
Hindsight Experience Replay

Marcin Andrychowicz⇤, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,
Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel†, Wojciech Zaremba†

OpenAI

Abstract

Dealing with sparse rewards is one of the biggest challenges in Reinforcement
Learning (RL). We present a novel technique called Hindsight Experience Replay
which allows sample-efficient learning from rewards which are sparse and binary
and therefore avoid the need for complicated reward engineering. It can be com-
bined with an arbitrary off-policy RL algorithm and may be seen as a form of
implicit curriculum.
We demonstrate our approach on the task of manipulating objects with a robotic
arm. In particular, we run experiments on three different tasks: pushing, sliding,
and pick-and-place, in each case using only binary rewards indicating whether or
not the task is completed. Our ablation studies show that Hindsight Experience
Replay is a crucial ingredient which makes training possible in these challenging
environments. We show that our policies trained on a physics simulation can
be deployed on a physical robot and successfully complete the task. The video
presenting our experiments is available at https://goo.gl/SMrQnI.

1 Introduction
Reinforcement learning (RL) combined with neural networks has recently led to a wide range of
successes in learning policies for sequential decision-making problems. This includes simulated
environments, such as playing Atari games (Mnih et al., 2015), and defeating the best human player
at the game of Go (Silver et al., 2016), as well as robotic tasks such as helicopter control (Ng et al.,
2006), hitting a baseball (Peters and Schaal, 2008), screwing a cap onto a bottle (Levine et al., 2015),
or door opening (Chebotar et al., 2016).

However, a common challenge, especially for robotics, is the need to engineer a reward function
that not only reflects the task at hand but is also carefully shaped (Ng et al., 1999) to guide the
policy optimization. For example, Popov et al. (2017) use a cost function consisting of five relatively
complicated terms which need to be carefully weighted in order to train a policy for stacking a
brick on top of another one. The necessity of cost engineering limits the applicability of RL in the
real world because it requires both RL expertise and domain-specific knowledge. Moreover, it is
not applicable in situations where we do not know what admissible behaviour may look like. It is
therefore of great practical relevance to develop algorithms which can learn from unshaped reward
signals, e.g. a binary signal indicating successful task completion.

One ability humans have, unlike the current generation of model-free RL algorithms, is to learn
almost as much from achieving an undesired outcome as from the desired one. Imagine that you are
learning how to play hockey and are trying to shoot a puck into a net. You hit the puck but it misses
the net on the right side. The conclusion drawn by a standard RL algorithm in such a situation would
be that the performed sequence of actions does not lead to a successful shot, and little (if anything)

⇤
marcin@openai.com

† Equal advising.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

would be learned. It is however possible to draw another conclusion, namely that this sequence of
actions would be successful if the net had been placed further to the right.

In this paper we introduce a technique called Hindsight Experience Replay (HER) which allows the
algorithm to perform exactly this kind of reasoning and can be combined with any off-policy RL
algorithm. It is applicable whenever there are multiple goals which can be achieved, e.g. achieving
each state of the system may be treated as a separate goal. Not only does HER improve the sample
efficiency in this setting, but more importantly, it makes learning possible even if the reward signal is
sparse and binary. Our approach is based on training universal policies (Schaul et al., 2015a) which
take as input not only the current state, but also a goal state. The pivotal idea behind HER is to replay
each episode with a different goal than the one the agent was trying to achieve, e.g. one of the goals
which was achieved in the episode.

2 Background
2.1 Reinforcement Learning
We consider the standard reinforcement learning formalism consisting of an agent interacting with
an environment. To simplify the exposition we assume that the environment is fully observable.
An environment is described by a set of states S, a set of actions A, a distribution of initial states
p(s0), a reward function r : S ⇥A ! R, transition probabilities p(st+1|st, at), and a discount factor
� 2 [0, 1].

A deterministic policy is a mapping from states to actions: ⇡ : S ! A. Every episode starts with
sampling an initial state s0. At every timestep t the agent produces an action based on the current state:
at = ⇡(st). Then it gets the reward rt = r(st, at) and the environment’s new state is sampled from
the distribution p(·|st, at). A discounted sum of future rewards is called a return: Rt =

P1
i=t �

i�t
ri.

