ∥
∥x0 − x̄

∥

∥+
3

ρ−2k
‖∇k+sF (x̄)‖ ,

and Lemma 19 implies

∥

∥xt − x̄
∥

∥ ≤ κ
∥

∥x̄St

∥

∥+
1

ρ−2k
‖∇kF (x̄)‖ .

Combining these with Lemma 5 and Theorem 6 we complete the proof.

Lemma 15. Consider the PHT(r) algorithm. Suppose that F (x) is ρ−2k-RSC and ρ+2k-RSS, and

let κ = ρ+2k/ρ
−
2k be the condition number. Picking the step size 0 < η < 1/ρ+2k and the sparsity

parameter k ≥ s+
(

1 + 4
η2(ρ−

2k
)2

)

min{r, s}, then we have

F (xt)− F (xt−1) ≤ −ηρ
−
2k(1− ηρ+2k)

2

(

F (xt−1)− F (x̄)
)

.

Proof. Using Lemma 16 we obtain

F (xt)− F (xt−1) ≤ −1− ηρ+2k
2η

∥

∥zt
St − xt−1

∥

∥

2
.

Note that for the right-hand side, we may expand it as follows:

∥

∥zt
St − xt−1

∥

∥

2
=
∥

∥xt−1
St − xt−1 − η∇StF (xt−1)

∥

∥

2

=
∥

∥

∥
−xt−1

St−1\St − η∇St\St−1F (xt−1)
∥

∥

∥

2

=
∥

∥

∥
xt−1
St−1\St

∥

∥

∥

2

+ η2
∥

∥∇St\St−1F (xt−1)
∥

∥

2
,

where we use the fact that xt−1 is supported on St−1 and ∇F (xt−1) is support on St−1 for the
second equality, and the third one follows in that the support sets are disjoint. It then follows quickly
that

F (xt)− F (xt−1) ≤ − (1− ηρ+2k)η

2

∥

∥∇St\St−1F (xt−1)
∥

∥

2
.

It remains to lower bound the right-hand side in terms of F (xt−1)−F (x̄). In fact, in the following,
we show that

∥

∥∇St\St−1F (xt−1)
∥

∥

2 ≥ ρ−2k
(

F (xt−1)− F (x̄)
)

. (14)

This suggests

F (xt)− F (xt−1) ≤ −ηρ
−
2k(1− ηρ+2k)

2

(

F (xt−1)− F (x̄)
)

which completes the proof. In the sequel, we prove the inequality (14) by discussing the size of the
support set St \ St−1.

First, we consider r ≥ s. Then it is possible that
∣

∣St \ St−1
∣

∣ ≥ s.
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Case 1.
∣

∣St \ St−1
∣

∣ ≥ s. Using the RSC property, we have

ρ−2k
2

∥

∥x̄− xt−1
∥

∥

2

≤ F (x̄)− F (xt−1)−
〈

∇F (xt−1), x̄− xt−1
〉

≤ F (x̄)− F (xt−1) +
ρ−2k
2

∥

∥x̄− xt−1
∥

∥

2
+

1

2ρ−2k

∥

∥∇S∪St−1F (xt−1)
∥

∥

2

= F (x̄)− F (xt−1) +
ρ−2k
2

∥

∥x̄− xt−1
∥

∥

2
+

1

2ρ−2k

∥

∥∇S\St−1F (xt−1)
∥

∥

2
.

Therefore, we get

∥

∥∇S\St−1F (xt−1)
∥

∥

2 ≥ 2ρ−2k
(

F (xt−1)− F (x̄
)

.

Recall that St \ St−1 contains the largest elements of zt
St−1

. Hence, for any support set T ⊂ St−1

with |T | ≤
∣

∣St \ St−1
∣

∣, we have

∥

∥zt
T

∥

∥ ≤
∥

∥

∥
zt
St\St−1

∥

∥

∥
.

In particular, we can choose T = S \St−1 as we assumed that
∣

∣St \ St−1
∣

∣ ≥ s ≥ |T |. Then it holds
that

∥

∥

∥
zt
St\St−1

∥

∥

∥

2

≥
∥

∥

∥
zt
S\St−1

∥

∥

∥

2

.

