
A DC Proximal Newton Algorithm

Algorithm 1 DC Proximal Newton Algorithm

Input: b✓{0}, �
tgt

, �, "
Warm Initialization: b✓{1}  ProxNewton(

b✓{0},�
tgt

, "), K  1

Repeat:

�
{K+1}
j  

(
0, if |b✓{K}

j | > ��
tgt

�
tgt

, if |b✓{K}
j |  ��

tgt

t 0, ✓(0) =

b✓{K}

Repeat:
✓(t+1)  argmin✓ Q(✓; ✓(t),�{K+1}

)

t t + 1

Until !�{K+1}(✓(t))  "
b✓{K+1}  ✓(t)

K  K + 1

Until Convergence
Return: b✓{K}.

Algorithm 2 Proximal Newton Algorithm (ProxNewton)

Input: ✓(0), �
tgt

, "
Initialize: t 0, �j  �

tgt

, µ 0.9, ↵ 1

4

Repeat:
✓(t+

1
2 )  argmin✓ Q(✓; ✓(t),�)

�✓(t)  ✓(t+
1
2 ) � ✓(t)

�t  rL �
✓(t)

�> · �✓(t) + ||�� �
✓(t) + �✓(t)

� ||
1

� ||�� ✓(t)||
1

⌘t  1, q  0

Repeat:
⌘t  µq

q  q + 1

Until F�
�
✓(t) + ⌘t�✓

(t)
�  F�

�
✓(t)

�
+ ↵⌘t�t

✓(t+1)  ✓(t) + ⌘t�✓
(t)

t t + 1

Until !�(✓(t))  "
Return: ✓(t).

B Active Set Proximal Newton Algorithm

We first provide a brief derivation of the quadratic approximation (4) into a weighted least square
problem. For notational convenience, we omit the indexes {K} and (t) for a particular iteration of a
stage. Remind that we want to minimize the following `

1

regularized quadratic problem
b
� = argmin

�

bL(�) + ||�� (✓ + �)||
1

, (7)

where bL(�) = �

>rL(✓) +

1

2

�

>r2L(✓)�. For GLM, we have

L(✓) =

1

2n

nX

i=1

( (x>
i ✓)� yix

>
i ✓)

2,

where  is the cumulant function. Then we can rewrite the quadratic function in subproblem (7) as
an iterated reweighted least squares [10]:

bL(�) =

1

2n

nX

i=1

2

�
yi �  0

(x>
i ✓)

�
x>

i � +  00
(x>

i ✓)(x
>
i �)

2

=

1

2n

nX

i=1

wi(zi � x>
i �)

2

+ constant,
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where wi =  00
(x>

i ✓), zi =

yi� 0
(x>

i ✓)

 00
(x>

i ✓)
, and the constant term does not depend on �. This indicates

that (7) is equivalent a Lasso problem with reweighted least square loss function:

b
� = argmin

�

1

2n

nX

i=1

wi(zi � x>
i �)

2

+ ||�� (✓ + �)||
1

. (8)

By solving (8), we can avoid directly computing the d by d Hessian matrix in (7) and significantly
reduce the memory usage when d is large.

We then introduce an algorithm for solving (8) leveraging the idea of active set update. The active set
update scheme is very efficient in practice [10] with rigid theoretical justifications [43]. The algorithm
contains two nested loops. In the outer loop, we separate all coordinates into two sets: active set and
inactive set. Such a partition is based on some heuristic greedy scheme, such as gradient thresholding
(also called strong rule [31]). Then within each iteration of the middle loop, the inner loop only
updates coordinates in the active set in a cyclic manner until convergence, where the coordinates in
the inactive set remain to be zero. After the inner loop converges, we update the active set based on
a greedy selection rule that further decreases the objective value, and repeat the inner loop. Such a
procedure continues until the active set no longer changes in the outer loop. We provide the algorithm
description as follows and refer [43] for further details of active set based coordinate minimization.
We use (p) and (l) to index the outer loop and inner loop respectively.

Inner Loop. The active set A and inactive set A? are respectively set as
A {j | ✓j 6= 0} = {j

1

, j
2

, . . . , js} and A?  {j | j /2 A},

where j
1

< j
2

< . . . < js. A coordinate-wise minimization of (8) is performed throughout the
inner loop. Specifically, given ✓(p,l) at the l-th iteration of the inner loop, we solve (8) by only
considering the j-th coordinate in the active set and fix the rest coordinates in a cyclic manner for all
j = j

1

, j
2

, . . . , js, i.e.,

b
�j = argmin

�j

1

2n

nX

i=1

wi(zi � x>
i �j)

2

+ |�j(✓j + �j)|. (9)

Then we update ✓(p,l+1)

j = ✓
(p,l)
j +

b
�j . Solving (9) has a simple closed form solution by soft

thresholding. Given a thresholding parameter ⌧ 2 (0, 1), we terminate the inner loop when
k✓(p,l+1) � ✓(p,l)k

2

 ⌧�.

Outer Loop. At the beginning of the outer loop, we initialize the active set A(0) as follows
A(0)  {j | |rjL(✓(0))| � (1� ⌫)�} [ {j | ✓(0)j 6= 0},

where rjL(✓(0)) is the j-th entry of rL(✓(0)), ⌫ 2 (0, 0.1) is a thresholding parameter, and the
inactive set is A(0)

? = {j | j /2 A(0)}.

