A Proof for Section

Throughout our proof, we presume without loss of generality that the elements in & =
(Z1,Z2,...,Zq) are in descending order by their magnitude, i.e., |Z1| > |Z2] > -+ > |Zs| and
Z; = 0for s < i < d. We also write [n] := {1,2,...,n} for brevity.

Recall that the partial hard thresholding algorithm with freedom parameter r proceeds as follows at
the ¢-th iteration:

2t =2t gV F(2tY)
Jt = S Usupp (VF(wtfl),r)
y' = HTy(2:)
5" = supp (y")
x' = argmin F(x)

supp(z)CS*

We first prove the results that appear in Section[3

Lemma 8 (Restatement of Lemma[B). Assume that F(x) is p,,-RSC and p3, -RSS. Consider the
PHT(r) algorithm with n < 1/p3,. Further assume that the sequence of {x'},>¢ satisfies

|lz* — || < a- 5" |2° — 2+,
l=* = || <7 |@g] + v,

for positive a, 11, 7, 2 and 0 < 5 < 1. Suppose that at the n-th iteration (n > 0), S™ contains the
indices of top p (in magnitude) elements of . Then, for any integer 1 < q < s — p, there exists an
integer A > 1 determined by

V2Zpig| > ay- A7 Hi{l"*‘lst} H +v

where

1
U =atpy + 91 + — || V2 F(2)],
Paj

such that S"+t2 contains the indices of top p + q elements of & provided that ¥ < /2 \Z iy for
some X\ € (0,1).
Proof. We aim at deriving a condition under which [p + ¢] € S"*2. To this end, it suffices to

enforce

min |Z;-L+A‘ > max ‘z?+A| . @)
J€[p+al €S

On one hand, for any j € [p + q|,

’Z;%FA‘ _ ‘(wn-l-A—l _ nVF(wn-i-A—l))j‘

Y

|jj| _ ‘(mn-l-A—l — - nVF(mn-‘rA—l))

J

v

[Tpral = (@47 =3 V@A) |

On the other hand, forall i € S,

’zf"’A’ = ‘(:B”*Afl —x— nVF(:B"JFA*l)). .

K3 ’

Hence, we know that to guarantee (7), it suffices to ensure for all j € [p + ¢] and i € S that

[Tpral > |(@ A7 =& = VP (@A)

S @A g -V F (@A) ]
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Note that the right-hand side is upper bounded as follows:

Lo onta-1_ - ntA— Lo nia1 - Nt A—
% ’(:c A g R A [+ % (&A1 = & — gV F (@A) |
S H (wn"rA—l _r— UVF(wn+A_1)){j7i} ’
< ||@ 2t =& V@AY 4 gV F@), |+ 0 [(VF@) G |

IN

Gon [|2" AT — 2| 4| V2P (2)]]
< gopa- fET 2" — &[] + ¢vr + ||V F (2)]
where ¢o, is given by Lemmall7l Note that o5, < 1 whenever 0 < n < 1/ p;r - Moreover,
e — all < 5 |zgwl + w2 < 7 |@g | + w2 = 7 @1, | + 2.
Put all the pieces together, we have

n+A—-1 _ T — nVF(:Bn+A_1))

1 1 _ _ A —
ﬁ‘(w j JFEKQC"JFA f-a—nVE@@AT) |
<oy BT |Bpaa, sy || + b2 + Y1 + | V2F(2)]|

1
<ay BAT @, o || ot + Y + o V2 F(2)]|.
2k

Therefore, when

_ 1|~ 1 _
V2Zpigl > ay - g7 @1,y | + %2 + 01 + o7 IV2E@)I,
2k

we always have (7). Note that the above holds as far as ¥ := atps + ¢ + p% IV2F(Z)| is strictly
2k
smaller than /2 |Z,|. O

Theorem 9 (Restatement of Theorem [6). Assume same conditions as in Lemma[3 Then PHT(r)

successfully identifies the support of T using (21012%12/[3) + 1og§§g'y(/1(/167)A)) + 2) s number of itera-

tions.