Note that for the left-hand side, zt
St\St−1 = −η∇St\St−1F (xt−1) while for the right-hand side, it

is exactly equal to −η∇S\St−1F (xt−1). This completes the proof of the first case.

Case 2.
∣

∣St \ St−1
∣

∣ < s ≤ r. The proof of this part is more involved. We still begin with the RSC
property, which gives

ρ−2k
2

∥

∥x̄− xt−1
∥

∥

2 ≤ F (x̄)− F (xt−1)−
〈

∇F (xt−1), x̄− xt−1
〉

≤ F (x̄)− F (xt−1) +
ρ−2k
4

∥

∥x̄− xt−1
∥

∥

2
+

1

ρ−2k

∥

∥∇S∪St−1F (xt−1)
∥

∥

2

= F (x̄)− F (xt−1) +
ρ−2k
4

∥

∥x̄− xt−1
∥

∥

2
+

1

ρ−2k

∥

∥∇S\St−1F (xt−1)
∥

∥

2

= F (x̄)− F (xt−1) +
ρ−2k
4

∥

∥x̄− xt−1
∥

∥

2
+

1

ρ−2k

∥

∥∇S\(St∪St−1)F (x
t−1)

∥

∥

2

+
1

ρ−2k

∥

∥∇(St\St−1)∩SF (x
t−1)

∥

∥

2

≤ F (x̄)− F (xt−1) +
ρ−2k
4

∥

∥x̄− xt−1
∥

∥

2
+

1

ρ−2k

∥

∥∇S\(St∪St−1)F (x
t−1)

∥

∥

2

+
1

ρ−2k

∥

∥∇St\St−1F (xt−1)
∥

∥

2
. (15)

Note that the last term is retained for deduction. What we need to show is a proper bound of the

term
∥

∥∇S\(St∪St−1)F (x
t−1)

∥

∥

2
above. First, we observe that

zt
S\(St∪St−1) = −η∇S\(St∪St−1)F (x

t−1).

Next, we compare the elements of S \ (St∪St−1) to those in (St ∩St−1) \S. For convenience, we
denote T = J t\(St−1∪St). Since St contains the k largest elements of zt

Jt , those of (St∩St−1)\S
are larger than those in T . On the other hand, recall that elements in J t \ St−1 are larger than those

in J t due to the partial hard thresholding. Since T is a subset of J t \ St−1, we have that T is larger
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than J t. Consequently, elements in (St ∩ St−1) \ S are larger than those in T ∪ J t = St−1 ∪ St.
This suggests that

∥

∥

∥
zt
S\(St∪St−1)

∥

∥

∥

2

|S \ (St ∪ St−1)| ≤

∥

∥

∥
zt
(St∩St−1)\S

∥

∥

∥

2

|(St ∩ St−1) \ S| .

Note that
∣

∣St \ St−1
∣

∣ < s implies
∣

∣(St ∩ St−1) \ S
∣

∣ ≥ k − 2s. Therefore,

η2
∥

∥∇S\(St∪St−1)F (x
t−1)

∥

∥

2 ≤ s

k − 2s

∥

∥

∥
xt−1
(St∩St−1)\S − η∇(St∩St−1)\SF (x

t−1)
∥

∥

∥

2

=
s

k − 2s

∥

∥

∥
xt−1
(St∩St−1)\S

∥

∥

∥

2

=
s

k − 2s

∥

∥(xt−1 − x̄)(St∩St−1)\S
∥

∥

2

≤ s

k − 2s

∥

∥xt−1 − x̄
∥

∥

2
.

Plugging the above into (15), we obtain

ρ−2k
2

∥

∥x̄− xt−1
∥

∥

2 ≤ F (x̄)− F (xt−1) +
ρ−2k
4

∥

∥x̄− xt−1
∥

∥

2
+

s

(k − 2s)η2ρ−2k

∥

∥x̄− xt−1
∥

∥

2

+
1

ρ−2k

∥

∥∇St\St−1F (xt−1)
∥

∥

2
.