Suppose at the p-th iteration of the outer loop, the active set is A(p). We then perform the inner loop
introduced above using A(p) until the convergence of the inner loop and denote ✓(p+1)

= ✓(p,l), the
output of the inner loop. Next, we describe how to update the active set A(p) using the following
greedy selection rule.

• We first shrink the active set as follows. The active coordinate minimization (inner loop)
may yield zero solutions on A(p). We eliminate the zero coordinates of ✓(p+1) from A(p),
and update the intermediate active set and inactive set respectively as

A(p+ 1
2 )  {j 2 A(p) | ✓(p+1)

j 6= 0} and A(p+ 1
2 )

?  {j | j /2 A(p+ 1
2 )}.

• We then expand the active set as follows. Denote
j(p) = argmax

j2A
(p+1

2
)

?

|rjL(✓(p+1)

)|.

The outer loop is terminated if
|rj(p)L(✓(p+1)

)|  (1 + �)�,

where � ⌧ 1 is a real positive convergence parameter, e.g., � = 10

�5. Otherwise, we update
the sets as

A(p+1)  A(p+ 1
2 ) [ {j(p)} and A(p+1)

?  A(p+ 1
2 )

? \{j(p)},
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C Proofs of Main Results

We provide proof sketches for the main results of Theorem 4 and 5 in this section.

C.1 Proof of Theorem 4

We provide a few important intermediate results. The first result characterizes the sparsity of the
solution and an upper bound of the objective after sufficiently many iterations as follows.
Lemma 8. Suppose that Assumption 1 ⇠ 4 hold. After sufficiently many iterations T < 1, the
following results hold for all t � T :

||✓(t)S?
||
0

 es and F�{1}(✓(t))  F�{1}(✓⇤
) +

15�2
tgt

s⇤

4⇢�
s⇤

+2es
.

We then demonstrate the parameter estimation and quadratic convergence conditioning on the sparse
solution and bounded objective error.

Lemma 9. Suppose that Assumption 1 ⇠ 4 hold. If ||✓(t)S?
||
0

 es, and F�{1}(✓(t))  F�{1}(✓⇤
) +

15�2
tgts

⇤

4⇢�
s⇤+2es

, we have

||✓(t) � ✓⇤||
2

 18�
tgt

p
s⇤

⇢�
s⇤

+2es
and ||✓(t+1) � ✓{1}||

2

 Ls⇤
+2es

2⇢�
s⇤

+2es
||✓(t) � ✓{1}||2

2

Moreover, we characterize the sufficient number of iterations for the proximal Newton updates to
achieve the approximate KKT condition.

Lemma 10. Suppose that Assumption 1 ⇠ 4 hold. If ||✓(T )

S?
||
0

 es, and F�{1}(✓(T )

)  F�{1}(✓⇤
) +

15�2
tgts

⇤

4⇢�
s⇤+2es

at some iteration T , we need at most

T
1

 log log

 
3⇢+s⇤

+2es
"

!

extra iterations of the proximal Newton updates such that !�{1}(✓(T+T1)
)  �tgt

8

.

Combining Lemma 8 ⇠ 10, we have desired results in Theorem 4.

C.2 Proof of Theorem 5

We present a few important intermediate results that are key components of our main proof. The first
result shows that in a neighborhood of the true model parameter ✓⇤, the sparsity of the solution is
preserved when we use a sparse initialization.

Lemma 11 (Sparsity Preserving Lemma). Suppose that Assumptions 1 and 2 hold with "  �tgt

8

.
Given ✓(t) 2 B (✓⇤, R) and ||✓(t)S?

||
0

 es, there exists a generic constant C
1

such that

||✓(t+1)

S?
||
0

 es and ||✓(t+1) � ✓(0)||
2

 C
1

�
tgt

p
s⇤

⇢�
s⇤

+2es
.

We then show that every step of proximal Newton updates within each stage has a quadratic conver-
gence rate to a local minimizer, if we start with a sparse solution in the refined region.
Lemma 12. Suppose that Assumption 1 ⇠ 4 hold. If ✓(t) 2 B (✓⇤, R) and

��✓(t)S?

��
0

 es, then for
each stage K � 2, we have

||✓(t+1) � ✓{K}||
2

 Ls⇤
+2es

2⇢�
s⇤

+2es
||✓(t) � ✓{K}||2

2

.

In the following, we need to use the property that the iterates ✓(t) 2 B(✓
{K}

, 2R) instead of
✓(t) 2 B (✓⇤, R) for convergence analysis of the proximal newton method. This property holds
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since we have ✓(t) 2 B (✓⇤, R) and ✓
{K} 2 B (✓⇤, R) simultaneously. Thus ✓(t) 2 B

⇣
✓

{K}
, 2R

⌘
,

where 2R =

⇢�
s⇤+2es

Ls⇤+2es
is the radius for quadratic convergence region of the proximal Newton algorithm.

Next, we present a upper bound of estimation error after a proximal Newton update in terms of the
estimation error before the update.

Lemma 13. Suppose that Assumption 1 ⇠ 4 hold. If ||✓(t)S? ||
0

 es and ✓(t) 2 B(✓
{K}

, 2R), then
for each stage K � 2, we have

||✓(t+1) � ✓(t)||
2

 3

2

||✓(t) � ✓{K}||
2

.

The following lemma demonstrates that the step size parameter is simply 1 if the the sparse solution
is in the refined region.