The agent’s goal is to maximize its expected return Es0 [R0|s0]. The Q-function or action-value
function is defined as Q⇡

(st, at) = E[Rt|st, at].

Let ⇡⇤ denote an optimal policy i.e. any policy ⇡

⇤ s.t. Q⇡⇤
(s, a) � Q

⇡
(s, a) for every s 2 S, a 2 A

and any policy ⇡. All optimal policies have the same Q-function which is called optimal Q-function
and denoted Q

⇤. It is easy to show that it satisfies the following equation called the Bellman equation:

Q

⇤
(s, a) = Es0⇠p(·|s,a)


r(s, a) + �max

a02A
Q

⇤
(s

0
, a

0
)

�
.

2.2 Deep Q-Networks (DQN)
Deep Q-Networks (DQN) (Mnih et al., 2015) is a model-free RL algorithm for discrete action
spaces. Here we sketch it only informally, see Mnih et al. (2015) for more details. In DQN we
maintain a neural network Q which approximates Q

⇤. A greedy policy w.r.t. Q is defined as
⇡Q(s) = argmaxa2AQ(s, a). An ✏-greedy policy w.r.t. Q is a policy which with probability ✏ takes
a random action (sampled uniformly from A) and takes the action ⇡Q(s) with probability 1� ✏.

During training we generate episodes using ✏-greedy policy w.r.t. the current approximation of
the action-value function Q. The transition tuples (st, at, rt, st+1) encountered during training are
stored in the so-called replay buffer. The generation of new episodes is interleaved with neural
network training. The network is trained using mini-batch gradient descent on the loss L which
encourages the approximated Q-function to satisfy the Bellman equation: L = E (Q(st, at)� yt)

2,
where yt = rt + �maxa02A Q(st+1, a

0
) and the tuples (st, at, rt, st+1) are sampled from the replay

buffer1.

2.3 Deep Deterministic Policy Gradients (DDPG)
Deep Deterministic Policy Gradients (DDPG) (Lillicrap et al., 2015) is a model-free RL algorithm
for continuous action spaces. Here we sketch it only informally, see Lillicrap et al. (2015) for more
details. In DDPG we maintain two neural networks: a target policy (also called an actor) ⇡ : S ! A
and an action-value function approximator (called the critic) Q : S ⇥A ! R. The critic’s job is to
approximate the actor’s action-value function Q

⇡ .
1The targets yt depend on the network parameters but this dependency is ignored during backpropagation.

Moreover, DQN uses the so-called target network to make the optimization procedure more stable but we omit it
here as it is not relevant to our results.

2

Episodes are generated using a behavioral policy which is a noisy version of the target policy, e.g.
⇡b(s) = ⇡(s) + N (0, 1). The critic is trained in a similar way as the Q-function in DQN but the
targets yt are computed using actions outputted by the actor, i.e. yt = rt + �Q(st+1,⇡(st+1)).
The actor is trained with mini-batch gradient descent on the loss La = �EsQ(s,⇡(s)), where s

is sampled from the replay buffer. The gradient of La w.r.t. actor parameters can be computed by
backpropagation through the combined critic and actor networks.

2.4 Universal Value Function Approximators (UVFA)
Universal Value Function Approximators (UVFA) (Schaul et al., 2015a) is an extension of DQN to
the setup where there is more than one goal we may try to achieve. Let G be the space of possible
goals. Every goal g 2 G corresponds to some reward function rg : S ⇥A ! R. Every episode starts
with sampling a state-goal pair from some distribution p(s0, g). The goal stays fixed for the whole
episode. At every timestep the agent gets as input not only the current state but also the current goal
⇡ : S ⇥ G ! A and gets the reward rt = rg(st, at). The Q-function now depends not only on a
state-action pair but also on a goal Q⇡

(st, at, g) = E[Rt|st, at, g]. Schaul et al. (2015a) show that in
this setup it is possible to train an approximator to the Q-function using direct bootstrapping from the
Bellman equation (just like in case of DQN) and that a greedy policy derived from it can generalize
to previously unseen state-action pairs. The extension of this approach to DDPG is straightforward.

3 Hindsight Experience Replay
3.1 A motivating example
Consider a bit-flipping environment with the state space S = {0, 1}n and the action space A =

{0, 1, . . . , n� 1} for some integer n in which executing the i-th action flips the i-th bit of the state.
For every episode we sample uniformly an initial state as well as a target state and the policy gets a
reward of �1 as long as it is not in the target state, i.e. rg(s, a) = �[s 6= g].