Picking k ≥ 2s+ 4s
η2(ρ−

2k
)2

gives

ρ−2k
2

∥

∥x̄− xt−1
∥

∥

2 ≤ F (x̄)− F (xt−1) +
ρ−2k
2

∥

∥x̄− xt−1
∥

∥

2
+

1

ρ−2k

∥

∥∇St\St−1F (xt−1)
∥

∥

2
,

which is exactly the claim (14).

Now we consider the parameter setting r < s. In this case,
∣

∣St \ St−1
∣

∣ cannot be greater than s. In
fact, like we have done for Case 2, we can show that

η2
∥

∥∇S\(St∪St−1)F (x
t−1)

∥

∥

2 ≤ r

k − r − s

∥

∥xt−1 − x̄
∥

∥

2
.

Plugging the above into (15), we obtain

ρ−2k
2

∥

∥x̄− xt−1
∥

∥

2 ≤ F (x̄)− F (xt−1) +
ρ−2k
4

∥

∥x̄− xt−1
∥

∥

2
+

r

(k − r − s)η2ρ−2k

∥

∥x̄− xt−1
∥

∥

2

+
1

ρ−2k

∥

∥∇St\St−1F (xt−1)
∥

∥

2
.

Using k ≥ s+ r + 4r
η2(ρ−

2k
)2

we prove (14).

Overall, we find that picking k ≥ s+
(

1 + 4
η2(ρ−

2k
)2

)

min{r, s} always guarantees the result.

Lemma 16. Consider the PHT(r) algorithm. Suppose that F (x) is ρ+2k-RSS. We have

F (xt)− F (xt−1) ≤ −1− ηρ+2k
2η

∥

∥zt
St − xt−1

∥

∥

2
.

Proof. We partition zt into four disjoint parts: St−1 \ St, St−1 ∩ St, St \ St−1 and J t. It then
follows that

∥

∥zt
St − zt

∥

∥

2
=
∥

∥

∥
zt
St−1\St

∥

∥

∥

2

+
∥

∥

∥
zt
Jt

∥

∥

∥

2

≤
∥

∥

∥
zt
St\St−1

∥

∥

∥

2

+
∥

∥

∥
zt
Jt

∥

∥

∥

2

=
∥

∥

∥
zt
St−1

∥

∥

∥

2

= η2
∥

∥∇F (xt−1)
∥

∥

2
.
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On the other hand, the LHS reads as

∥

∥zt
St − zt

∥

∥

2
=
∥

∥zt
St − xt−1 + η∇F (xt−1)

∥

∥

2

=
∥

∥zt
St − xt−1

∥

∥

2
+ η2

∥

∥∇F (xt−1)
∥

∥

2
+ 2η

〈

∇F (xt−1), zt
St − xt−1

〉

.

Hence,

〈

∇F (xt−1), zt
St − xt−1

〉

≤ − 1

2η

∥

∥zt
St − xt−1

∥

∥

2
.

Using the RSS property, we have

F (xt)− F (xt−1) ≤ F (yt)− F (xt−1)

= F (zt
St)− F (xt−1)

≤
〈

∇F (xt−1), zt
St − xt−1

〉

+
ρ+2k
2

∥

∥zt
St − xt−1

∥

∥

2

≤ − 1− ηρ+2k
2η

∥

∥zt
St − xt−1

∥

∥

2
.

B Technical Lemmas

Lemma 17. Suppose that F (x) is ρ−K-RSC and ρ+K-RSS for some sparsity level K > 0. Then for

all θ ∈ R, all vectors x, x′ ∈ R
d and for any Hessian matrix H of F (x), we have

|〈x, (I − θH)x′〉| ≤ φK ‖x‖ · ‖x′‖ ,
provided that |supp (x) ∪ supp (x′)| ≤ K , and

‖((I − θH)x)S‖ ≤ φK ‖x‖ , if |S ∪ supp (x)| ≤ K,

where

φK = max
{
∣

∣θρ−K − 1
∣

∣ ,
∣

∣θρ+K − 1
∣

∣

}

.