Lemma 14. Suppose that Assumption 1⇠ 4 hold. If ✓(t) 2 B(✓
{K}

, 2R) and ||✓(t)S? ||
0

 es at each
stage K � 2 with 1

4

 ↵ < 1

2

, then ⌘t = 1. Further, we have

F�{K}(✓(t+1)

)  F�{K}(✓(t)) +

1

4

�t.

Moreover, we present a critical property of �t.
Lemma 15. Denote �✓(t) = ✓(t) � ✓(t+1) and

�t = rL
⇣
✓(t)

⌘>
· �✓(t) + R�{K}

⇣
✓(t) + �✓(t)

⌘
�R�{K}

⇣
✓(t)

⌘
.

Then we have �t  �||�✓(t)||2r2L(✓(t))
.

In addition, we present the sufficient number of iterations for each convex relaxation stage to achieve
the approximate KKT condition.
Lemma 16. Suppose that Assumption 1 ⇠ 4 hold. To achieve the approximate KKT condition
!�{K}

�
✓(t)

�  " for any " > 0 at each stage K � 2, the number of iteration for proximal Newton
updates is at most

log log

 
3⇢+s⇤

+2es
"

!
.

We further present the contraction of the estimation error along consecutive stages, which is a direct
result from oracle statistical rate in [9].
Lemma 17. Suppose that Assumption 1 ⇠ 4 hold. Then there exists a generic constant c

1

such that
the output solution for all K � 2 satisfy

||b✓{K} � ✓⇤||
2

 c
1

0

@krL(✓⇤
)Sk2 + �

tgt

sX

j2S
1(|✓⇤

j |  �)

2

+ "
p

s⇤

1

A
+ 0.7||b✓{K�1} � ✓⇤||

2

.

Combining Lemma 11 – Lemma 15, we have the quadratic convergence of the proximal Newton
algorithm within each convex relaxation stage. The rest of the results hold by further combining
Lemma 16 and recursively applying Lemma 17.

D Proof of Intermediate Results for Theorem 5

We first introduce an important notion that is closely related with the SE property is defined as
follows.
Definition 18. We denote the local `

1

cone as
C(s,#, R) :=

�
v, ✓ : S ✓M, |M|  s, kvM?k1  #kvMk1, k✓ � ✓⇤k

2

 R
 
.

Then we define the largest and smallest localized restricted eigenvalues (LRE) as

⌧+s,#,R = sup

u,✓

⇢
v>r2L(✓)v

v>v
: (v, ✓) 2 C(s,#, R)

�
,

⌧�
s,#,R = inf

u,✓

⇢
v>r2L(✓)v

v>v
: (v, ✓) 2 C(s,#, R)

�
.

15



The following proposition demonstrate the relationships between SE and LRE. The proof can be
found in [6].
Proposition 19. Given any ✓, ✓0 2 C(s,#, R) \ B(✓⇤, R), we have

�
1

⌧�
s,#,R  ⇢�

s  �2⌧�
s,#,R, and  

1

⌧+s,#,R  ⇢+s   2

⌧+s,#,R.

where �
1

, �
2

,  
1

, and  
2

are constants.

D.1 Proof of Lemma 11

We first demonstrate the sparsity of the update. For notational convenience, we omit the index {K}
here. Since ✓(t+1) is the minimizer to the proximal newton problem, we have

r2L(✓(t))(✓(t+1) � ✓(t)) +rL(✓(t)) + �� ⇠(t+1)

= 0,

where ⇠(t+1) 2 @||✓(t+1)||
1

.

It follows from [9] that if Assumptions 3 holds, then we have minj2S0
?
{�j} � �tgt/2 for some set

S 0 � S with |S 0|  2s⇤. Then the analysis of sparsity of can be performed through �
tgt

directly.

We then consider the following decomposition
r2L(✓(t))(✓(t+1) � ✓(t)) +rL(✓(t))

= r2L(✓(t))(✓(t+1) � ✓⇤
)| {z }

V1

+r2L(✓(t))(✓⇤ � ✓(t))| {z }
V2

+rL(✓(t))�rL(✓⇤
)| {z }

V3

+rL(✓⇤
)| {z }

V4

.

We then consider the following sets:
Ai = {j 2 S 0

? : |(Vi)j | � �tgt/4} , for all i 2 {1, 2, 3, 4}.

Set A
2

. We have A
2

=

�
j 2 S 0

? : |(r2L(✓(t))(✓⇤ � ✓(t)))j | � �tgt/4

 
. Consider a subset S 0 ⇢

A
2

with |S 0| = s0  es. Suppose we choose a vector v 2 Rd such that kvk1 = 1 and kvk
0

= s0 with
s0�

tgt

/4  v>r2L(✓(t))(✓⇤ � ✓(t)). Then we have

s0�
tgt

/4  v>r2L(✓(t))(✓⇤ � ✓(t))  kv(r2L(✓(t)))
1
2 k

2

k(r2L(✓(t)))
1
2
(✓⇤ � ✓(t))k

2

(i)


q
⇢+s⇤

+2es⇢
+

s0kvk
2

k✓⇤ � ✓(t)k
2

(ii)


q

s0⇢+s⇤
+2es⇢

+

s0k✓⇤ � ✓(t)k
2

(iii)


C 0
q

s0⇢+s⇤
+2es⇢

+

s0�
tgt

p
s⇤

⇢�
s⇤

+2es
, (10)

where (i) is from the SE properties, (ii) is from the definition of v, and (iii) is from k✓(t) � ✓⇤k
2


C 0�

tgt

p
s⇤/⇢�

s⇤
+2es. Then (10) implies

s0  C
2

⇢+s⇤
+2es⇢

+

s0s⇤

(⇢�
s⇤

+2es)
2

 C
2

2s⇤
+2ess

⇤, (11)

where the last inequality is from the fact that s0
= |S 0| achieves the maximum possible value such

that s0  es for any subset S 0 of A
2

. (11) implies that s0 < es, so wo must have S 0
= A

2

to attain the
maximum. Then we have

|A
2

| = s0  C
2

2s⇤
+2ess

⇤.