Figure 1: Bit-flipping experi-
ment.

Standard RL algorithms are bound to fail in this environment for
n > 40 because they will never experience any reward other than �1.
Notice that using techniques for improving exploration (e.g. VIME
(Houthooft et al., 2016), count-based exploration (Ostrovski et al.,
2017) or bootstrapped DQN (Osband et al., 2016)) does not help
here because the real problem is not in lack of diversity of states
being visited, rather it is simply impractical to explore such a large
state space. The standard solution to this problem would be to use
a shaped reward function which is more informative and guides the
agent towards the goal, e.g. rg(s, a) = �||s � g||2. While using a
shaped reward solves the problem in our toy environment, it may be
difficult to apply to more complicated problems. We investigate the
results of reward shaping experimentally in Sec. 4.4.

Instead of shaping the reward we propose a different solution which does not require any domain
knowledge. Consider an episode with a state sequence s1, . . . , sT and a goal g 6= s1, . . . , sT which
implies that the agent received a reward of �1 at every timestep. The pivotal idea behind our approach
is to re-examine this trajectory with a different goal — while this trajectory may not help us learn
how to achieve the state g, it definitely tells us something about how to achieve the state sT . This
information can be harvested by using an off-policy RL algorithm and experience replay where we
replace g in the replay buffer by sT . In addition we can still replay with the original goal g left intact
in the replay buffer. With this modification at least half of the replayed trajectories contain rewards
different from �1 and learning becomes much simpler. Fig. 1 compares the final performance of
DQN with and without this additional replay technique which we call Hindsight Experience Replay
(HER). DQN without HER can only solve the task for n  13 while DQN with HER easily solves
the task for n up to 50. See Appendix A for the details of the experimental setup. Note that this
approach combined with powerful function approximators (e.g., deep neural networks) allows the
agent to learn how to achieve the goal g even if it has never observed it during training.

We more formally describe our approach in the following sections.

3.2 Multi-goal RL
We are interested in training agents which learn to achieve multiple different goals. We follow the
approach from Universal Value Function Approximators (Schaul et al., 2015a), i.e. we train policies

3

and value functions which take as input not only a state s 2 S but also a goal g 2 G. Moreover, we
show that training an agent to perform multiple tasks can be easier than training it to perform only
one task (see Sec. 4.3 for details) and therefore our approach may be applicable even if there is only
one task we would like the agent to perform (a similar situation was recently observed by Pinto and
Gupta (2016)).

We assume that every goal g 2 G corresponds to some predicate fg : S ! {0, 1} and that the agent’s
goal is to achieve any state s that satisfies fg(s) = 1. In the case when we want to exactly specify the
desired state of the system we may use S = G and fg(s) = [s = g]. The goals can also specify only
some properties of the state, e.g. suppose that S = R2 and we want to be able to achieve an arbitrary
state with the given value of x coordinate. In this case G = R and fg((x, y)) = [x = g].

Moreover, we assume that given a state s we can easily find a goal g which is satisfied in this state.
More formally, we assume that there is given a mapping m : S ! G s.t. 8s2Sfm(s)(s) = 1. Notice
that this assumption is not very restrictive and can usually be satisfied. In the case where each goal
corresponds to a state we want to achieve, i.e. G = S and fg(s) = [s = g], the mapping m is just an
identity. For the case of 2-dimensional state and 1-dimensional goals from the previous paragraph
this mapping is also very simple m((x, y)) = x.

A universal policy can be trained using an arbitrary RL algorithm by sampling goals and initial states
from some distributions, running the agent for some number of timesteps and giving it a negative
reward at every timestep when the goal is not achieved, i.e. rg(s, a) = �[fg(s) = 0]. This does not
however work very well in practice because this reward function is sparse and not very informative.

In order to solve this problem we introduce the technique of Hindsight Experience Replay which is
the crux of our approach.
3.3 Algorithm
The idea behind Hindsight Experience Replay (HER) is very simple: after experiencing some episode
s0, s1, . . . , sT we store in the replay buffer every transition st ! st+1 not only with the original
goal used for this episode but also with a subset of other goals. Notice that the goal being pursued
influences the agent’s actions but not the environment dynamics and therefore we can replay each
trajectory with an arbitrary goal assuming that we use an off-policy RL algorithm like DQN (Mnih
et al., 2015), DDPG (Lillicrap et al., 2015), NAF (Gu et al., 2016) or SDQN (Metz et al., 2017).