Proof. We partition the support set S = [s] into K folds S, Sa, ..., Sk, where each S; is defined
as follows:

Si: {Si71+1,---,8i}, V1 SZSK
Here, s) = 0 and for all 1 < ¢ < K, the quantity s; is inductively given by

1
S; = max{q: si-1+1<g<sand |z, > 7 ‘i‘si71+1‘ }

7

In this way, we note that for any two index sets .S; and S;, S; N S; = 0 if i # j. We also know by
the definition of s; that

1 .
%, 41| < %lfc&-,ﬁly, VI<i<K-1. (8)

Now we show that after a finite number of iterations, say n, the union of the S;’s is contained in 5",
i.e., the support set of the iterate =”. To this end, we prove that forall 0 < i < K,

U S, C Sno+n1+~~~+ni 9)
t=0

for some n;’s given below. Above, Sy = ().

We pick ng = 0 and it is easy to verify that Sy C S°. Now suppose that (@) holds for i — 1. That is,
the index set of the top s;_; elements of Z is contained in S™°+ " *"i-1_ Due to Lemmal[3] @) holds
for 7 as long as n; satisfies

V2|Z,| > ay B @ 11,0 ||+ T, (10)
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where U is given in Lemmal[3l Note that

2 2
+o s,

(s, 41)% |G + -+ + (Ts,_, +1)7 |9k
< (ZTory 1) (193] + 271 S| + - + 275 |Sk])
<2(25,)? (ISi] + 27" [Siga] + -+ + 27 [Sk]),

where the second inequality follows from (8)) and the last inequality follows from the definition of
q;. Denote for simplicity

Hi{s’ifl"'lv“')s} ||2

IN

Wi o= S| + 271 Sipa] + -+ 4+ 275 |Sk].
As we assumed ¥ < /2\Z i, We get

.....

Picking

ayyW,
logl/,@ T )\

guarantees (IQ). It remains to calculate the total number of iterations. In fact, we have

tmax:n0+n1+"'+nK

log(ay/(1 =)
log(1/8)

K 1, log(ay/(1 = \))
2102(1/7) <K ZW> () K

¢ K 2 i log(avy/(1 — A\

1 K
= logW;+ K- + 2K

21og(1/P8) —

INEY

~ 2log(1/8) |

K2 (logay/(1- )

a 210g(1/[3) 5K + ( log(1/8) - 2) K
¢ ( log2 log(cw/(l - ) +2> .

2log(1/8) log(1/5)
Above, ¢; immediately follows by observing that the logarithmic function is concave. (3 uses the
fact that after rearrangement, the coefficient of |S;] is Z;;B 277 which is always smaller than 2.

Finally, since the function a log(2s/a) is monotonically increasing with respectto a and 1 < a < s,
(3 follows. O

Lemma 10 (Restatement of Lemmal[7). Assume that F(x) satisfies the properties of RSC and RSS
at sparsity level k + s +r. Let p~ = p,, .. and pt = p:JrSJrT. Consider the support set
Jt =51 Usupp (VF(x'™1),r). We have forany0 < 0 < 1/p™,

ol < vt —0p7) 2 — al| + = IV F@)]
where v = \/s — r + 2. In particular, picking 0 = 1/p™ gives

1
ol < v (1=7) lo =t =l + Z IV F @

Proof. Let T = supp (VF(x'~!),r). Then J* = S*"' UT and S*~* NT = . Since T contains
the top r elements of VF(x!~!), we have that each element in 7'\ S is larger (in magnitude) than
thatin S\ 7. In particular, we observe for T' # S that

o) 1

el (WG | (LA C PR
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which implies

t—1 r—[TnS| =1y =1y
[ )] 2 g TP D sl = 57 (7P ) 0|

Since VF (!~ 1) is supported on St~1, the LHS reads as

[P ms] = TP s

Now we look at the RHS. It follows that

- OVF(x'!