Proof. Since H is a Hessian matrix, we always have a decomposition H = A⊤A for some matrix
A. Denote T = supp (x) ∪ supp (x′). By simple algebra, we have

|〈x, (I − θH)x′〉| = |〈x,x′〉 − θ 〈Ax,Ax′〉|
ζ1
= |〈x,x′〉 − θ 〈ATx,ATx

′〉|
=
∣

∣

∣

〈

x, (I − θA⊤
TAT )x

′
〉∣

∣

∣

≤
∥

∥

∥
I − θA⊤

TAT

∥

∥

∥
· ‖x‖ · ‖x′‖

ζ2
≤ max

{∣

∣θρ−K − 1
∣

∣ ,
∣

∣θρ+K − 1
∣

∣

}

· ‖x‖ · ‖x′‖ .
Here, ζ1 follows from the fact that supp (x)∪supp (y) = T and ζ2 holds because the RSC and RSS
properties imply that the singular values of any Hessian matrix restricted on anK-sparse support set
are lower and upper bounded by ρ−K and ρ+K , respectively.

For some index set S subject to |S ∪ supp (x)| ≤ K , let x′ = ((I − θH)x)S . We immediately
obtain

‖x′‖2 = 〈x′, (I − θH)x〉 ≤ φK ‖x′‖ · ‖x‖ ,
indicating

‖((I − θH)x)S‖ ≤ φK ‖x‖ .
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Lemma 18. Suppose that F (x) is ρ−K-RSC and ρ+K-RSS for some sparsity level K > 0. For all

vectors x, x′ ∈ R
d and support set T such that |supp (x− x′) ∪ T | ≤ K , the following holds for

all θ ∈ R:

‖(x− x′ − θ∇F (x) + θ∇F (x′))T ‖ ≤ φK ‖x− x′‖ ,
where φK is given in Lemma 17.

Proof. In fact, for any two vectors x and x′, there always exists a quantity t ∈ [0, 1], such that

∇F (x)−∇F (x′) = ∇2F (tx+ (1− t)x′) (x− x′).

Let H = ∇2F (tx+ (1 − t)x′). We write

‖(x− x′ − θ∇F (x) + θ∇F (x′))T ‖
= ‖(x− x′ − θH(x− x′))T ‖
= ‖((I − θH)(x− x′))T ‖
≤ φK ‖x− x′‖ ,

where the last inequality applies Lemma 17.

Lemma 19. Suppose that F (x) is ρ−K-RSC and ρ+K-RSS for some sparsity level K > 0. Let κ :=

ρ+K/ρ
−
K . For all vectors x, x′ ∈ R

d with |supp (x) ∪ supp (x′)| ≤ K , we have

‖x− x′‖ ≤ κ
∥

∥x′
T

∥

∥+
1

ρ−K
‖(∇F (x)−∇F (x′))T ‖ ,

‖(x− x′)T ‖ ≤
(

1− 1

κ

)

‖x− x′‖+ 1

ρ−K
‖(∇F (x)−∇F (x′))T ‖ .

where T is the support set of x.

Proof. We begin with bounding the ℓ2-norm of the difference of x and x′. Let Ω = supp (x′). For
any positive scalar θ ∈ R we have

‖(x− x′)T ‖2 = 〈x− x′ − θ∇F (x) + θ∇F (x′), (x− x′)T 〉
+ θ 〈∇F (x)−∇F (x′), (x− x′)T 〉

≤ ‖(x− x′ − θ∇F (x) + θ∇F (x′))T ‖ · ‖(x− x′)T ‖
+ θ ‖(∇F (x)−∇F (x′))T ‖ · ‖(x− x′)T ‖

≤ ‖x− x′ − θ(∇F (x))T∪Ω + θ(∇F (x′))T∪Ω‖ · ‖(x− x′)T ‖
+ θ ‖(∇F (x)−∇F (x′))T ‖ · ‖(x− x′)T ‖

≤ φK ‖x− x′‖ · ‖(x− x′)T ‖+ θ ‖(∇F (x)−∇F (x′))T ‖ · ‖(x− x′)T ‖ ,
where we recall that φK is given in Lemma 17. Dividing both sides by ‖(x− x̄)T ‖ gives

‖(x− x′)T ‖ ≤ φK ‖x− x′‖+ θ ‖(∇F (x)−∇F (x′))T ‖ .
On the other hand,

‖x− x′‖ ≤ ‖(x− x′)T ‖+ ‖(x− x′)T ‖
≤ φK ‖x− x′‖+ θ ‖(∇F (x)−∇F (x′))T ‖+

∥

∥x′
T

∥

∥ .