Set A
3

. We have A
3

=

�
j 2 S 0

? :

���rL(✓(t))�rL(✓⇤
)

�
i

�� � �
tgt

/4

 
. Suppose we choose a

vector v 2 Rd such that kvk1 = 1, kvk
0

= |A
3

| and

v>
⇣
rL(✓(t))�rL(✓⇤

)

⌘
=

X

i2A3

vi

⇣
rL(✓(t))�rL(✓⇤

)

⌘

i
=

X

i2A3

���
⇣
rL(✓(t))�rL(✓⇤

)

⌘

i

���

� �
tgt

|A
3

|/4. (12)
Then we have

v>
⇣
rL(✓(t))�rL(✓⇤

)

⌘
 ||v||

2

||rL(✓(t))�rL(✓⇤
)||

2

(i)


p

|A
3

| · ||rL(✓(t))�rL(✓⇤
)||

2

(ii)

 ⇢+s⇤
+2es

p
|A

3

| · ||✓(t) � ✓⇤||
2

, (13)
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where (i) is from the definition of v, and (ii) is from the mean value theorem and analogous argument
for A

2

.

Combining (12) and (13), we have

�
tgt

|A
3

|  4⇢+s⇤
+2es

p
|A

3

| · ||✓ � ✓⇤||
2

(i)

 8�
tgt

s⇤
+2es

p
3s⇤|A

3

|
where (i) is from k✓(t) � ✓⇤k

2

 C 0�
tgt

p
s⇤/⇢�

s⇤
+2es and definition of s⇤

+2es = ⇢+s⇤
+2es/⇢

�
s⇤

+2es.
This implies

|A
3

|  C
3

2s⇤
+2ess

⇤.

Set A
4

. By Assumption 3 and �
tgt

� 4||rL(✓⇤
)||1, we have

0  |V
4

| 
X

i2S⇤
?

4

�
tgt

|(rL(✓⇤
))i| · 1(|(rL(✓⇤

))i| > �
tgt

/(4)) =

X

i2S⇤
?

4

�
tgt

|(rL(✓⇤
))i| · 0 = 0,

(14)

Set A
1

. From Lemma 20, we have F�(✓(t+1)

)  F�(✓⇤
) +

�tgt

4

||✓(t+1) � ✓⇤||
1

. This implies

L(✓(t+1)

)� L(✓⇤
)  �

tgt

(||✓⇤||
1

� ||✓(t+1)||
1

) +

�
tgt

4

||✓(t+1) � ✓⇤||
1

= �
tgt

(||✓⇤
S0 ||

1

� ||✓(t+1)

S0 ||
1

� ||✓(t+1)

S0
?

||
1

) +

�
tgt

4

||✓(t+1) � ✓⇤||
1

 5�
tgt

4

||✓(t+1)

S0 � ✓⇤
S0 ||

1

� 3�
tgt

4

||✓(t+1)

S0
?
� ✓⇤

S0
?
||
1

. (15)

where the equality holds since ✓⇤
S0
?

= 0. On the other hand, we have

L(✓(t+1)

)� L(✓⇤
)

(i)

� rL(✓⇤
)(✓(t+1) � ✓⇤

) � �||cL(✓⇤
)||1||✓(t+1) � ✓⇤||

1

(ii)

� ��tgt
4

||✓(t+1) � ✓⇤||
1

= ��tgt
4

||✓(t+1)

S0 � ✓⇤
S0 ||

1

� �
tgt

4

||✓(t+1)

S0
?
� ✓⇤

S0
?
||
1

, (16)

where (i) is from the convexity of L and (ii) is from Assumption 3. Combining (15) and (16), we
have

||✓(t+1)

S0
?
� ✓⇤

S0
?
||
1

 3||✓(t+1)

S0 � ✓⇤
S0 ||

1

,

which implies that ✓(t+1) � ✓⇤ 2 C(s⇤, 3, R) with respect to the set S 0.

We have A
4

=

�
j 2 S 0

? : |(r2L(✓(t))(✓⇤ � ✓(t+1)

))j | � �tgt/4

 
. Consider a subset S 0 ⇢ A

2

with
|S 0| = s0  es and a vector v 2 Rd similar to that in A

2

. Then we have

s0�
tgt

/4  v>r2L(✓(t))(✓(t+1) � ✓⇤
)  kv(r2L(✓(t)))

1
2 k

2

k(r2L(✓(t)))
1
2
(✓(t+1) � ✓⇤

)k
2

(i)

 c
1

q
⇢+s⇤

+2es⇢
+

s0kvk
2

k✓⇤ � ✓(t+1)k
2

(ii)

 c
1

q
s0⇢+s⇤

+2es⇢
+

s0k✓⇤ � ✓(t+1)k
2

(iii)


c
2

q
s0⇢+s⇤

+2es⇢
+

s0�
tgt

p
s⇤

⇢�
s⇤

+2es
, , (17)

where (i) is from SE condition and Proposition 19, (ii) is from the definition of v, and (iii) is from
k✓(t+1) � ✓⇤k

2

 C 0�
tgt

p
s⇤/⇢�

s⇤
+2es. Following analogous argument in for A

2

, we have

|A
1

|  C
1

2s⇤
+2ess

⇤.