One choice which has to be made in order to use HER is the set of additional goals used for replay.
In the simplest version of our algorithm we replay each trajectory with the goal m(sT), i.e. the goal
which is achieved in the final state of the episode. We experimentally compare different types and
quantities of additional goals for replay in Sec. 4.5. In all cases we also replay each trajectory with
the original goal pursued in the episode. See Alg. 1 for a more formal description of the algorithm.

HER may be seen as a form of implicit curriculum as the goals used for replay naturally shift from
ones which are simple to achieve even by a random agent to more difficult ones. However, in contrast
to explicit curriculum, HER does not require having any control over the distribution of initial
environment states. Not only does HER learn with extremely sparse rewards, in our experiments
it also performs better with sparse rewards than with shaped ones (See Sec. 4.4). These results are
indicative of the practical challenges with reward shaping, and that shaped rewards would often
constitute a compromise on the metric we truly care about (such as binary success/failure).

4 Experiments
The video presenting our experiments is available at https://goo.gl/SMrQnI.
4.1 Environments
The are no standard environments for multi-goal RL and therefore we created our own environments.
We decided to use manipulation environments based on an existing hardware robot to ensure that the
challenges we face correspond as closely as possible to the real world. In all experiments we use a
7-DOF Fetch Robotics arm which has a two-fingered parallel gripper. The robot is simulated using
the MuJoCo (Todorov et al., 2012) physics engine. The whole training procedure is performed in
the simulation but we show in Sec. 4.6 that the trained policies perform well on the physical robot
without any finetuning.

Policies are represented as Multi-Layer Perceptrons (MLPs) with Rectified Linear Unit (ReLU)
activation functions. Training is performed using the DDPG algorithm (Lillicrap et al., 2015) with

4

Algorithm 1 Hindsight Experience Replay (HER)
Given:
• an off-policy RL algorithm A, . e.g. DQN, DDPG, NAF, SDQN
• a strategy S for sampling goals for replay, . e.g. S(s0, . . . , sT) = m(sT)

• a reward function r : S ⇥A⇥ G ! R. . e.g. r(s, a, g) = �[fg(s) = 0]

Initialize A . e.g. initialize neural networks
Initialize replay buffer R
for episode = 1,M do

Sample a goal g and an initial state s0.
for t = 0, T � 1 do

Sample an action at using the behavioral policy from A:
at ⇡b(st||g) . || denotes concatenation

Execute the action at and observe a new state st+1

end for
for t = 0, T � 1 do

rt := r(st, at, g)

Store the transition (st||g, at, rt, st+1||g) in R . standard experience replay
Sample a set of additional goals for replay G := S(current episode)
for g

0 2 G do
r

0
:= r(st, at, g

0
)

Store the transition (st||g0, at, r0, st+1||g0) in R . HER
end for

end for
for t = 1, N do

Sample a minibatch B from the replay buffer R
Perform one step of optimization using A and minibatch B

end for
end for

Adam (Kingma and Ba, 2014) as the optimizer. See Appendix A for more details and the values of all
hyperparameters.

We consider 3 different tasks:
1. Pushing. In this task a box is placed on a table in front of the robot and the task is to move

it to the target location on the table. The robot fingers are locked to prevent grasping. The
learned behaviour is a mixture of pushing and rolling.

2. Sliding. In this task a puck is placed on a long slippery table and the target position is outside
of the robot’s reach so that it has to hit the puck with such a force that it slides and then
stops in the appropriate place due to friction.

3. Pick-and-place. This task is similar to pushing but the target position is in the air and the
fingers are not locked. To make exploration in this task easier we recorded a single state in
which the box is grasped and start half of the training episodes from this state2.

The images showing the tasks being performed can be found in Appendix C.