~ 9 H * ) = &)\ sust-1)

H(VF(;Bt 1 S\TH - H VF . 1>)S\(TUS“1)
T H 2 = OV (@) = &) g (pusir) T Bs\(TUS )
1,_ 1 )
= |Zs\(zuse—)|| — 7 H (&' —O0VF(2') = @)\ gy
Hence,
25|

= [[&@s\(ruse-1) ||

gx/s—r—i—l‘ (x )T\(Sustfl)

Vs (@t - 0VF @) — ) o[+ | (@ - oV F@ ) - a)
<v(e! = 0VF@E") — 2)

<v|[(a' 7 = OVF(@' ) = 2+ OVF(3)) gl + VO (V@) pas]
<Vptsrr |27 =& + VO [(VF(@))pasll

where v = /s — r + 2 and the last inequality uses Lemmal[I8] Forany 0 < § < 1/p™, we have

L gVF(z'!) -z

+ H ('t —0VF(z" ") — j)S\(TUS‘*U

sl

25| < v(1-0m) ||2"~" — 2| + pi, Vs F(2)]].

A.1 Proof of Prop.2
Proof. Recall that we set k = s. Using Lemmal[TT] we have
F(z') = F(z) < p (F(2'™") - F(2)) ,

t t—1
where i, = 1 — 2p5,0(1 — np3,) - |St\5|ts,1\|i‘s\|5t,l‘. Now combining this with Prop.21l we have

3
2" — z|| < V2hy/pe - ||2° — 2| + P [VasE(2)]]-
2s
Note that before the algorithm terminates, 1 < ’S t\ S tfl‘ < r. Hence,

pe <1 — s =: 1.
It then follows that
[f — ]| < V2r(yp)" [« —wH+—IIV25 @) (11)
Lemma[I9tells us
=" — 2| <K~HwStH+ IV F(@)]]- (12)
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Hence, in light of Lemma[5] and Theorem[6] we obtain that PHT(r) recovers the support using at
most

B log 2 log(2k) = 2log(k/(1— X)) -
Fmax = (log(l/u)+10g(1/u) log(1/72) ”) Il

iterations. Note that picking 7 = O(1/p3,), we have = O(1 — 1) and log(1/p) = O(1/k). This
gives the O(sk log k) bound. O

Lemma 11. Consider the PHT(r) algorithm. Suppose that F(x) is p;_, ,-RSC and pa,-RSS. Using
the parameter k = s and n < 1/p3,, we have

F(a') = F(&) < p (F('™) - F(z)),

B n |St\st71|
where 1y =1 — 21p,5(1 — np3;) - [S\ST—I[+[S\S*— 1]

Proof. Using the RSS property, we have

+
F(z) = F(@'™') < (VF(@' ™), e —a'™) + 22 |2 — 2!

2

G t—1y Lt P; t
= <v5t\5t—1F(£B N ),zSt\St—1> + TS(HZSt\Sn—l

2
-1 2 -1
#llbngrs = wlibsn I+ [estig| )
¢z t—1y t + ||t 2
< VSt\St*lF‘(m ),zSt\St—l +p25 zst\st—l
¢s

—n(l— np{s) HVSt\Stle(wt_l)Hz .

Above, we observe that VF(x!~1!) is supported on St~1 and we simply docompose the support

set St U S'~! into three mutually disjoint sets, and hence (; holds. To see why (> holds, we
note that for any set Q C S'1, 2§, = :vf{l. Hence, 2l g1 = mg:ést,l. Moreover, since

:I:tsﬂl\st = ztSt,l\St and any element in ztst,l\st is not larger than that in ztSt\St,1 (recall that S*

where we use the fact that

< Hzg‘t\st—l
|S%\ S*| = |S*\ S*1|. Therefore, ¢, holds. Finally, we write Zgi\gi-1 = —nVgn g—1 F(xt™h)
and obtain (3.