Combining the results for Set A
1

⇠ A
4

, we have that there exists some constant C
0

such that

||✓(t+ 1
2 )

S?
||
0

 C
0

2s⇤
+2ess

⇤  es.

From Lemma 14, we further have that the step size satisfies ⌘t = 1, then we have ✓(t+1)

= ✓(t+
1
2 ).

The estimation error follows directly from Lemma 21.
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D.2 Proof of Lemma 12

For notational simplicity, we introduce the following proximal operator,

prox

H,g
r (✓) = argmin✓0r(✓

0
) + g>

(✓0 � ✓) +

1

2

||✓0 � ✓||2H .

Then we have

✓(t+1)

= prox

r2L
(

✓(t)
)

,rL
(

✓(t)
)

R`1

�{K} (✓
(t)

)

⇣
✓(t)

⌘
.

By Lemma 11, we have

||✓(t+1)

S?
||
0

 es.

By the KKT condition of function min F�{K} , i.e., �rL(✓
{K}

) 2 @R`1
�{K}(✓

{K}
), we also have

✓
{K}

= prox

r2L
(

✓(t)
)

,rL(✓
{K}

)

R`1

�{K} (✓
{K}

)

⇣
✓

{K}⌘
.

By monotonicity of sub-gradient of a convex function, we have the strictly non-expansive property:
for any ✓, ✓0 2 R, let u = prox

H,g
r (✓) and v = prox

H,g0

r (✓0
), then

(u� v)

>
H(✓ � ✓0

)� (u� v)

>
(g � g0

) � ku� vk2H .

Thus by the strictly non-expansive property of the proximal operator, we obtain

||✓(t+1) � ✓{K}||2
r2L(✓

{K}
)


⇣
✓(t+1) � ✓{K}⌘> h

r2L(✓(t))
⇣
✓(t) � ✓{K}⌘

+

⇣
rL(✓

{K}
)�rL(✓(t))

⌘i

 ||✓(t+1) � ✓{K}||
2

���r2L(✓(t))
⇣
✓(t) � ✓{K}⌘

+

⇣
rL(✓

{K}
)�rL(✓(t))

⌘���
2

. (18)

Note that both ||✓(t+1)||
0

 es and ||✓{K}||
0

 es. On the other hand, from the SE properties, we have

||✓(t+1) � ✓{K}||2
r2L(✓

{K}
)

= (✓(t+1) � ✓{K}
)

>r2L(✓
{K}

)(✓(t+1) � ✓{K}
)

� ⇢�
s⇤

+2es||✓(t+1) � ✓{K}||2
2

. (19)
Combining (18) and (19), we have���✓(t+1) � ✓{K}

���
2

 1

⇢�
s⇤

+2es

���r2L(✓(t))
⇣
✓(t) � ✓{K}⌘

+

⇣
rL(✓

{K}
)�rL(✓(t))

⌘���
2

=

1

⇢�
s⇤

+2es

����
Z

1

0

h
r2L

⇣
✓(t) + ⌧

⇣
✓

{K} � ✓(t)
⌘⌘
�r2L

⇣
✓(t)

⌘i
·
⇣
✓

{K} � ✓(t)
⌘

d⌧

����
2

 1

⇢�
s⇤

+2es

Z
1

0

���
h
r2L

⇣
✓(t) + ⌧

⇣
✓

{K} � ✓(t)
⌘⌘
�r2L

⇣
✓(t)

⌘i
·
⇣
✓

{K} � ✓(t)
⌘���

2

d⌧

 Ls⇤
+2es

2⇢�
s⇤

+2es

���✓(t) � ✓{K}
���
2

2

,

where the last inequality is from the local restricted Hessian smoothness of L. Then we finish the
proof by the definition of R.

D.3 Proof of Lemma 14

Suppose the step size ⌘t < 1. Note that we do not need the step size to be ⌘t = 1 in Lemma 11 and
Lemma 12. We denote �✓(t) = ✓(t+

1
2 ) � ✓(t). Then we have

����✓(t)
���
2

(ii)


���✓(t) � ✓{K}

���
2

+

���✓(t+
1
2 ) � ✓{K}

���
2

(ii)


���✓(t) � ✓{K}

���
2

+

Ls⇤
+2es

2⇢�
s⇤

+2es

���✓(t) � ✓{K}
���
2

2

(iii)

 3

2

���✓(t) � ✓{K}
���
2

, (20)
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where (i) is from triangle inequality, (ii) is from Lemma 12, and (iii) is from
���✓(t) � ✓{K}

���
2


R  ⇢�

s⇤+2es
Ls⇤+2es

.

By Lemma 11, we have
����✓(t)S?

���
0

 2es.

To show ⌘t = 1, it is now suffice to demonstrate that

F�{K}(✓(t+
1
2 )

)� F�{K}(✓(t))  1

4

�t.