Hence, we have

‖x− x′‖ ≤ 1

1− φK

∥

∥x′
T

∥

∥+
θ

1− φK
‖(∇F (x)−∇F (x′))T ‖ .

Picking θ = 1/ρ+K , we have φK = 1 − 1
κ . Plugging these into the above and noting that ρ+K ≥ ρ−K

complete the proof.
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Lemma 20. Suppose that F (x) is ρ−K-RSC. Then for any vectors x and x′ with ‖x− x′‖0 ≤ K ,
the following holds:

‖x− x′‖ ≤
√

2max{F (x)− F (x′), 0}
ρ−K

+
2 ‖(∇F (x′))T ‖

ρ−K
,

where T = supp (x− x′).

Proof. The RSC property immediately implies

F (x)− F (x′) ≥ 〈∇F (x′),x− x′〉+ ρ−K
2

‖x− x′‖2

≥ − ‖∇TF (x
′)‖ · ‖x− x′‖+ ρ−K

2
‖x− x′‖2 .

Discussing the sign of F (x) − F (x′) and solving the above quadratic inequality completes the
proof.

Proposition 21. Suppose that F (x) is ρ−k+s-RSC and ρ+2k-RSS. Let κ := ρ+2k/ρ
−
k+s. Suppose that

for all t ≥ 1, xt is k-sparse and the following holds:

F (xt)− F (x̄) ≤ µt

(

F (xt−1)− F (x̄)
)

+ τ,

where 0 < µt < µ < 1 for some µ, τ ≥ 0 and x̄ is an arbitrary s-sparse signal. Then,

∥

∥xt − x̄
∥

∥ ≤
√
2κ(

√
µ1µ2 . . . µt)

∥

∥x0 − x̄
∥

∥+
3

ρ−k+s

‖∇k+sF (x̄)‖+
√

2τ

ρ−k+s(1− µ)
.

Proof. The RSS property implies that

F (x0)− F (x̄) ≤
〈

∇F (x̄),x0 − x̄
〉

+
ρ+2k
2

∥

∥x0 − x̄
∥

∥

2

≤ ρ+2k
2

∥

∥x0 − x̄
∥

∥

2
+

1

2ρ+2k
‖∇k+sF (x̄)‖2 +

ρ+2k
2

∥

∥x0 − x̄
∥

∥

2

≤ ρ+2k
∥

∥x0 − x̄
∥

∥

2
+

1

2ρ+2k
‖∇k+sF (x̄)‖2 .

Denote µ1:t = µ1µ2 . . . µt. We obtain

F (xt)− F (x̄) ≤ µ1:tρ
+
∥

∥x0 − x̄
∥

∥

2
+

1

2ρ+2k
‖∇k+sF (x̄)‖2 +

τ

1− µ
.

By Lemma 20, we have
∥

∥xt − x̄
∥

∥

≤
√

2

ρ−k+s

√

µ1:tρ
+
2k ‖x0 − x̄‖2 + 1

2ρ+2k
‖∇k+sF (x̄)‖2 +

τ

1− µ
+

2

ρ−k+s

‖∇k+sF (x̄)‖

≤
√
2κ(

√
µ1:t)

∥

∥x0 − x̄
∥

∥+

√

1

ρ−k+sρ
+
2k

‖∇k+sF (x̄)‖+
2

ρ−k+s

‖∇k+sF (x̄)‖ +
√

2τ

ρ−k+s(1− µ)

≤
√
2κ(

√
µ1:t)

∥

∥x0 − x̄
∥

∥+
3

ρ−k+s

‖∇k+sF (x̄)‖+
√

2τ

ρ−k+s(1− µ)
.
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