is obtained by hard thresholding), we have ‘

t—1
mSt—l\St

Since x! is a minimizer of F'(x) over the support set S%, it immediately follows that

_ _ _ 2
Fla') ~ F(a'™) < F(zh) ~ F@@'™") < (1~ np},) || Vsn s Fl )|

Now we invoke Lemma[I2land pick n < 1/ pérs,

‘St \ St71|
[SEN ST 4 [\ ST

F(x') — F(z'") < —2mn(1 — np3,) (F(='') - F(z)),

which gives
F(a') = F(&) < p (F('™) - F(z)),

B n |St\st71|
where py = 1 — 277/’25(1 - 77/’25) T TSI\STIHIS\ST 1" L

Lemma 12. Consider the PHT(r) algorithm and assume F(x) is p,_, -RSC. Then for all t > 1,

[Vonse D] = 20,60 (Fa') - Fl@).
where
s
ST H IS\ 7]

Wy
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Proof. The lemma holds clearly for either St = S*~! or F(x!) < F(&). Hence, in the following
we only prove the result by assuming S # S'~! and F'(x!) > F(&). Due to the RSC property, we
have

F(z) - Fa'") — (VF(z' ),z — ') > @;S & — a1,
which implies
(VF(z'™ '), —z) > i;s |z — mt”H? + F(z'™Y — F(z)
> /200, |2 — 2| VF (2 1) — F(x).

By invoking Lemma[[3with w = VF(z'~1) and 2 = —Z therein, we have

VF t—1\ _ = < |S\St71| 1V F t—1 N A
(VF(@'™), —z) < ST\ St 1| + 1| Vsasea F(a' || - [[Zsyse1 |
S St*l
Y W +1[Vense F@ |- (@ = 2')s\s0 |
15\ 51 o
= |5\ s +1|[Vense F@ | - 2 - 2|

It is worth mentioning that the first inequality above holds because V F(z!~!) is supported on St~1
and '\ S*~! contains the |S*\ S*~!| number of largest (in magnitude) elements of VF (x'~!)
Therefore, we obtain the result. O

Lemma 13 (Lemma 1 in [28]). Let w and z be two distinct vectors and let W = supp (u)Nsupp (2).
Also, let U be the support set of the top r (in magnitude) elements in w. Then, the following holds
forallr > 1:

(w2) < | B2 o haw

A.2 Proof of Theorem[3|

Proof. Let p~ = p;,, . and pt = ijJrr. Let ¢ := ¢954~ = 1 — np~ be the quantity given in
Lemma[l7l Using Lemmal[l4] we obtain

2v+4

et — 2|l < (VEon + v — 1)) 2~ ~ 2] + IVer F@)]),

where v = /s — 1+ 2. We need to ensure that the convergence coefficient is smaller than 1.
Consider n =7’ /p™ with € (0, 1] for which ¢ = 1 — 1/ /. It follows that
V36K 4+ v(k = 1) = V2(k — 1f) + v(k — 1) < (V2 + )k —1f).

Hence, when we pick 1 — \/§1+V < 1’ < 1, and the condition number satisfies

1
\/§—|—V7

the sequence of ¢ — Z contracts. On the other hand, using Lemma[l9 we get

k<n +

1
l* — 2| < & ||| + = IV F @)

Hence, applying Lemma[3land Theorem[f] we obtain the result. o
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Lemma 14. Consider the PHT(r) algorithm with k = s. Suppose that F(x) is p,,, ,.-RSC and
pérSJrT-RSS. Further suppose that k < 2. Let the step size 1 < l/p;rerT. Then it holds that

2v+4

||of — 2| < (\/5(;5/1—1— v(k — 1)) |zt —z| + IVstr F(Z)],

p25+r

where g =1 —npy . andv = /s — 1 + 2.