By expanding F�{K} , we have

F�{K}(✓(t) + �✓(t))� F�{K}(✓(t))

= L(✓(t) + �✓(t))� L(✓(t)) + R`1
�{K}(✓

(t)
+ �✓(t))�R`1

�{K}(✓
(t)

)

(i)

 rL(✓(t))>
�✓(t) +

1

2

�(✓(t))>r2L(✓)�✓(t) +

Ls⇤
+2es

6

����✓(t)
���
3

2

+ R`1
�{K}(✓

(t)
+ �✓(t))�R`1

�{K}(✓
(t)

)

(ii)

 �t � 1

2

�t +

Ls⇤
+2es

6

����✓(t)
���
3

2

(iii)

 1

2

�t +

Ls⇤
+2es

6⇢�
s⇤

+2es

����✓(t)
���

r2L(✓)

����✓(t)
���
2

(iv)


 

1

2

� Ls⇤
+2es

6⇢�
s⇤

+2es

����✓(t)
���
2

!
�t

(v)

 1

4

�t,

where (i) is from the restricted Hessian smooth condition, (ii) and (iv) are from Lemma 15, (iii) is

from the same argument of (19), and (v) is from (20), �t < 0, and
���✓(t) � ✓{K}

���
2

 R  ⇢�
s⇤+2es

Ls⇤+2es
.

This implies ✓(t+1)

= ✓(t+
1
2 ).

D.4 Proof of Lemma 15

We denote H = r2L(✓(t)). Since �✓(t) is the solution for

min

�✓(t)
rL

⇣
✓(t)

⌘>
· �✓(t) +

1

2

����✓(t)
���
2

H
+ R`1

�{K}

⇣
✓(t) + �✓(t)

⌘

then for any ⌘t 2 (0, 1], we have

⌘trL
⇣
✓(t)

⌘>
· �✓(t) +

⌘2t
2

����✓(t)
���
2

H
+ R`1

�{K}

⇣
✓(t) + ⌘t�✓

(t)
⌘

� rL
⇣
✓(t)

⌘>
· �✓(t) +

1

2

����✓(t)
���
2

H
+ R`1

�{K}

⇣
✓(t) + �✓(t)

⌘

By the convexity of R`1
�{K} , we have

⌘trL
⇣
✓(t)

⌘>
· �✓(t) +

⌘2t
2

����✓(t)
���
2

H
+ ⌘tR`1

�{K}

⇣
✓(t) + �✓(t)

⌘
+ (1� ⌘t)R`1

�{K}(✓
(t)

)

� rL
⇣
✓(t)

⌘>
· �✓(t) +

1

2

����✓(t)
���
2

H
+ R`1

�{K}

⇣
✓(t) + �✓(t)

⌘
.

Rearranging the terms, we obtain

(1� ⌘t)

✓
rL

⇣
✓(t)

⌘>
· �✓(t) + R`1

�{K}

⇣
✓(t) ��✓(t)

⌘
�R`1

�{K}(✓
(t)

)

◆
+

1� ⌘2t
2

����✓(t)
���
2

H

 0

Canceling the (1� ⌘t) factor from both sides and let ⌘t ! 1, we obtain the desired inequality,

�t  �
����✓(t)

���
2

H
.
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D.5 Proof of Lemma 16

We first demonstrate an upper bound of the approximate KKT parameter !�{K} . Given the solution
✓(t�1) from the (t� 1)-th iteration, the optimal solution at t-th iteration satisfies the KKT condition:

r2L(✓(t�1)

)(✓(t) � ✓(t�1)

) +rL(✓(t�1)

) + �{K} � ⇠(t) = 0,

where ⇠(t) 2 @||✓(t)||
1

. Then for any vector v with ||v||
2

 ||v||
1

= 1 and ||v||
0

 s⇤
+ 2es, we have

(rL(✓(t)) + �{K} � ⇠(t))>v = (rL(✓(t)))>v � (r2L(✓(t�1)

)(✓(t) � ✓(t�1)

) +rL(✓(t�1)

))

>v

= (rL(✓(t))�rL(✓(t�1)

))

>v � (r2L(✓(t�1)

)(✓(t) � ✓(t�1)

))

>v

(i)


���(r2L(

e✓)) 1
2
(✓(t) � ✓(t�1)

)

���
2

·
���v>

(r2L(

e✓)) 1
2

���
2

+

���(r2L(✓(t�1)

))

1
2
(✓(t) � ✓(t�1)

)

���
2

·
���v>

(r2L(✓(t�1)

))

1
2

���
2

(ii)

 2⇢+s⇤
+2es

���✓(t) � ✓(t�1)

���
2

, (21)

where (i) is from mean value theorem with some e✓ = (1� a)✓(t�1)

+ a✓(t) for some a 2 [0, 1] and
Cauchy-Schwarz inequality, and (ii) is from the SE properties. Take the supremum of the L.H.S. of
(21) with respect to v, we have���rL(✓(t)) + �{K} � ⇠(t)

���
1
 2⇢+s⇤

+2es

���✓(t) � ✓(t�1)

���
2

. (22)
Then from Lemma 12, we have
���✓(t+1) � ✓{K}

���
2


 

Ls⇤
+2es

2⇢�
s⇤

+2es

!
1+2+4+...+2

t�1 ���✓(0) � ✓{K}
���
2

>

2


 

Ls⇤
+2es

2⇢�
s⇤

+2es

���✓(0) � ✓{K}
���
2

!
2

t

.

By (22) and (20) by taking �✓(t�1)

= ✓(t) � ✓(t�1), we obtain

!�{K}

⇣
✓(t)

⌘
 2⇢+s⇤

+2es

���✓(t) � ✓(t�1)

���
2

 3⇢+s⇤
+2es

���✓(t�1) � ✓{K}
���
2

 3⇢+s⇤
+2es

 
Ls⇤

+2es

2⇢�
s⇤

+2es

���✓(0) � ✓{K}
���
2

!
2

t

.