States: The state of the system is represented in the MuJoCo physics engine.
Goals: Goals describe the desired position of the object (a box or a puck depending on the task) with
some fixed tolerance of ✏ i.e. G = R3 and fg(s) = [|g � s

object

|  ✏], where s

object

is the position
of the object in the state s. The mapping from states to goals used in HER is simply m(s) = s

object

.
Rewards: Unless stated otherwise we use binary and sparse rewards r(s, a, g) = �[fg(s0) = 0]

where s

0 if the state after the execution of the action a in the state s. We compare sparse and shaped
reward functions in Sec. 4.4.
State-goal distributions: For all tasks the initial position of the gripper is fixed, while the initial
position of the object and the target are randomized. See Appendix A for details.
Observations: In this paragraph relative means relative to the current gripper position. The policy is

2This was necessary because we could not successfully train any policies for this task without using the
demonstration state. We have later discovered that training is possible without this trick if only the goal position
is sometimes on the table and sometimes in the air.

5

given as input the absolute position of the gripper, the relative position of the object and the target3,
as well as the distance between the Þngers. The Q-function is additionally given the linear velocity of
the gripper and Þngers as well as relative linear and angular velocity of the object. We decided to
restrict the input to the policy in order to make deployment on the physical robot easier.
Actions: None of the problems we consider require gripper rotation and therefore we keep it Þxed.
Action space is4-dimensional. Three dimensions specify the desired relative gripper position at
the next timestep. We use MuJoCo constraints to move the gripper towards the desired position but
Jacobian-based control could be used instead4. The last dimension speciÞes the desired distance
between the2 Þngers which are position controlled.
StrategyS for sampling goals for replay: Unless stated otherwise HER uses replay with the goal
corresponding to the Þnal state in each episode, i.e.S(s0, . . . , sT) = m(sT). We compare different
strategies for choosing which goals to replay with in Sec. 4.5.

4.2 Does HER improve performance?

In order to verify if HER improves performance we evaluate DDPG with and without HER on all
3 tasks. Moreover, we compare against DDPG with count-based exploration5 (Strehl and Littman,
2005; Kolter and Ng, 2009; Tang et al., 2016; Bellemare et al., 2016; Ostrovski et al., 2017). For
HER we store each transition in the replay buffer twice: once with the goal used for the generation
of the episode and once with the goal corresponding to the Þnal state from the episode (we call this
strategyfinal). In Sec. 4.5 we perform ablation studies of different strategiesS for choosing goals
for replay, here we include the best version from Sec. 4.5 in the plot for comparison.

Figure 2: Multiple goals. Figure 3: Single goal.

Fig. 2 shows the learning curves for all3 tasks6. DDPG without HER is unable to solve any of the
tasks7 and DDPG with count-based exploration is only able to make some progress on the sliding
task. On the other hand, DDPG with HER solves all tasks almost perfectly. It conÞrms that HER is a
crucial element which makes learning from sparse, binary rewards possible.

4.3 Does HER improve performance even if there is only one goal we care about?

In this section we evaluate whether HER improves performance in the case where there is only one
goal we care about. To this end, we repeat the experiments from the previous section but the goal
state is identical in all episodes.

From Fig. 3 it is clear that DDPG+HER performs much better than pure DDPG even if the goal state
is identical in all episodes. More importantly, comparing Fig. 2 and Fig. 3 we can also notice that
HER learns faster if training episodes contain multiple goals, so in practice it is advisable to train on
multiple goals even if we care only about one of them.

3The target position is relative to the currentobjectposition.
4The successful deployment on a physical robot (Sec. 4.6) conÞrms that our control model produces

movements which are reproducible on the physical robot despite not being fully physically plausible.
5 We discretize the state space and use an intrinsic reward of the form! /

!
N , where! is a hyper-

parameter andN is the number of times the given state was visited. The discretization works as fol-
lows. We take the relative position of the box and the target and then discretize every coordinate using
a grid with a stepsize" which is a hyperparameter. We have performed a hyperparameter search over
! " { 0.032, 0.064, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32} , " " { 1cm, 2cm, 4cm, 8cm} . The best results were
obtained using! = 1 and" = 1cm and these are the results we report.

6An episode is considered successful if the distance between the object and the goal at the end of the episode
is less than 7cm for pushing and pick-and-place and less than 20cm for sliding. The results are averaged across5
random seeds and shaded areas represent one standard deviation.

7We also evaluated DQN (without HER) on our tasks and it was not able to solve any of them.

6