Proof. Consider the vector z'.. It is easy to see that J* \ S* contains the  smallest elements of z%..
Hence, for any subset 7" C J* such that |T'| > r, we have

t t
(Ere A
In particular, we choose T' = J t \ S and obtain
o] < ]

Eliminating the common contribution from J* \ (S* U S) gives

“zsfﬁS\S“ < HZS“OS“\SH' (13)

The LHS of (13) reads as

"zstms\st = ||($t_1 — ’I]VF(:Bt_l) — j)(]tms\st + j(]t\st H
2 HCEJ*\StH - H(mtfl —nVF(@'™") — &) jng st
while the RHS ([3) is given by
Hzf]tﬂst\SH = H(wtil - ’I]VF(:Ittil) — @)Jtmst\SH .

Hence, we have
|Zsost]| < [[(@ 7 =nVF (@) — &) easyse || + [[(@ 7 = nVF(@ ") — &) jenses||
<2 H(mt_l —nVF(x™ —z) 5 ||
<V20apy || — 2| + V20 | Vi F ()],

where we use Lemma I8 for the last inequality and ¢os4r = 1 — np5,, forn < 1/p3, ... On the
other hand, Lemma[7l shows that

1 v
T S 1—= =z + — vs T‘F_ ’
ol < v (1= 1) 1o =2+ 2 19 P @)

where v = /s — r + 2. The fact ST = (J*\ S*) U J? implies

1z ]| < fl@sse]| + [[@ll

< (\/§¢25+T +v <1 - %)) o' — 2| + (x/in+ i ) |Visr F(2)]| -

p2s+7‘

Next, we invoke Lemma[I9]to get

1
l=* 2| < #@g]| + ———IVeF @)l
2s+r

Therefore,

o' —z| < (\/§¢25+m+ v(k — 1)) |z — 2| + <\/§771€+ ve o 1 ) [VstrF(2)]|

p2s+r p2s+r
< (Vadauirn +v(n— 1) 2" — 2] + 229, (@)
2s+r

where we use the assumption that k < 2 and n < 1/p3, +r < 1/ps,, for the last inequality. O
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A.3 Proof of Theoremd

Proof. Using LemmalI3] we have
F(z') - F(z) <p(F(z'™") - F(z)),
where

po1o o3 (1 = np3)
o~ WPer],

Now Prop.[21] suggests that

3
Hwt - 53“ < V2 (\/ﬁ)t Hwo - fEH + p—_ IVits F(@)]
2k

and Lemma[T9implies
_ _ 1 _
12" - 2| < rf|lZgel| + — IViE (@) -
Pa,
Combining these with Lemmal[3 and Theorem[6] we complete the proof. o

Lemma 15. Consider the PHT(r) algorithm. Suppose that F(x) is p,,-RSC and p;rk-RSS, and
let k = p;rk/p;k be the condition number. Picking the step size 0 < n < 1/p;rk and the sparsity

parameter k > s + (1 + m) min{r, s}, then we have
2k

Fat) - F(att) < -2l — 1P) : 102) (p(a 1) — F(z)).
Proof. Using Lemmal[I6]we obtain
_1- 1P3), Hzt - wtﬂHQ

2n o '

Note that for the right-hand side, we may expand it as follows:

F(z') — F(z'™1) <

12 _ _ —1\ |2
||Zg't —at 1|| = | :I:tstl — ! — Ve F(z! 1)||
2
= H—.’Bg:}l\st — nvst\sth(mt*l)H
where we use the fact that '~ is supported on S*~1 and VF (x!~1) is support on S*—1 for the

second equality, and the third one follows in that the support sets are disjoint. It then follows quickly
that

t—1
mSt—l\St

3

2
+ 772 HVSt\St—lF(mt_l)Hz

_ +
Flat) — Fat-1) < - L2120 gp%)n Vs ge-r F(@ )|

It remains to lower bound the right-hand side in terms of F/(z!~!) — F(Z). In fact, in the following,
we show that
142 _ _ _