By requiring the R.H.S. equal to " we obtain

t = log

log

✓
3⇢+

s⇤+2es
"

◆

log

 
2⇢�

s⇤+2es

Ls⇤+2es

���✓(0)�✓{K}
���
2

!
= log log

 
3⇢+s⇤

+2es
"

!
� log log

0

B@
2⇢�

s⇤
+2es

Ls⇤
+2es

���✓(0) � ✓{K}
���
2

1

CA

(i)

 log log

 
3⇢+s⇤

+2es
"

!
� log log 4  log log

 
3⇢+s⇤

+2es
"

!
,

where (i) is from the fact that
���✓(0) � ✓{K}

���
2

 R =

⇢�
s⇤+2es

2Ls⇤+2es
.

E Proof of Intermediate Results for Theorem 4

E.1 Proof of Lemma 8

Given the assumptions, we will show that for all large enough t, we have
||✓(t+1)

S?
||
0

 es.

Following the analysis of Lemma 14, Lemma 15, and Appendix H, we have that the objective F�{1}

has sufficient descendant in each iteration of proximal Newton step, which is also discussed in [37].
Then there exists a constant T such that for all t � T , we have

F�{1}(✓(t))  F�{1}(✓⇤
) +

�
tgt

4

||✓(t) � ✓⇤||
1

,

where ||✓(t) � ✓⇤||
1

 c�
tgt

p
s⇤/⇢�

s⇤
+es from similar analysis in [9]. The rest of the analysis is

analogous to that of Lemma 11, from which we have ||✓(t)S?
||
0

 es.
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E.2 Proof of Lemma 9

The estimation error is derived analogously from [9], thus we omit it here. The claim of the quadratic
convergence follows directly from Lemma 12 given sparse solutions.

E.3 Proof of Lemma 10

The upper bound of the number of iterations for proximal Newton update is obtained by combining
Lemma 8 and Lemma 16. Note that

T
1

 log

log

✓
3⇢+

s⇤+2es
"

◆

log

 
2⇢�

s⇤+2es

Ls⇤+2es

���✓(T+1)�✓{1}
���
2

! .

Then we obtain the result from
���✓(T+1) � ✓{1}

���
2

 R =

⇢�
s⇤+2es

2Ls⇤+2es
.

F Proof of Theorem 7

It is demonstrated in [24] that Assumptions 1 ⇠ 3 hold given the LRE properties defined in Defini-
tion 18. Thus, combining the analyses in [24] and Proposition 19, we have that Assumptions 1 ⇠ 3
hold with high probability. Assumption 4 also holds trivially by choosing " =

cp
n

for some generic
constant c. The rest of the results follow directly from Theorem 5 and the analyses in [40].

G Further Intermediate Results

Lemma 20. Given !�{K}(b✓{K}
)  �tgt

8

, we have that for all t � 1 at the {K + 1}-th stage,

!�{K+1}(✓(t))  �
tgt

4

and F�{K+1}(✓(t))  F�{K+1}(✓⇤
) +

�
tgt

4

||✓(t) � ✓⇤||
1

.

Proof. Note that at the {K + 1}-th stage, ✓(0) =

b✓{K}. Then we have

!�{K+1}(✓(0)) = min

⇠2@||✓(0)||1
||rL(✓(0)) + �{K+1} � ⇠||1

(i)

 min

⇠2||✓(0)||1
||rL(✓(0)) + �{K} � ⇠||1 + ||(�{K+1} � �{K}

)� ⇠||1
(ii)

 !�{K}(✓(0)) + ||�{K+1} � �{K}||1
(iii)

 �
tgt

8

+

�
tgt

8

 �
tgt

4

,

where (i) is from triangle inequality, (ii) is from the definition of the approximate KKT condition
and ⇠, and (iii) is from !�{K}(✓(0)) = !�{K}(b✓{K}

)  �tgt

8

and ||�{K+1} � �{K}||1  �tgt

8

.

For some ⇠(t) = argmin⇠2@||✓(t)||1 ||rL(✓(t)) + �{K+1} � ⇠||1, we have

F�{K+1}(✓⇤
)

(i)

� F�{K+1}(✓(t))� (rL(✓(t)) + �{K+1} � ⇠(t))>
(✓(t) � ✓⇤

)

� F�{K+1}(✓(t))� ||rL(✓(t)) + �{K+1} � ⇠(t)||1||✓(t) � ✓⇤||
1

(ii)

� F�{K+1}(✓(t))� �
tgt

4

||✓(t) � ✓⇤||
1

where (i) is from the convexity of F�{K+1} and (ii) is from the fact that for all t � 0, ||rL(✓(t)) +

�{K+1} � ⇠(t)||1  �tgt

4

. This finishes the proof.

Lemma 21 (Adapted from [9]). Suppose ||✓(t)S?
||
0

 es and !�{K}(✓(t))  �tgt

4

. Then there exists a
generic constant c

1

such that

||✓(t) � ✓⇤||
2

 c
1

�
tgt

p
s⇤

⇢�
s⇤

+2es
.
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H Global Convergence Analysis

For notational convenience, we denote F = F� and R = R`1
� in the sequel. We first provide an

upper bound of the objective gap.
Lemma 22. Suppose the F(✓) = R(✓) + L(✓) and L(✓) satisfies the restricted Hessian smoothness
property, namely, for any ✓, h 2 Rd

d

d⌧
r2L(✓ + ⌧h)|⌧=0

� C
q

h>r2L(✓)h ·r2L(✓),

for some constant C. Let �✓ be the search direction and let ✓
+

= ✓+ ⌧�✓ for some ⌧ 2 (0, 1]. Then

F(✓
+

)  F(✓) +

⇥�⌧ + O(⌧2)
⇤ k�✓k2H .