[Vsse-1 F(z'™)||" = poy, (F(z 1) — F(&)) . (14)

This suggests
F(.’I}t) _ F(cct_l) < _np2k( 5 ank) (F(.’Bt_l) _ F(.’f}))

which completes the proof. In the sequel, we prove the inequality (I4) by discussing the size of the
support set St \ S~

First, we consider r > s. Then it is possible that |St \ Stfl‘ > s.
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Case 1. |S*\ §'~!| > s. Using the RSC property, we have

P2 o - a1

<F(@)—F(z'" ") = (VF(@'" "),z —z' ")
F

@)~ F@' ) + 2 o — o1 + || Vsuses P )|
P2k

= F(@) — F@ ) + 2 & — o' + — |Vt Pl )|
2 2Py,
Therefore, we get
||VS\St71F($t_1)||2 > 2p5; (F(:Bt_l) — F(i}) .

Recall that S\ S~ contains the largest elements of ztSTl. Hence, for any support set T C S*t—1
with [T'| < |S*\ S*~!|, we have

25l = [

In particular, we can choose 7' = S\ 5~ as we assumed that |S* \ S*~*| > s > |T'|. Then it holds
that

2

2
t
> st\st—l

t
stt\st—l

Note that for the left-hand side, zfgt\st,l = —nVgn gt-1 F(z!~1) while for the right-hand side, it
is exactly equal to —1V g\ gt—1 F(x'~1). This completes the proof of the first case.

Case 2. ’St \ Stfl‘ < 5 < r. The proof of this part is more involved. We still begin with the RSC
property, which gives

P2t lg — o' |* < F(@) - F(a'™) - (VP2 ")z —2' ")
< F(@) ~ P 4 2 e L 9 P
2k

= F@) - P + B o - ot = [V Pt
P2y,

=F(z) - F(a'"") + pTi_k |z — 2" + pL_ IVs\usen P )|

2k

1
+ — ‘’V(Sf\sffl)msF(mtil)H2
Pag

<F(@) - F(='")+ pTi_k |z — 2" + pi_ Vs (stuse—n Fa =)
2k

1
+__HVSt\5t—1F(mt71)H2. (15)
Pay,

Note that the last term is retained for deduction. What we need to show is a proper bound of the

t—l)H2

term Hvs\(stust—l)F(m above. First, we observe that

2§\ (stust-1) = —MVs\(stust-1) F(&'™1).

Next, we compare the elements of S\ (S? U S*™1) to those in (S*N.S*~1)\ S. For convenience, we
denote T' = J*\ (S*~'US?). Since S* contains the k largest elements of 2%, those of (S'NS*~1)\ S
are larger than those in 7. On the other hand, recall that elements in J* \ S*~! are larger than those
in J¢ due to the partial hard thresholding. Since T is a subset of .J* \ S*~1, we have that T is larger
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than .J?. Consequently, elements in (S* N S*~1)\ S are larger than those in 7' U J? = St=1U St
This suggests that

2
HztS\(stustfl) ’ szstmstfl)\SH
IS\ (SPUSH T (St NS\ S|
Note that [S*\ 5" < s implies |(S* N S*~1)\ S| > k — 2s. Therefore,

7’]2 HVS\(Stustfl)F(wt_l)‘f < k%Qs }

2
Estlmst 1) —ﬁV(Stmstfl)\sF(th_l)H

= H stosr-ns||

—&)(sinst-ins||”

s —1 2
sHsuw —aff.
Plugging the above into (I3), we obtain
Pt |l = 12 _ _ Pok |1~ _1p2 s _ _1p2
%kH:c—wt 1H < F(z) — F(x! 1)—}-%’““3@—:& 1H +m”m—mt 1H

1
+ pT HvSt\St—lF(wtil)Hz.

Picking k > 2s + gives

2(*)2
2

)

P2 g o < F@) - P + 22 oot 4 Vs ()
Pay

which is exactly the claim (I4).

Now we consider the parameter setting 7 < s. In this case, \ St_l} cannot be greater than s. In

fact, like we have done for Case 2, we can show that

r 1 2
7 |[Vosios F@ | < m—— =" —2|".
Plugging the above into (T3), we obtain
@7_&12 -\ t—1 p_2_k—_t712 r = t—1]2
B o - < F@) - P + 2 o -t e 2|

1
+ p—_ HVSt\St—lF(wtil)‘f.

Using k > s +r + 2( A we prove (14).
Overall, we find that picking k > s + (1 + 3 75 )2) min{r, s} always guarantees the result.  [J
Lemma 16. Consider the PHT(r) algorithm. Suppose that F(z) is p3, -RSS. We have

F(z') - F(z™1) <

1— +
el

Proof. We partition z* into four disjoint parts: S*~1\ S*, §*=1 N 8%, S§*\ S*~! and Jt. It then
follows that

2k = 2'° = |2 | + |25
2
< e+
‘ 2
= [l
=’ |VF@ |

21



On the other hand, the LHS reads as
24 — 21| = ||z — 2L + v E Y
= ||z% — :ct_luz +n? HVF(azt_l)H2 +2n(VF(z'" "), 2% —2' ).
Hence,
(VF(x!™Y), 2 — 2 1) < _% [Ea
Using the RSS property, we have

F(z') - F(z'") < F(y') - F(z'™")
=F(z4) - F(z'™)

IN

t—1\ t -1 p_;rkt_t—12
(VF(@' ), 2 —a' ") + 5 |25 — 1|

1— +
- L ot — o

IN

B Technical Lemmas

Lemma 17. Suppose that F(x) is p,-RSC and p}-RSSfor some sparsity level K > 0. Then for
all 0 € R, all vectors x, €' € RY and for any Hessian matrix H of F(x), we have
[(z, (I —0H)z")| < ¢k ||| - [lz'],
provided that |supp (z) U supp (')| < K, and
(I —6H)z)s| < ¢x |||, if |SUsupp (z)] < K,

where

ox = max { |0px — 1, |0pf — 1| }.

Proof. Since H is a Hessian matrix, we always have a decomposition H = AT A for some matrix
A. Denote T = supp () U supp (z’). By simple algebra, we have

[z, (I —0H)z')| = |(z,z') — 0 (Ax, Azx')|
Sz, 2!y — 0 (Arx, Apa)|
~ (. (1 - 047 A1)")

IN

|1 -0AfAz||- o] - o]

¢
§2 Inax{|9p;< - 1} , }9/)}} - 1}} el - [l -

Here, ¢; follows from the fact that supp («) Usupp (y) = T and (> holds because the RSC and RSS
properties imply that the singular values of any Hessian matrix restricted on an K -sparse support set
are lower and upper bounded by p;- and p}, respectively.

For some index set S subject to |S Usupp ()| < K, letx’ = (I — 6H)x)s. We immediately
obtain

2
[&']” = (', (I — 0H)a) < dc [|2']| - |||,
indicating

(I —0H)z)s|| < ¢ ||z .
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Lemma 18. Suppose that F(x) is p-RSC and p}-RSSfor some sparsity level K > 0. For all

vectors x, ' € R? and support set T such that |supp (z — x') UT| < K, the following holds for
all g € R:

l(x —a' = OVE(z) + OVEF(x')) 7]l < ¢x @ — 2|,

where ¢ is given in LemmallZ]

Proof. In fact, for any two vectors x and &', there always exists a quantity ¢ € [0, 1], such that
VF(z) - VF(z') = V?F (tx + (1 — t)z') (x — 2').
Let H = V2F (tx + (1 — t)x’). We write
|(x— ' —OVF(x)+ OVF(z'))|

= |l(z — ' - 0H (z — ='))7||

= (L - 6H)(z — a'))7||

< ¢k |z —a'|,
where the last inequality applies Lemmal[I7l o

Lemma 19. Suppose that F(x) is p-RSC and p};-RSSfor some sparsity level K > 0. Let k :=
P1e/px- For all vectors x, ' € R with |supp (x) U supp (z')| < K, we have

le — 2'|| < & ||z H+—H(VF( ) = VE@)r],

lta=a)rll < (1= ) lle = + = (VF(@) - VF@))rl.
where T' is the support set of x.