Proof. From the convexity of R, we have
F(✓

+

)� F(✓) = L(✓
+

)� L(✓) + R(✓
+

)�R(✓)

 L(✓
+

)� L(✓) + ⌧R(✓ + �✓) + (1� ⌧)R(✓)�R(✓)

= L(✓
+

)� L(✓) + ⌧ (R(✓ + �✓)�R(✓))

= rL(✓)> · (⌧�✓) + ⌧ (R(✓ + �✓)�R(✓)) + ⌧

Z ⌧

0

(�✓)>r2L(✓ + ↵�✓)�✓d↵.

By Lemma 15 and the restricted Hessian smoothness property, we obtain
F(✓

+

)� F(✓)

 �⌧ k�✓kr2L(✓) + ⌧

Z ⌧

0

(�✓)>r2L(✓ + ↵�✓)�✓d↵

= �⌧ k�✓kr2L(✓) + ⌧

Z ⌧

0

d↵

Z ↵

0

dz
d

dz
(�✓)>r2L(✓ + z�✓)�✓ + ⌧

Z ⌧

0

d↵(�✓)>r2L(✓)�✓

=

��⌧ + O(⌧2)
� k�✓k2r2L(✓) .

Next, we show that �✓ 6= 0 when ✓ have not attained the optimum.
Lemma 23. Suppose the F(✓) = R(✓) + L(✓) has a unique minimizer, and L(✓) satisfies the
restricted Hessian smoothness property. Then �✓(t) = 0 if and only if ✓(t) = ✓.

Proof. Suppose �✓ is non-zero at ✓. Lemma 22 implies that for sufficiently small 0 < ⌧  1,

F(✓ + ⌧�✓(t))� F(✓)  0.

However F(✓) is uniquely minimized at ✓, which is a contradiction. Thus �✓ = 0 at ✓.

Now we consider the other direction. Suppose �✓ = 0, then ✓ is a minimizer of F . Thus for any
direction h and ⌧ 2 (0, 1], we obtain

rL(✓)>
(⌧h) +

1

2

⌧2h>Hh + R(✓ + ⌧h)�R(✓) � 0.

Rearrange, we obtain

R(✓ + ⌧h)�R(✓) � �⌧rL(✓)>h� 1

2

⌧2h>Hh

Let DF(✓, h) be the directional derivative of F at ✓ in the direction h, thus

DF(✓, h) = lim

⌧!0

F(✓ + ⌧h)� F(✓)

⌧

= lim

⌧!0

⌧rL(✓)>h + O(⌧2) + R(✓ + ⌧h)�R(✓)

⌧

� lim

⌧!0

⌧rL(✓)>h + O(⌧2)� ⌧rL(✓)>h� 1

2

⌧2h>Hh

⌧
= 0.

Since F is convex, then ✓ is the minimizer of F .
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Then, we show the behavior of k�✓kH and R(✓ + �✓) when �✓ 6= 0.

Lemma 24. Suppose at any point ✓ 2 Rd, we haverL(✓) 2 span

�r2L(✓)
�
. If �✓ 6= 0 then either

k�✓kH > 0 or R (✓ + �✓) < R (✓) .

Proof. Recall that �✓ is obtained by solving the following sub-problem,

�✓ = argmin

�✓
R(✓ + �✓) +rL(✓)>

�✓ + k�✓k2H .

If k�✓kH = 0 and �✓ 6= 0, then

�✓ ? span(H) and rL(✓)>
�✓ = 0.

Thus
R (✓ + �✓) < R (✓) .

Notice that R (✓ + �✓) 6= R (✓), since otherwise �✓ = 0 is a solution.

Finally, we demonstrate the strict decrease of the objective in each proximal Newton step.
Lemma 25. Suppose at any point ✓ 2 Rd, we have rL(✓) 2 span

�r2L(✓)
�
. If �✓ 6= 0 then

F(✓ + ⌧�✓) < F(✓),

for small enough ⌧ > 0.

Proof. By Lemma 24, if �✓ 6= 0, then either k�✓kH > 0 or R(✓ + �✓) �R(✓) < 0. If it is the
first case, then by Lemma 15,

� = rL(✓)>
�✓ + R(✓ + �✓)�R(✓) < �k�✓kH < 0.

It is the second case, then rL(✓)>
�✓ = 0 and
� = R(✓ + �✓)�R(✓) < 0.

Moreover, we have
F(✓ + ⌧�✓)� F(✓)

= L(✓ + ⌧�✓)� L(✓) + R(✓ + ⌧�✓)�R(✓)

 ⌧rL(✓)>
�✓ +

⌧2

2

�✓>H�✓ + O(⌧3) + R(✓ + ⌧�✓)�R(✓)

 ⌧rL(✓)>
�✓ + ⌧R(✓ + �✓) + (1� ⌧)R(✓)�R(✓) +

⌧2

2

�✓>H�✓ + O(⌧3)

= ⌧(� + O(⌧)).

where the first inequality is from the restricted Hessian smoothness property. Thus F(✓ + ⌧�✓)�
F(✓) < 0 for sufficiently small ⌧ > 0.

Since each step, the objective is strictly decreasing, thus the algorithm will eventually reach the
minimum.
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