Proof. We begin with bounding the ¢2-norm of the difference of « and ’. Let Q = supp («’). For
any positive scalar € R we have
|@ —a)r|l* = (& — 2’ — OVF(2) + 0VF (@), (x — 2')r)
+0(VF(z) - VF(@@), (z - 2')r)
< (@ —a' = 0VF(z) + OVF(@))r| - |(z — 2')7||
+O(VE(@) = VE(@) 7]l - [[(2 — )7
<z —a' = 0(VF(z))rua + 0(VE (@) ruall - (@ — )|
+O0|(VE(@) = VE(@) 7|l - [[(2 — )7
<okl — 2| - [l(x — 2zl + 0 [(VF(z) = VE (@)l - |(z — ")zl
where we recall that ¢ is given in Lemma[I7] Dividing both sides by ||(x — &) || gives

(@~ a')r]| < éx | — /|| + 0 (VF(x) — VF(')rl].

On the other hand,
|z —'|| < |(x —a)r| + [[(z — ')
< ox llz — /|| + 0| (VF(2) = VF(@)r] + [[a%]
Hence, we have
&~ ') < - || + ——— |(VF(2) - VF(a))zl].
1—or " T0  1—-¢k

Picking 0 = 1/p};, we have ¢ = 1 — L. Plugging these into the above and noting that p}; > pj
complete the proof.

O
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Lemma 20. Suppose that F(x) is p-RSC. Then for any vectors x and «' with || — '||, < K,
the following holds:

12— o] < \/2max{F<w> — F(a).0} | 2|[(VE@))r|

— — )

Pr Pr

where T = supp (x — &').
Proof. The RSC property immediately implies
F(2) - F(@') > (VF(@)),x - ') + 2 |}z - /|

2
I

Y

~ IVrF@)| - o - 2| + 5 |l - o
Discussing the sign of F'(x) — F(«’) and solving the above quadratic inequality completes the

proof. O

Proposition 21. Suppose that F(x) is p;_ ,-RSC and pa-RSS. Let ks := p;k/p,:_H. Suppose that
forallt > 1, xt is k-sparse and the following holds:

F(z'") = F(®) < (F(='"") = F(z)) +,
where 0 < p; < p < 1 for some p, 7 > 0 and T is an arbitrary s-sparse signal. Then,

2T

3
[ — 2| < V2r(yimpa ) [[2° - 2| + —— [VesF(@)] + | [ ———
Prts Pregs(1 = 1)

Proof. The RSS property implies that

F(a") = F(&) < (VF(@).a" —2)+ 22 o — g

3 +
P _112 1 _ P 2
<5 o = all* + 5 e 1V F @) + 5 |2 - 2]

1
<phy |2 — 2| + 5T Vi F (@)

Denote fi1.4 = p1 b2 - . . 4. We obtain

- 12 1 g T
F(a') = F(2) < pap® o0 = 2"+ —— Vi F@)[° + 17—
Py, H

By Lemma 20} we have

!w ol
0 — 2 T 2 _
papy 20 — 2| to T ||Vk+s @)II” + — F(z)|
k-i-s -4 Pr+s
\/_ 0 _ 1 _ 2 _ 2T
<V2e(Vine) |[2° = 2| + | [ = [Vits F (@) + — Vit F(2)] + —a_
PrysPok Pr+ts Pk+s( — )
0 _ 3 _ 2T
< V2“(\/N1:t)H€B —fBH‘F,—Hvk-rsF(iB)H'F —_— -
Pl+s kars(l - /J’)
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